Exemplo n.º 1
0
template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime)
{
  typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
  typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType;

  // Test basic functionality: T is triangular and A = U T U*
  for(int counter = 0; counter < g_repeat; ++counter) {
    MatrixType A = MatrixType::Random(size, size);
    ComplexSchur<MatrixType> schurOfA(A);
    VERIFY_IS_EQUAL(schurOfA.info(), Success);
    ComplexMatrixType U = schurOfA.matrixU();
    ComplexMatrixType T = schurOfA.matrixT();
    for(int row = 1; row < size; ++row) {
      for(int col = 0; col < row; ++col) {
	VERIFY(T(row,col) == (typename MatrixType::Scalar)0);
      }
    }
    VERIFY_IS_APPROX(A.template cast<ComplexScalar>(), U * T * U.adjoint());
  }

  // Test asserts when not initialized
  ComplexSchur<MatrixType> csUninitialized;
  VERIFY_RAISES_ASSERT(csUninitialized.matrixT());
  VERIFY_RAISES_ASSERT(csUninitialized.matrixU());
  VERIFY_RAISES_ASSERT(csUninitialized.info());
  
  // Test whether compute() and constructor returns same result
  MatrixType A = MatrixType::Random(size, size);
  ComplexSchur<MatrixType> cs1;
  cs1.compute(A);
  ComplexSchur<MatrixType> cs2(A);
  VERIFY_IS_EQUAL(cs1.info(), Success);
  VERIFY_IS_EQUAL(cs2.info(), Success);
  VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT());
  VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU());

  // Test computation of only T, not U
  ComplexSchur<MatrixType> csOnlyT(A, false);
  VERIFY_IS_EQUAL(csOnlyT.info(), Success);
  VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT());
  VERIFY_RAISES_ASSERT(csOnlyT.matrixU());

  if (size > 1)
  {
    // Test matrix with NaN
    A(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
    ComplexSchur<MatrixType> csNaN(A);
    VERIFY_IS_EQUAL(csNaN.info(), NoConvergence);
  }
}
Exemplo n.º 2
0
void krylov(const ComplexSparseMatrixType &A, ComplexVectorType &Vec,
  const ComplexType Prefactor, const size_t Kmax)
{
  // INFO(A);
  const RealType beta_err = 1.0E-12;
  if (DEBUG) assert( Kmax > 2 );
  RealType alpha;
  RealType beta = 1.0;
  ComplexMatrixType Vm = ComplexMatrixType::Zero(Vec.size(), Kmax);
  std::vector<RealType> Alphas;
  std::vector<RealType> Betas;
  int cntK = 0;
  //NOTE: normalized Vec
  Vec.normalize();
  Vm.col(cntK) = Vec;
  while ( cntK < Kmax ) {
    ComplexVectorType work = A * Vm.col(cntK);
    if( cntK > 0 ) work -= beta * Vm.col(cntK-1);
    ComplexType alpha_c = work.dot( Vm.col(cntK) );
    alpha = alpha_c.real();
    work -= alpha * Vm.col(cntK);
    beta = work.norm();
    Alphas.push_back(alpha);
    if( DEBUG > 4 ){
      INFO("@ " << cntK << " alpha is " << alpha << " beta is " << beta);
    }
    if( beta > beta_err ){
      work.normalize();
      if( cntK+1 < Kmax ) {
        Vm.col(cntK+1) = work;
        Betas.push_back(beta);
      }
      cntK++;
    }
    else{
      cntK++;
      break;
    }
  }
  if ( DEBUG ) {
    assert( Alphas.size() == cntK );
    assert( Betas.size() == cntK - 1 );
    if ( DEBUG > 5 ) {
      ComplexMatrixType tmpVm = Vm;
      tmpVm.adjointInPlace();
      INFO( "Vm^H * Vm " << std::endl << tmpVm * Vm);
    }
  }
  int Kused = cntK;
  if ( Kused == 1 ){
    /* NOTE: This is a special case that input vector is eigenvector */
    Vec = exp(Prefactor * Alphas.at(0)) * Vec;
  } else{
    /* NOTE: The floowing codes use Eigen to solve the tri-diagonal matrix.
             If we use this, we need the Eigen header in this file.
    */
    // RealMatrixType TriDiag = RealMatrixType::Zero(Kused, Kused);
    // for (size_t cnt = 0; cnt < Kused; cnt++) {
    //   TriDiag(cnt, cnt) = Alphas.at(cnt);
    //   if (cnt > 0) {
    //     TriDiag(cnt, cnt-1) = Betas.at(cnt - 1);
    //     TriDiag(cnt-1, cnt) = Betas.at(cnt - 1);
    //   }
    // }
    // Eigen::SelfAdjointEigenSolver<RealMatrixType> es;
    // es.compute(TriDiag);
    // RealVectorType Dvec = es.eigenvalues();
    // ComplexMatrixType Dmat = ComplexMatrixType::Zero(Kused, Kused);
    // for (size_t cnt = 0; cnt < Kused; cnt++) {
    //   Dmat(cnt,cnt) = exp( Prefactor * Dvec(cnt) );
    // }
    // RealMatrixType Kmat = es.eigenvectors();
    /* NOTE: The floowing codes use MKL Lapack to solve the tri-diagonal matrix */
    RealType* d = &Alphas[0];
    RealType* e = &Betas[0];
    RealType* z = (RealType*)malloc(Kused * Kused * sizeof(RealType));
    RealType* work = (RealType*)malloc(4 * Kused * sizeof(RealType));
    int info;
    //dstev - LAPACK
    dstev((char*)"V", &Kused, d, e, z, &Kused, work, &info);
    Eigen::Map<RealMatrixType> Kmat(z, Kused, Kused);
    Kmat.transposeInPlace();
    ComplexMatrixType Dmat = ComplexMatrixType::Zero(Kused, Kused);
    for (size_t cnt = 0; cnt < Kused; cnt++) {
      Dmat(cnt,cnt) = exp( Prefactor * d[cnt] );
    }
    if(info != 0){
      INFO("Lapack INFO = " << info);
      RUNTIME_ERROR("Error in Lapack function 'dstev'");
    }
    /* NOTE: After Solving tri-diagonal matrix, we need Kmat and Dmat to proceed further. */
    if ( DEBUG > 4 ) {
      RealMatrixType tmpKmat = Kmat;
      tmpKmat.transposeInPlace();
      INFO( Kmat * Dmat * tmpKmat );
    }
    ComplexMatrixType Otmp = Vm.block(0, 0, Vec.size(), Kused) * Kmat;
    Vec = ( Otmp * Dmat ) * ( Otmp.adjoint() * Vec );
  }
}
Exemplo n.º 3
0
template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime)
{
  typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
  typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType;

  // Test basic functionality: T is triangular and A = U T U*
  for(int counter = 0; counter < g_repeat; ++counter) {
    MatrixType A = MatrixType::Random(size, size);
    ComplexSchur<MatrixType> schurOfA(A);
    VERIFY_IS_EQUAL(schurOfA.info(), Success);
    ComplexMatrixType U = schurOfA.matrixU();
    ComplexMatrixType T = schurOfA.matrixT();
    for(int row = 1; row < size; ++row) {
      for(int col = 0; col < row; ++col) {
        VERIFY(T(row,col) == (typename MatrixType::Scalar)0);
      }
    }
    VERIFY_IS_APPROX(A.template cast<ComplexScalar>(), U * T * U.adjoint());
  }

  // Test asserts when not initialized
  ComplexSchur<MatrixType> csUninitialized;
  VERIFY_RAISES_ASSERT(csUninitialized.matrixT());
  VERIFY_RAISES_ASSERT(csUninitialized.matrixU());
  VERIFY_RAISES_ASSERT(csUninitialized.info());
  
  // Test whether compute() and constructor returns same result
  MatrixType A = MatrixType::Random(size, size);
  ComplexSchur<MatrixType> cs1;
  cs1.compute(A);
  ComplexSchur<MatrixType> cs2(A);
  VERIFY_IS_EQUAL(cs1.info(), Success);
  VERIFY_IS_EQUAL(cs2.info(), Success);
  VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT());
  VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU());

  // Test maximum number of iterations
  ComplexSchur<MatrixType> cs3;
  cs3.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A);
  VERIFY_IS_EQUAL(cs3.info(), Success);
  VERIFY_IS_EQUAL(cs3.matrixT(), cs1.matrixT());
  VERIFY_IS_EQUAL(cs3.matrixU(), cs1.matrixU());
  cs3.setMaxIterations(1).compute(A);
  VERIFY_IS_EQUAL(cs3.info(), size > 1 ? NoConvergence : Success);
  VERIFY_IS_EQUAL(cs3.getMaxIterations(), 1);

  MatrixType Atriangular = A;
  Atriangular.template triangularView<StrictlyLower>().setZero(); 
  cs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations
  VERIFY_IS_EQUAL(cs3.info(), Success);
  VERIFY_IS_EQUAL(cs3.matrixT(), Atriangular.template cast<ComplexScalar>());
  VERIFY_IS_EQUAL(cs3.matrixU(), ComplexMatrixType::Identity(size, size));

  // Test computation of only T, not U
  ComplexSchur<MatrixType> csOnlyT(A, false);
  VERIFY_IS_EQUAL(csOnlyT.info(), Success);
  VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT());
  VERIFY_RAISES_ASSERT(csOnlyT.matrixU());

  if (size > 1 && size < 20)
  {
    // Test matrix with NaN
    A(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
    ComplexSchur<MatrixType> csNaN(A);
    VERIFY_IS_EQUAL(csNaN.info(), NoConvergence);
  }
}