Exemplo n.º 1
0
bool interp_retape(void)
{	bool ok = true;

	using CppAD::AD;
	using CppAD::NearEqual;

	// domain space vector
	size_t n = 1;
	CPPAD_TESTVECTOR(AD<double>) X(n);

	// loop over argument values
	size_t k;
	for(k = 0; k < TableLength - 1; k++)
	{
		X[0] = .4 * ArgumentValue[k] + .6 * ArgumentValue[k+1];

		// declare independent variables and start tape recording
		// (use a different tape for each argument value)
		CppAD::Independent(X);

		// evaluate piecewise linear interpolant at X[0]
		AD<double> A = Argument(X[0]);
		AD<double> F = Function(X[0]);
		AD<double> S = Slope(X[0]);
		AD<double> I = F + (X[0] - A) * S;

		// range space vector
		size_t m = 1;
		CPPAD_TESTVECTOR(AD<double>) Y(m);
		Y[0] = I;

		// create f: X -> Y and stop tape recording
		CppAD::ADFun<double> f(X, Y);

		// vectors for arguments to the function object f
		CPPAD_TESTVECTOR(double) x(n);   // argument values
		CPPAD_TESTVECTOR(double) y(m);   // function values
		CPPAD_TESTVECTOR(double) dx(n);  // differentials in x space
		CPPAD_TESTVECTOR(double) dy(m);  // differentials in y space

		// to check function value we use the fact that X[0] is between
		// ArgumentValue[k] and ArgumentValue[k+1]
		double delta, check;
		x[0]   = Value(X[0]);
		delta  = ArgumentValue[k+1] - ArgumentValue[k];
		check  = FunctionValue[k+1] * (x[0]-ArgumentValue[k]) / delta
	               + FunctionValue[k] * (ArgumentValue[k+1]-x[0]) / delta;
		ok    &= NearEqual(Y[0], check, 1e-10, 1e-10);

		// evaluate partials w.r.t. x[0]
		dx[0] = 1.;
		dy    = f.Forward(1, dx);

		// check that the derivative is the slope
		check = (FunctionValue[k+1] - FunctionValue[k])
		      / (ArgumentValue[k+1] - ArgumentValue[k]);
		ok   &= NearEqual(dy[0], check, 1e-10, 1e-10);
	}
	return ok;
}
Exemplo n.º 2
0
bool opt_val_hes(void)
{	bool ok = true;
	using CppAD::AD;
	using CppAD::NearEqual;

	// temporary indices
	size_t j, k;

	// x space vector
	size_t n = 1;
	BaseVector x(n);
	x[0] = 2. * 3.141592653;

	// y space vector
	size_t m = 1;
	BaseVector y(m);
	y[0] = 1.;

	// t and z vectors
	size_t ell = 10;
	BaseVector t(ell);
	BaseVector z(ell);
	for(k = 0; k < ell; k++)
	{	t[k] = double(k) / double(ell);       // time of measurement
		z[k] = y[0] * sin( x[0] * t[k] );     // data without noise
	}

	// construct the function object
	Fun fun(t, z);

	// evaluate the Jacobian and Hessian
	BaseVector jac(n), hes(n * n);
	int signdet = CppAD::opt_val_hes(x, y, fun, jac, hes);

	// we know that F_yy is positive definate for this case
	assert( signdet == 1 );

	// create ADFun object g corresponding to V(x)
	ADVector a_x(n), a_v(1);
	for(j = 0; j < n; j++)
		a_x[j] = x[j];
	Independent(a_x);
	a_v[0] = V(a_x, t, z);
	CppAD::ADFun<double> g(a_x, a_v);

	// accuracy for checks
	double eps = 10. * CppAD::numeric_limits<double>::epsilon();

	// check Jacobian
	BaseVector check_jac = g.Jacobian(x);
	for(j = 0; j < n; j++)
		ok &= NearEqual(jac[j], check_jac[j], eps, eps);

	// check Hessian
	BaseVector check_hes = g.Hessian(x, 0);
	for(j = 0; j < n*n; j++)
		ok &= NearEqual(hes[j], check_hes[j], eps, eps);

	return ok;
}
Exemplo n.º 3
0
	/*!
	Fetch the next operator during a forward sweep.

	Use forward_start to initialize to the first operator; i.e.,
	the BeginOp at the beginning of the recording. 
	We use the notation forward_routine to denote the set
	forward_start, forward_next, forward_csum, forward_cskip.

	\param op [in,out]
	The input value of \c op must be its output value from the 
	previous call to a forward_routine.
	Its output value is the next operator in the recording.
	For speed, \c forward_next does not check for the special cases
	where  <tt>op == CSumOp</tt> or <tt>op == CSkipOp</tt>. In these cases, 
	the other return values from \c forward_next must be corrected by a call 
	to \c forward_csum or \c forward_cskip respectively.

	\param op_arg [in,out]
	The input value of \c op_arg must be its output value form the
	previous call to a forward routine. 
	Its output value is the
	beginning of the vector of argument indices for this operation.

	\param op_index [in,out]
	The input value of \c op_index must be its output value form the
	previous call to a forward routine. 
	Its output value is the index of the next operator in the recording. 
	Thus the ouput value following the previous call to forward_start is one.
	In addition,
	the output value increases by one with each call to forward_next. 

	\param var_index [in,out]
	The input value of \c var_index must be its output value form the
	previous call to a forward routine. 
	Its output value is the
	index of the primary (last) result corresponding to the operator op.
	*/
	void forward_next(
	OpCode& op, const addr_t*& op_arg, size_t& op_index, size_t& var_index)
	{	using CppAD::NumRes;
		using CppAD::NumArg;
		CPPAD_ASSERT_UNKNOWN( op_       == op );
		CPPAD_ASSERT_UNKNOWN( op_arg    == op_arg_ );
		CPPAD_ASSERT_UNKNOWN( op_index  == op_index_ );
		CPPAD_ASSERT_UNKNOWN( var_index == var_index_ );

		// index for the next operator 
		op_index    = ++op_index_;

		// first argument for next operator 
		op_arg      = op_arg_    += NumArg(op_);

		// next operator
		op          = op_         = OpCode( op_rec_[ op_index_ ] );

		// index for last result for next operator
		var_index   = var_index_ += NumRes(op);
		

		CPPAD_ASSERT_UNKNOWN( op_arg_rec_.data() <= op_arg_ );
		CPPAD_ASSERT_UNKNOWN( 
			op_arg_ + NumArg(op) <= op_arg_rec_.data() + op_arg_rec_.size() 
		);
		CPPAD_ASSERT_UNKNOWN( var_index_  < num_var_rec_ );
	}
Exemplo n.º 4
0
	/*!
	Correct \c forward_next return values when <tt>op == CSkipOp</tt>.

	\param op [in]
	The input value of op must be the return value from the previous
	call to \c forward_next and must be \c CSkipOp. It is not modified.

	\param op_arg [in,out]
	The input value of \c op_arg must be the return value from the 
	previous call to \c forward_next. Its output value is the
	beginning of the vector of argument indices for the next operation.

	\param op_index [in]
	The input value of \c op_index does must be the return value from the
	previous call to \c forward_next. Its is not modified.

	\param var_index [in,out]
	The input value of \c var_index must be the return value from the
	previous call to \c forward_next. It is not modified.
	*/
	void forward_cskip(
	OpCode& op, const addr_t*& op_arg, size_t& op_index, size_t& var_index)
	{	using CppAD::NumRes;
		using CppAD::NumArg;
		CPPAD_ASSERT_UNKNOWN( op_       == op );
		CPPAD_ASSERT_UNKNOWN( op_arg    == op_arg_ );
		CPPAD_ASSERT_UNKNOWN( op_index  == op_index_ );
		CPPAD_ASSERT_UNKNOWN( var_index == var_index_ );

		CPPAD_ASSERT_UNKNOWN( op == CSkipOp );
		CPPAD_ASSERT_UNKNOWN( NumArg(CSkipOp) == 0 );
		CPPAD_ASSERT_UNKNOWN(
		op_arg[4] + op_arg[5] == op_arg[ 6 + op_arg[4] + op_arg[5] ]
		);
		/*
		The only thing that really needs fixing is op_arg_.
		Actual number of arugments for this operator is
			7 + op_arg[4] + op_arg[5]
 		We must change op_arg_ so that when you add NumArg(CSkipOp)
		you get first argument for next operator in sequence.
		*/
		op_arg  = op_arg_  += 7 + op_arg[4] + op_arg[5];

		CPPAD_ASSERT_UNKNOWN( op_arg_rec_.data() <= op_arg_ );
		CPPAD_ASSERT_UNKNOWN( 
			op_arg_ + NumArg(op) <= op_arg_rec_.data() + op_arg_rec_.size()
		);
		CPPAD_ASSERT_UNKNOWN( var_index_  < num_var_rec_ );
	}
Exemplo n.º 5
0
	/*!
	Fetch the next operator during a reverse sweep.

	Use reverse_start to initialize to reverse play back.
	The first call to reverse_next (after reverse_start) will give the 
	last operator in the recording.
	We use the notation reverse_routine to denote the set
	reverse_start, reverse_next, reverse_csum, reverse_cskip.

	\param op [in,out]
	The input value of \c op must be its output value from the 
	previous call to a reverse_routine.
	Its output value is the next operator in the recording (in reverse order).
	The last operator sets op equal to EndOp.

	\param op_arg [in,out]
	The input value of \c op_arg must be its output value from the 
	previous call to a reverse_routine.
	Its output value is the
	beginning of the vector of argument indices for this operation.
	The last operator sets op_arg equal to the beginning of the 
	argument indices for the entire recording.
	For speed, \c reverse_next does not check for the special cases
	<tt>op == CSumOp</tt> or <tt>op == CSkipOp</tt>. In these cases, the other
	return values from \c reverse_next must be corrected by a call to 
	\c reverse_csum or \c reverse_cskip respectively.


	\param op_index [in,out]
	The input value of \c op_index must be its output value from the 
	previous call to a reverse_routine.
	Its output value
	is the index of this operator in the recording. Thus the output
	value following the previous call to reverse_start is equal to 
	the number of variables in the recording minus one.
	In addition, the output value decreases by one with each call to
	reverse_next.
	The last operator sets op_index equal to 0.

	\param var_index [in,out]
	The input value of \c var_index must be its output value from the 
	previous call to a reverse_routine.
	Its output value is the
	index of the primary (last) result corresponding to the operator op.
	The last operator sets var_index equal to 0 (corresponding to BeginOp
	at beginning of operation sequence).
	*/
	void reverse_next(
	OpCode& op, const addr_t*& op_arg, size_t& op_index, size_t& var_index)
	{	using CppAD::NumRes;
		using CppAD::NumArg;
		CPPAD_ASSERT_UNKNOWN( op_       == op );
		CPPAD_ASSERT_UNKNOWN( op_arg    == op_arg_ );
		CPPAD_ASSERT_UNKNOWN( op_index  == op_index_ );
		CPPAD_ASSERT_UNKNOWN( var_index == var_index_ );

		// index of the last result for the next operator
		CPPAD_ASSERT_UNKNOWN( var_index_ >= NumRes(op_) );
		var_index   = var_index_ -= NumRes(op_);

		// next operator
		CPPAD_ASSERT_UNKNOWN( op_index_  > 0 );
		op_index    = --op_index_;                                  // index
		op          = op_         = OpCode( op_rec_[ op_index_ ] ); // value

		// first argument for next operator
		op_arg      = op_arg_    -= NumArg(op);
		CPPAD_ASSERT_UNKNOWN( op_arg_rec_.data() <= op_arg_ );
		CPPAD_ASSERT_UNKNOWN( 
			op_arg_ + NumArg(op) <= op_arg_rec_.data() + op_arg_rec_.size() 
		);
	}
Exemplo n.º 6
0
bool BenderQuad(void)
{	bool ok = true;
	using CppAD::AD;
	using CppAD::NearEqual;

	// temporary indices
	size_t i, j;

	// x space vector
	size_t n = 1;
	BAvector x(n);
	x[0] = 2. * 3.141592653;

	// y space vector
	size_t m = 1;
	BAvector y(m);
	y[0] = 1.;

	// t and z vectors
	size_t N = 10;
	BAvector t(N);
	BAvector z(N);
	for(i = 0; i < N; i++)
	{	t[i] = double(i) / double(N);       // time of measurement
		z[i] = y[0] * sin( x[0] * t[i] );   // data without noise
	}

	// construct the function object
	Fun fun(t, z);

	// evaluate the G(x), G'(x) and G''(x)
	BAvector g(1), gx(n), gxx(n * n);
	CppAD::BenderQuad(x, y, fun, g, gx, gxx);


	// create ADFun object Gfun corresponding to G(x)
	ADvector a_x(n), a_g(1);
	for(j = 0; j < n; j++)
		a_x[j] = x[j];
	Independent(a_x);
	a_g[0] = G(a_x, t, z);
	CppAD::ADFun<double> Gfun(a_x, a_g);

	// accuracy for checks
	double eps = 10. * CppAD::numeric_limits<double>::epsilon();

	// check Jacobian
	BAvector check_gx = Gfun.Jacobian(x);
	for(j = 0; j < n; j++)
		ok &= NearEqual(gx[j], check_gx[j], eps, eps);

	// check Hessian
	BAvector check_gxx = Gfun.Hessian(x, 0);
	for(j = 0; j < n*n; j++)
		ok &= NearEqual(gxx[j], check_gxx[j], eps, eps);

	return ok;
}
Exemplo n.º 7
0
bool forward_order(void)
{	bool ok = true;
	using CppAD::AD;
	using CppAD::NearEqual;
	double eps = 10. * std::numeric_limits<double>::epsilon();

	// domain space vector
	size_t n = 2;
	CPPAD_TESTVECTOR(AD<double>) ax(n);
	ax[0] = 0.;
	ax[1] = 1.;

	// declare independent variables and starting recording
	CppAD::Independent(ax);

	// range space vector
	size_t m = 1;
	CPPAD_TESTVECTOR(AD<double>) ay(m);
	ay[0] = ax[0] * ax[0] * ax[1];

	// create f: x -> y and stop tape recording
	CppAD::ADFun<double> f(ax, ay);

	// initially, the variable values during taping are stored in f
	ok &= f.size_order() == 1;

	// Compute three forward orders at one
	size_t q = 2, q1 = q+1;
	CPPAD_TESTVECTOR(double) xq(n*q1), yq;
	xq[q1*0 + 0] = 3.;    xq[q1*1 + 0] = 4.; // x^0 (order zero)
	xq[q1*0 + 1] = 1.;    xq[q1*1 + 1] = 0.; // x^1 (order one)
	xq[q1*0 + 2] = 0.;    xq[q1*1 + 2] = 0.; // x^2 (order two)
	// X(t) =   x^0 + x^1 * t + x^2 * t^2
	//      = [ 3 + t, 4 ]
	yq  = f.Forward(q, xq);
	ok &= size_t( yq.size() ) == m*q1;
	// Y(t) = F[X(t)]
	//      = (3 + t) * (3 + t) * 4
	//      = y^0 + y^1 * t + y^2 * t^2 + o(t^3)
	//
	// check y^0 (order zero)
	CPPAD_TESTVECTOR(double) x0(n);
	x0[0] = xq[q1*0 + 0];
	x0[1] = xq[q1*1 + 0];
	ok  &= NearEqual(yq[q1*0 + 0] , x0[0]*x0[0]*x0[1], eps, eps);
	//
	// check y^1 (order one)
	ok  &= NearEqual(yq[q1*0 + 1] , 2.*x0[0]*x0[1], eps, eps);
	//
	// check y^2 (order two)
	double F_00 = 2. * yq[q1*0 + 2]; // second partial F w.r.t. x_0, x_0
	ok   &= NearEqual(F_00, 2.*x0[1], eps, eps);

	// check number of orders per variable
	ok   &= f.size_order() == 3;

	return ok;
}
Exemplo n.º 8
0
bool mul_level(void)
{	bool ok = true;
	using CppAD::checkpoint;
	using CppAD::ADFun;
	using CppAD::Independent;

	// domain dimension for this problem
	size_t n = 10;
	size_t m = 1;

	// checkpoint version of the function F(x)
	a2vector a2x(n), a2y(m);
	for(size_t j = 0; j < n; j++)
		a2x[j] = a2double(j + 1);
	//
	// could also use bool_sparsity_enum or set_sparsity_enum
	checkpoint<a1double> atom_f("atom_f", f_algo, a2x, a2y);
	//
	// Record a version of y = f(x) without checkpointing
	Independent(a2x);
	f_algo(a2x, a2y);
	ADFun<a1double> check_not(a2x, a2y);
	//
	// number of variables in a tape of f_algo that does not use checkpointing
	size_t size_not = check_not.size_var();
	//
	// Record a version of y = f(x) with checkpointing
	Independent(a2x);
	atom_f(a2x, a2y);
	ADFun<a1double> check_yes(a2x, a2y);
	//
	// f_algo is represented by one atomic operation in this tape
	ok &= check_yes.size_var() < size_not;
	//
	// now record operations at a1double level
	a1vector a1x(n), a1y(m);
	for(size_t j = 0; j < n; j++)
		a1x[j] = a1double(j + 1);
	//
	// without checkpointing
	Independent(a1x);
	a1y = check_not.Forward(0, a1x);
	ADFun<double> with_not(a1x, a1y);
	//
	// should have the same size
	ok &= with_not.size_var() == size_not;
	//
	// with checkpointing
	Independent(a1x);
	a1y = check_yes.Forward(0, a1x);
	ADFun<double> with_yes(a1x, a1y);
	//
	// f_algo is nolonger represented by one atomic operation in this tape
	ok &= with_yes.size_var() == size_not;
	//
	return ok;
}
Exemplo n.º 9
0
bool atanh(void)
{   bool ok = true;

    using CppAD::AD;
    using CppAD::NearEqual;

    // 10 times machine epsilon
    double eps = 10. * std::numeric_limits<double>::epsilon();

    // domain space vector
    size_t n  = 1;
    double x0 = 0.5;
    CPPAD_TESTVECTOR(AD<double>) ax(n);
    ax[0]     = x0;

    // declare independent variables and start tape recording
    CppAD::Independent(ax);

    // a temporary value
    AD<double> tanh_of_x0 = CppAD::tanh(ax[0]);

    // range space vector
    size_t m = 1;
    CPPAD_TESTVECTOR(AD<double>) ay(m);
    ay[0] = CppAD::atanh(tanh_of_x0);

    // create f: x -> y and stop tape recording
    CppAD::ADFun<double> f(ax, ay);

    // check value
    ok &= NearEqual(ay[0] , x0,  eps, eps);

    // forward computation of first partial w.r.t. x[0]
    CPPAD_TESTVECTOR(double) dx(n);
    CPPAD_TESTVECTOR(double) dy(m);
    dx[0] = 1.;
    dy    = f.Forward(1, dx);
    ok   &= NearEqual(dy[0], 1., eps, eps);

    // forward computation of higher order partials w.r.t. x[0]
    size_t n_order = 5;
    for(size_t order = 2; order < n_order; order++)
    {   dx[0] = 0.;
        dy    = f.Forward(order, dx);
        ok   &= NearEqual(dy[0], 0., eps, eps);
    }
    // reverse computation of derivatives
    CPPAD_TESTVECTOR(double)  w(m);
    CPPAD_TESTVECTOR(double) dw(n_order * n);
    w[0]  = 1.;
    dw    = f.Reverse(n_order, w);
    ok   &= NearEqual(dw[0], 1., eps, eps);
    for(size_t order = 1; order < n_order; order++)
        ok   &= NearEqual(dw[order * n + 0], 0., eps, eps);

    return ok;
}
Exemplo n.º 10
0
bool atan2(void)
{	bool ok = true;

	using CppAD::AD;
	using CppAD::NearEqual;
	double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

	// domain space vector
	size_t n  = 1;
	double x0 = 0.5;
	CPPAD_TESTVECTOR(AD<double>) x(n);
	x[0]      = x0;

	// declare independent variables and start tape recording
	CppAD::Independent(x);

	// a temporary value
	AD<double> sin_of_x0 = CppAD::sin(x[0]);
	AD<double> cos_of_x0 = CppAD::cos(x[0]);

	// range space vector
	size_t m = 1;
	CPPAD_TESTVECTOR(AD<double>) y(m);
	y[0] = CppAD::atan2(sin_of_x0, cos_of_x0);

	// create f: x -> y and stop tape recording
	CppAD::ADFun<double> f(x, y);

	// check value
	ok &= NearEqual(y[0] , x0, eps99, eps99);

	// forward computation of first partial w.r.t. x[0]
	CPPAD_TESTVECTOR(double) dx(n);
	CPPAD_TESTVECTOR(double) dy(m);
	dx[0] = 1.;
	dy    = f.Forward(1, dx);
	ok   &= NearEqual(dy[0], 1., eps99, eps99);

	// reverse computation of derivative of y[0]
	CPPAD_TESTVECTOR(double)  w(m);
	CPPAD_TESTVECTOR(double) dw(n);
	w[0]  = 1.;
	dw    = f.Reverse(1, w);
	ok   &= NearEqual(dw[0], 1., eps99, eps99);

	// use a VecAD<Base>::reference object with atan2
	CppAD::VecAD<double> v(2);
	AD<double> zero(0);
	AD<double> one(1);
	v[zero]           = sin_of_x0;
	v[one]            = cos_of_x0;
	AD<double> result = CppAD::atan2(v[zero], v[one]);
	ok               &= NearEqual(result, x0, eps99, eps99);

	return ok;
}
Exemplo n.º 11
0
Arquivo: div.cpp Projeto: kaskr/CppAD
bool Div(void)
{	bool ok = true;
	using CppAD::AD;
	using CppAD::NearEqual;
	double eps99 = 99.0 * std::numeric_limits<double>::epsilon();


	// domain space vector
	size_t n  = 1;
	double x0 = 0.5;
	CPPAD_TESTVECTOR(AD<double>) x(n);
	x[0]      = x0;

	// declare independent variables and start tape recording
	CppAD::Independent(x);

	// some binary division operations
	AD<double> a = x[0] / 1.; // AD<double> / double
	AD<double> b = a  / 2;    // AD<double> / int
	AD<double> c = 3. / b;    // double     / AD<double>
	AD<double> d = 4  / c;    // int        / AD<double>

	// range space vector
	size_t m = 1;
	CPPAD_TESTVECTOR(AD<double>) y(m);
	y[0] = (x[0] * x[0]) / d;   // AD<double> / AD<double>

	// create f: x -> y and stop tape recording
	CppAD::ADFun<double> f(x, y);

	// check value
	ok &= NearEqual(y[0], x0*x0*3.*2.*1./(4.*x0), eps99, eps99);

	// forward computation of partials w.r.t. x[0]
	CPPAD_TESTVECTOR(double) dx(n);
	CPPAD_TESTVECTOR(double) dy(m);
	dx[0] = 1.;
	dy    = f.Forward(1, dx);
	ok   &= NearEqual(dy[0], 3.*2.*1./4., eps99, eps99);

	// reverse computation of derivative of y[0]
	CPPAD_TESTVECTOR(double)  w(m);
	CPPAD_TESTVECTOR(double) dw(n);
	w[0]  = 1.;
	dw    = f.Reverse(1, w);
	ok   &= NearEqual(dw[0], 3.*2.*1./4., eps99, eps99);

	// use a VecAD<Base>::reference object with division
	CppAD::VecAD<double> v(1);
	AD<double> zero(0);
	v[zero] = d;
	AD<double> result = (x[0] * x[0]) / v[zero];
	ok     &= (result == y[0]);

	return ok;
}
Exemplo n.º 12
0
bool AddEq(void)
{   bool ok = true;
    using CppAD::AD;
    using CppAD::NearEqual;
    double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

    // domain space vector
    size_t  n = 1;
    double x0 = .5;
    CPPAD_TESTVECTOR(AD<double>) x(n);
    x[0]      = x0;

    // declare independent variables and start tape recording
    CppAD::Independent(x);

    // range space vector
    size_t m = 2;
    CPPAD_TESTVECTOR(AD<double>) y(m);
    y[0] = x[0];         // initial value
    y[0] += 2;           // AD<double> += int
    y[0] += 4.;          // AD<double> += double
    y[1] = y[0] += x[0]; // use the result of a compound assignment

    // create f: x -> y and stop tape recording
    CppAD::ADFun<double> f(x, y);

    // check value
    ok &= NearEqual(y[0] , x0+2.+4.+x0, eps99, eps99);
    ok &= NearEqual(y[1] ,        y[0], eps99, eps99);

    // forward computation of partials w.r.t. x[0]
    CPPAD_TESTVECTOR(double) dx(n);
    CPPAD_TESTVECTOR(double) dy(m);
    dx[0] = 1.;
    dy    = f.Forward(1, dx);
    ok   &= NearEqual(dy[0], 2., eps99, eps99);
    ok   &= NearEqual(dy[1], 2., eps99, eps99);

    // reverse computation of derivative of y[0]
    CPPAD_TESTVECTOR(double)  w(m);
    CPPAD_TESTVECTOR(double) dw(n);
    w[0]  = 1.;
    w[1]  = 0.;
    dw    = f.Reverse(1, w);
    ok   &= NearEqual(dw[0], 2., eps99, eps99);

    // use a VecAD<Base>::reference object with computed addition
    CppAD::VecAD<double> v(1);
    AD<double> zero(0);
    AD<double> result = 1;
    v[zero] = 2;
    result += v[zero];
    ok     &= (result == 3);

    return ok;
}
Exemplo n.º 13
0
bool MulEq(void)
{   bool ok = true;
    using CppAD::AD;
    using CppAD::NearEqual;

    // domain space vector
    size_t  n = 1;
    double x0 = .5;
    CPPAD_TESTVECTOR(AD<double>) x(n);
    x[0]      = x0;

    // declare independent variables and start tape recording
    CppAD::Independent(x);

    // range space vector
    size_t m = 2;
    CPPAD_TESTVECTOR(AD<double>) y(m);
    y[0] = x[0];         // initial value
    y[0] *= 2;           // AD<double> *= int
    y[0] *= 4.;          // AD<double> *= double
    y[1] = y[0] *= x[0]; // use the result of a computed assignment

    // create f: x -> y and stop tape recording
    CppAD::ADFun<double> f(x, y);

    // check value
    ok &= NearEqual(y[0] , x0*2.*4.*x0,  1e-10 , 1e-10);
    ok &= NearEqual(y[1] ,        y[0],  1e-10 , 1e-10);

    // forward computation of partials w.r.t. x[0]
    CPPAD_TESTVECTOR(double) dx(n);
    CPPAD_TESTVECTOR(double) dy(m);
    dx[0] = 1.;
    dy    = f.Forward(1, dx);
    ok   &= NearEqual(dy[0], 8.*2.*x0, 1e-10, 1e-10);
    ok   &= NearEqual(dy[1], 8.*2.*x0, 1e-10, 1e-10);

    // reverse computation of derivative of y[0]
    CPPAD_TESTVECTOR(double)  w(m);
    CPPAD_TESTVECTOR(double) dw(n);
    w[0]  = 1.;
    w[1]  = 0.;
    dw    = f.Reverse(1, w);
    ok   &= NearEqual(dw[0], 8.*2.*x0, 1e-10, 1e-10);

    // use a VecAD<Base>::reference object with computed multiplication
    CppAD::VecAD<double> v(1);
    AD<double> zero(0);
    AD<double> result = 1;
    v[zero] = 2;
    result *= v[zero];
    ok     &= (result == 2);

    return ok;
}
Exemplo n.º 14
0
/* $$
$head Use Atomic Function$$
$codep */
bool get_started(void)
{	bool ok = true;
	using CppAD::AD;
	using CppAD::NearEqual;
	double eps = 10. * CppAD::numeric_limits<double>::epsilon();
/* $$
$subhead Constructor$$
$codep */
	// Create the atomic get_started object
	atomic_get_started afun("atomic_get_started");
/* $$
$subhead Recording$$
$codep */
	// Create the function f(x)
	//
	// domain space vector
	size_t n  = 1;
	double  x0 = 0.5;
	vector< AD<double> > ax(n);
	ax[0]     = x0;

	// declare independent variables and start tape recording
	CppAD::Independent(ax);

	// range space vector 
	size_t m = 1;
	vector< AD<double> > ay(m);

	// call user function and store get_started(x) in au[0] 
	vector< AD<double> > au(m);
	afun(ax, au);        // u = 1 / x

	// now use AD division to invert to invert the operation
	ay[0] = 1.0 / au[0]; // y = 1 / u = x

	// create f: x -> y and stop tape recording
	CppAD::ADFun<double> f;
	f.Dependent (ax, ay);  // f(x) = x
/* $$
$subhead forward$$
$codep */
	// check function value 
	double check = x0;
	ok &= NearEqual( Value(ay[0]) , check,  eps, eps);

	// check zero order forward mode
	size_t p;
	vector<double> x_p(n), y_p(m);
	p      = 0;
	x_p[0] = x0;
	y_p    = f.Forward(p, x_p);
	ok &= NearEqual(y_p[0] , check,  eps, eps);

	return ok;
}
Exemplo n.º 15
0
Arquivo: add.cpp Projeto: kaskr/CppAD
bool Add(void)
{	bool ok = true;
	using CppAD::AD;
	using CppAD::NearEqual;
	double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

	// domain space vector
	size_t n  = 1;
	double x0 = 0.5;
	CPPAD_TESTVECTOR(AD<double>) x(n);
	x[0]      = x0;

	// declare independent variables and start tape recording
	CppAD::Independent(x);

	// some binary addition operations
	AD<double> a = x[0] + 1.; // AD<double> + double
	AD<double> b = a    + 2;  // AD<double> + int
	AD<double> c = 3.   + b;  // double     + AD<double>
	AD<double> d = 4    + c;  // int        + AD<double>

	// range space vector
	size_t m = 1;
	CPPAD_TESTVECTOR(AD<double>) y(m);
	y[0] = d + x[0];          // AD<double> + AD<double>

	// create f: x -> y and stop tape recording
	CppAD::ADFun<double> f(x, y);

	// check value
	ok &= NearEqual(y[0] , 2. * x0 + 10, eps99, eps99);

	// forward computation of partials w.r.t. x[0]
	CPPAD_TESTVECTOR(double) dx(n);
	CPPAD_TESTVECTOR(double) dy(m);
	dx[0] = 1.;
	dy    = f.Forward(1, dx);
	ok   &= NearEqual(dy[0], 2., eps99, eps99);

	// reverse computation of derivative of y[0]
	CPPAD_TESTVECTOR(double)  w(m);
	CPPAD_TESTVECTOR(double) dw(n);
	w[0]  = 1.;
	dw    = f.Reverse(1, w);
	ok   &= NearEqual(dw[0], 2., eps99, eps99);

	// use a VecAD<Base>::reference object with addition
	CppAD::VecAD<double> v(1);
	AD<double> zero(0);
	v[zero] = a;
	AD<double> result = v[zero] + 2;
	ok     &= (result == b);

	return ok;
}
Exemplo n.º 16
0
bool pow_int(void)
{	bool ok = true;

	using CppAD::AD;
	using CppAD::NearEqual;

	// declare independent variables and start tape recording
	size_t n  = 1;
	double x0 = -0.5;
	CPPAD_TESTVECTOR(AD<double>) x(n);
	x[0]      = x0;
	CppAD::Independent(x);

	// dependent variable vector
	size_t m = 7;
	CPPAD_TESTVECTOR(AD<double>) y(m);
	int i;
	for(i = 0; i < int(m); i++)
		y[i] = CppAD::pow(x[0], i - 3);

	// create f: x -> y and stop tape recording
	CppAD::ADFun<double> f(x, y);

	// check value
	double check;
	for(i = 0; i < int(m); i++)
	{	check = std::pow(x0, double(i - 3));
		ok &= NearEqual(y[i] , check,  1e-10 , 1e-10);
	}

	// forward computation of first partial w.r.t. x[0]
	CPPAD_TESTVECTOR(double) dx(n);
	CPPAD_TESTVECTOR(double) dy(m);
	dx[0] = 1.;
	dy    = f.Forward(1, dx);
	for(i = 0; i < int(m); i++)
	{	check = double(i-3) * std::pow(x0, double(i - 4));
		ok &= NearEqual(dy[i] , check,  1e-10 , 1e-10);
	}

	// reverse computation of derivative of y[i]
	CPPAD_TESTVECTOR(double)  w(m);
	CPPAD_TESTVECTOR(double) dw(n);
	for(i = 0; i < int(m); i++)
		w[i] = 0.;
	for(i = 0; i < int(m); i++)
	{	w[i] = 1.;
		dw    = f.Reverse(1, w);
		check = double(i-3) * std::pow(x0, double(i - 4));
		ok &= NearEqual(dw[0] , check,  1e-10 , 1e-10);
		w[i] = 0.;
	}

	return ok;
}
Exemplo n.º 17
0
bool SubEq(void)
{	bool ok = true;
	using CppAD::AD;
	using CppAD::NearEqual;

	// domain space vector
	size_t  n = 1;
	double x0 = .5;
	CPPAD_TEST_VECTOR< AD<double> > x(n);
	x[0]      = x0; 

	// declare independent variables and start tape recording
	CppAD::Independent(x);

	// range space vector 
	size_t m = 2;
	CPPAD_TEST_VECTOR< AD<double> > y(m);
	y[0] = 3. * x[0];    // initial value
	y[0] -= 2;           // AD<double> -= int
	y[0] -= 4.;          // AD<double> -= double
	y[1] = y[0] -= x[0]; // use the result of a computed assignment

	// create f: x -> y and stop tape recording
	CppAD::ADFun<double> f(x, y); 

	// check value 
	ok &= NearEqual(y[0] , 3.*x0-(2.+4.+x0),  1e-10 , 1e-10);
	ok &= NearEqual(y[1] ,             y[0],  1e-10 , 1e-10);

	// forward computation of partials w.r.t. x[0]
	CPPAD_TEST_VECTOR<double> dx(n);
	CPPAD_TEST_VECTOR<double> dy(m);
	dx[0] = 1.;
	dy    = f.Forward(1, dx);
	ok   &= NearEqual(dy[0], 2., 1e-10, 1e-10);
	ok   &= NearEqual(dy[1], 2., 1e-10, 1e-10);

	// reverse computation of derivative of y[0]
	CPPAD_TEST_VECTOR<double>  w(m);
	CPPAD_TEST_VECTOR<double> dw(n);
	w[0]  = 1.;
	w[1]  = 0.;
	dw    = f.Reverse(1, w);
	ok   &= NearEqual(dw[0], 2., 1e-10, 1e-10);

	// use a VecAD<Base>::reference object with computed subtraction
	CppAD::VecAD<double> v(1);
	AD<double> zero(0);
	AD<double> result = 1;
	v[zero] = 2;
	result -= v[zero];
	ok     &= (result == -1);

	return ok;
}
Exemplo n.º 18
0
bool print_for(void)
{	bool ok = true;
	using CppAD::PrintFor;

	std::stringstream stream_out;   // stream that output is written to
	std::string       string_check; // what we expect the output to be

	// independent variable vector
	size_t n = 1;
	CPPAD_TESTVECTOR(AD<double>) ax(n);
	ax[0] = 1.;
	Independent(ax);

	// print a VecAD<double>::reference object that is a parameter
	CppAD::VecAD<double> av(1);
	AD<double> Zero(0);
	av[Zero] = 0.;
	PrintFor("v[0] = ", av[Zero]);
	string_check += "v[0] = 0"; // v[0] == 0 during Forward(0, x)

	// Print a newline to separate this from previous output,
	// then print an AD<double> object that is a variable.
	PrintFor("\nv[0] + x[0] = ", av[0] + ax[0]);
	string_check += "\nv[0] + x[0] = 2"; // x[0] == 2 during Forward(0, x)

	// A conditional print that will not generate output when x[0] = 2.
	PrintFor(ax[0], "\n  2. + x[0] = ",   2. + ax[0], "\n");

	// A conditional print that will generate output when x[0] = 2.
	PrintFor(ax[0] - 2., "\n  3. + x[0] = ",   3. + ax[0], "\n");
	string_check += "\n  3. + x[0] = 5\n";

	// A log evaluations that will result in an error message when x[0] = 2.
	AD<double> var     = 2. - ax[0];
	AD<double> log_var = check_log(var);
	string_check += "check_log: y == 0 which is <= 0\n";

	// dependent variable vector
	size_t m = 2;
	CPPAD_TESTVECTOR(AD<double>) ay(m);
	ay[0] = av[Zero] + ax[0];

	// define f: x -> y and stop tape recording
	CppAD::ADFun<double> f(ax, ay);

	// zero order forward with x[0] = 2
	CPPAD_TESTVECTOR(double) x(n);
	x[0] = 2.;
	f.Forward(0, x, stream_out);

	std::string string_out = stream_out.str();
	ok &= string_out == string_check;
	return ok;
}
Exemplo n.º 19
0
Arquivo: sub.cpp Projeto: barak/cppad
bool Sub(void)
{   bool ok = true;
    using CppAD::AD;
    using CppAD::NearEqual;
    double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

    // domain space vector
    size_t  n =  1;
    double x0 = .5;
    CPPAD_TESTVECTOR(AD<double>) x(1);
    x[0]      = x0;

    // declare independent variables and start tape recording
    CppAD::Independent(x);

    AD<double> a = 2. * x[0] - 1.; // AD<double> - double
    AD<double> b = a  - 2;         // AD<double> - int
    AD<double> c = 3. - b;         // double     - AD<double>
    AD<double> d = 4  - c;         // int        - AD<double>

    // range space vector
    size_t m = 1;
    CPPAD_TESTVECTOR(AD<double>) y(m);
    y[0] = x[0] - d;              // AD<double> - AD<double>

    // create f: x -> y and stop tape recording
    CppAD::ADFun<double> f(x, y);

    // check value
    ok &= NearEqual(y[0], x0-4.+3.+2.-2.*x0+1., eps99, eps99);

    // forward computation of partials w.r.t. x[0]
    CPPAD_TESTVECTOR(double) dx(n);
    CPPAD_TESTVECTOR(double) dy(m);
    dx[0] = 1.;
    dy    = f.Forward(1, dx);
    ok   &= NearEqual(dy[0], -1., eps99, eps99);

    // reverse computation of derivative of y[0]
    CPPAD_TESTVECTOR(double)  w(m);
    CPPAD_TESTVECTOR(double) dw(n);
    w[0]  = 1.;
    dw    = f.Reverse(1, w);
    ok   &= NearEqual(dw[0], -1., eps99, eps99);

    // use a VecAD<Base>::reference object with subtraction
    CppAD::VecAD<double> v(1);
    AD<double> zero(0);
    v[zero] = b;
    AD<double> result = 3. - v[zero];
    ok     &= (result == c);

    return ok;
}
Exemplo n.º 20
0
bool Mul(void)
{	bool ok = true;
	using CppAD::AD;
	using CppAD::NearEqual;

	// domain space vector
	size_t n  = 1;
	double x0 = .5;
	CPPAD_TEST_VECTOR< AD<double> > x(n);
	x[0]      = x0;

	// declare independent variables and start tape recording
	CppAD::Independent(x);

	// some binary multiplication operations
	AD<double> a = x[0] * 1.; // AD<double> * double
	AD<double> b = a    * 2;  // AD<double> * int
	AD<double> c = 3.   * b;  // double     * AD<double> 
	AD<double> d = 4    * c;  // int        * AD<double> 

	// range space vector 
	size_t m = 1;
	CPPAD_TEST_VECTOR< AD<double> > y(m);
	y[0] = x[0] * d;          // AD<double> * AD<double>

	// create f: x -> y and stop tape recording
	CppAD::ADFun<double> f(x, y); 

	// check value 
	ok &= NearEqual(y[0] , x0*(4.*3.*2.*1.)*x0,  1e-10 , 1e-10);

	// forward computation of partials w.r.t. x[0]
	CPPAD_TEST_VECTOR<double> dx(n);
	CPPAD_TEST_VECTOR<double> dy(m);
	dx[0] = 1.;
	dy    = f.Forward(1, dx);
	ok   &= NearEqual(dy[0], (4.*3.*2.*1.)*2.*x0, 1e-10 , 1e-10); 

	// reverse computation of derivative of y[0]
	CPPAD_TEST_VECTOR<double>  w(m);
	CPPAD_TEST_VECTOR<double> dw(n); 
	w[0]  = 1.;
	dw    = f.Reverse(1, w);
	ok   &= NearEqual(dw[0], (4.*3.*2.*1.)*2.*x0, 1e-10 , 1e-10); 

	// use a VecAD<Base>::reference object with multiplication
	CppAD::VecAD<double> v(1);
	AD<double> zero(0);
	v[zero] = c;
	AD<double> result = 4 * v[zero];
	ok     &= (result == d);

	return ok;
}
Exemplo n.º 21
0
bool Tanh(void)
{	bool ok = true;

	using CppAD::AD;
	using CppAD::NearEqual;
	double eps = 10. * CppAD::numeric_limits<double>::epsilon();

	// domain space vector
	size_t n  = 1;
	double x0 = 0.5;
	CPPAD_TESTVECTOR(AD<double>) x(n);
	x[0]      = x0;

	// declare independent variables and start tape recording
	CppAD::Independent(x);

	// range space vector
	size_t m = 1;
	CPPAD_TESTVECTOR(AD<double>) y(m);
	y[0] = CppAD::tanh(x[0]);

	// create f: x -> y and stop tape recording
	CppAD::ADFun<double> f(x, y);

	// check value
	double check = std::tanh(x0);
	ok &= NearEqual(y[0] , check,  eps, eps);

	// forward computation of first partial w.r.t. x[0]
	CPPAD_TESTVECTOR(double) dx(n);
	CPPAD_TESTVECTOR(double) dy(m);
	dx[0] = 1.;
	dy    = f.Forward(1, dx);
	check = 1. - std::tanh(x0) * std::tanh(x0);
	ok   &= NearEqual(dy[0], check, eps, eps);

	// reverse computation of derivative of y[0]
	CPPAD_TESTVECTOR(double)  w(m);
	CPPAD_TESTVECTOR(double) dw(n);
	w[0]  = 1.;
	dw    = f.Reverse(1, w);
	ok   &= NearEqual(dw[0], check, eps, eps);

	// use a VecAD<Base>::reference object with tan
	CppAD::VecAD<double> v(1);
	AD<double> zero(0);
	v[zero]           = x0;
	AD<double> result = CppAD::tanh(v[zero]);
	check = std::tanh(x0);
	ok   &= NearEqual(result, check, eps, eps);

	return ok;
}
Exemplo n.º 22
0
bool log10(void)
{	bool ok = true;

	using CppAD::AD;
	using CppAD::NearEqual;

	// domain space vector
	size_t n  = 1;
	double x0 = 0.5;
	CPPAD_TESTVECTOR(AD<double>) x(n);
	x[0]      = x0;

	// declare independent variables and start tape recording
	CppAD::Independent(x);

	// ten raised to the x0 power
	AD<double> ten = 10.;
	AD<double> pow_10_x0 = CppAD::pow(ten, x[0]);

	// range space vector
	size_t m = 1;
	CPPAD_TESTVECTOR(AD<double>) y(m);
	y[0] = CppAD::log10(pow_10_x0);

	// create f: x -> y and stop tape recording
	CppAD::ADFun<double> f(x, y);

	// check value
	ok &= NearEqual(y[0] , x0,  1e-10 , 1e-10);

	// forward computation of first partial w.r.t. x[0]
	CPPAD_TESTVECTOR(double) dx(n);
	CPPAD_TESTVECTOR(double) dy(m);
	dx[0] = 1.;
	dy    = f.Forward(1, dx);
	ok   &= NearEqual(dy[0], 1., 1e-10, 1e-10);

	// reverse computation of derivative of y[0]
	CPPAD_TESTVECTOR(double)  w(m);
	CPPAD_TESTVECTOR(double) dw(n);
	w[0]  = 1.;
	dw    = f.Reverse(1, w);
	ok   &= NearEqual(dw[0], 1., 1e-10, 1e-10);

	// use a VecAD<Base>::reference object with log10
	CppAD::VecAD<double> v(1);
	AD<double> zero(0);
	v[zero]           = pow_10_x0;
	AD<double> result = CppAD::log10(v[zero]);
	ok   &= NearEqual(result, x0, 1e-10, 1e-10);

	return ok;
}
Exemplo n.º 23
0
bool Asin(void)
{	bool ok = true;

	using CppAD::AD;
	using CppAD::NearEqual;

	// domain space vector
	size_t n  = 1;
	double x0 = 0.5;
	CPPAD_TEST_VECTOR< AD<double> > x(n);
	x[0]      = x0;

	// declare independent variables and start tape recording
	CppAD::Independent(x);

	// a temporary value
	AD<double> sin_of_x0 = CppAD::sin(x[0]);

	// range space vector 
	size_t m = 1;
	CPPAD_TEST_VECTOR< AD<double> > y(m);
	y[0] = CppAD::asin(sin_of_x0);

	// create f: x -> y and stop tape recording
	CppAD::ADFun<double> f(x, y); 

	// check value 
	ok &= NearEqual(y[0] , x0,  1e-10 , 1e-10);

	// forward computation of first partial w.r.t. x[0]
	CPPAD_TEST_VECTOR<double> dx(n);
	CPPAD_TEST_VECTOR<double> dy(m);
	dx[0] = 1.;
	dy    = f.Forward(1, dx);
	ok   &= NearEqual(dy[0], 1., 1e-10, 1e-10);

	// reverse computation of derivative of y[0]
	CPPAD_TEST_VECTOR<double>  w(m);
	CPPAD_TEST_VECTOR<double> dw(n);
	w[0]  = 1.;
	dw    = f.Reverse(1, w);
	ok   &= NearEqual(dw[0], 1., 1e-10, 1e-10);

	// use a VecAD<Base>::reference object with asin
	CppAD::VecAD<double> v(1);
	AD<double> zero(0);
	v[zero] = sin_of_x0;
	AD<double> result = CppAD::asin(v[zero]);
	ok     &= NearEqual(result, x0, 1e-10, 1e-10);

	return ok;
}
Exemplo n.º 24
0
bool mul_level(void) 
{	bool ok = true;                          // initialize test result
	using CppAD::NearEqual;
	double eps = 10. * std::numeric_limits<double>::epsilon();


	typedef CppAD::AD<double>   ADdouble;    // for one level of taping
	typedef CppAD::AD<ADdouble> ADDdouble;   // for two levels of taping
	size_t n = 2;                            // dimension for example

	CPPAD_TEST_VECTOR<ADdouble>   a_x(n);
	CPPAD_TEST_VECTOR<ADDdouble> aa_x(n);

	// value of the independent variables
	a_x[0] = 2.; a_x[1] = 3.;
	Independent(a_x);
	aa_x[0] = a_x[0]; aa_x[1] = a_x[1];
	CppAD::Independent(aa_x);

	// compute the function f(x) = 2 * x[0] * x[1]
	CPPAD_TEST_VECTOR<ADDdouble> aa_f(1);
	aa_f[0] = 2. * aa_x[0] * aa_x[1];
	CppAD::ADFun<ADdouble> F(aa_x, aa_f);

	// re-evaluate f(2, 3) (must get proper deepedence on a_x).
	size_t p = 0;
	CPPAD_TEST_VECTOR<ADdouble> a_fp(1);
	a_fp    = F.Forward(p, a_x);
	ok     &= NearEqual(a_fp[0], 2. * a_x[0] * a_x[1], eps, eps);

	// compute the function g(x) = 2 * partial_x[0] f(x) = 4 * x[1]
	p = 1;
	CPPAD_TEST_VECTOR<ADdouble> a_dx(n), a_g(1);
	a_dx[0] = 1.; a_dx[1] = 0.;
	a_fp    = F.Forward(p, a_dx);
	a_g[0]  = 2. * a_fp[0];
	CppAD::ADFun<double> G(a_x, a_g);

	// compute partial_x[1] g(x)
	CPPAD_TEST_VECTOR<double>  xp(n), gp(1);
	p = 0;
	xp[0] = 4.; xp[1] = 5.;
	gp    = G.Forward(p, xp);
	ok   &= NearEqual(gp[0], 4. * xp[1], eps, eps);

	p = 1;
	xp[0] = 0.; xp[1] = 1.;
	gp    = G.Forward(p, xp);
	ok   &= NearEqual(gp[0], 4., eps, eps);

	return ok;
}
Exemplo n.º 25
0
bool Erf(void)
{   bool ok = true;
    using namespace CppAD;
    using CppAD::atan;
    using CppAD::exp;
    using CppAD::sqrt;

    // Construct function object corresponding to erf
    CPPAD_TEST_VECTOR< AD<double> > X(1);
    CPPAD_TEST_VECTOR< AD<double> > Y(1);
    X[0] = 0.;
    Independent(X);
    Y[0] = erf(X[0]);
    ADFun<double> Erf(X, Y);

    // vectors to use with function object
    CPPAD_TEST_VECTOR<double> x(1);
    CPPAD_TEST_VECTOR<double> y(1);
    CPPAD_TEST_VECTOR<double> dx(1);
    CPPAD_TEST_VECTOR<double> dy(1);

    // check value at zero
    x[0]  = 0.;
    y = Erf.Forward(0, x);
    ok &= NearEqual(0., y[0], 4e-4, 0.);

    // check the derivative of error function
    dx[0]         = 1.;
    double pi     = 4. * atan(1.);
    double factor = 2. / sqrt( pi );
    int i;
    for(i = -10; i <= 10; i++)
    {   x[0] = i / 4.;
        y    = Erf.Forward(0, x);

        // check derivative
        double derf = factor * exp( - x[0] * x[0] );
        dy          = Erf.Forward(1, dx);
        ok         &= NearEqual(derf, dy[0], 0., 2e-3);

        // test using erf with AD< AD<double> >
        AD< AD<double> > X0 = x[0];
        AD< AD<double> > Y0 = erf(X0);

        ok &= ( y[0] == Value( Value(Y0) ) );
    }
    return ok;
}
Exemplo n.º 26
0
bool OdeErrControl_three(void)
{   bool ok = true;     // initial return value
    using CppAD::NearEqual;

    double alpha = 10.;
    Method_three method(alpha);

    CppAD::vector<double> xi(2);
    xi[0] = 1.;
    xi[1] = 0.;

    CppAD::vector<double> eabs(2);
    eabs[0] = 1e-4;
    eabs[1] = 1e-4;

    // inputs
    double ti   = 0.;
    double tf   = 1.;
    double smin = 1e-4;
    double smax = 1.;
    double scur = 1.;
    double erel = 0.;

    // outputs
    CppAD::vector<double> ef(2);
    CppAD::vector<double> xf(2);
    CppAD::vector<double> maxabs(2);
    size_t nstep;


    xf = OdeErrControl(method,
        ti, tf, xi, smin, smax, scur, eabs, erel, ef, maxabs, nstep);


    double x0       = exp( alpha * tf * tf );
    ok &= NearEqual(x0, xf[0], 1e-4, 1e-4);
    ok &= NearEqual(0., ef[0], 1e-4, 1e-4);

    double root_pi    = sqrt( 4. * atan(1.));
    double root_alpha = sqrt( alpha );
    double x1 = CppAD::erf(alpha * tf) * root_pi / (2 * root_alpha);
    ok &= NearEqual(x1, xf[1], 1e-4, 1e-4);
    ok &= NearEqual(0., ef[1], 1e-4, 1e-4);

    ok &= method.F.was_negative();

    return ok;
}
Exemplo n.º 27
0
	void reverse_csum(
	OpCode& op, const addr_t*& op_arg, size_t& op_index, size_t& var_index)
	{	using CppAD::NumRes;
		using CppAD::NumArg;
		CPPAD_ASSERT_UNKNOWN( op_       == op );
		CPPAD_ASSERT_UNKNOWN( op_arg    == op_arg_ );
		CPPAD_ASSERT_UNKNOWN( op_index  == op_index_ );
		CPPAD_ASSERT_UNKNOWN( var_index == var_index_ );

		CPPAD_ASSERT_UNKNOWN( op == CSumOp );
		CPPAD_ASSERT_UNKNOWN( NumArg(CSumOp) == 0 );
		/*
		The variables that need fixing are op_arg_ and op_arg. Currently, 
		op_arg points to the last argument for the previous operator.
		*/
		// last argument for this csum operation
		--op_arg;
		// first argument for this csum operation
		op_arg      = op_arg_    -= (op_arg[0] + 4);
		// now op_arg points to the first argument for this csum operator

		CPPAD_ASSERT_UNKNOWN(
		op_arg[0] + op_arg[1] == op_arg[ 3 + op_arg[0] + op_arg[1] ]
		);

		CPPAD_ASSERT_UNKNOWN( op_index_  < op_rec_.size() );
		CPPAD_ASSERT_UNKNOWN( op_arg_rec_.data() <= op_arg_ );
		CPPAD_ASSERT_UNKNOWN( var_index_  < num_var_rec_ );
	}
Exemplo n.º 28
0
	void reverse_cskip(
	OpCode& op, const addr_t*& op_arg, size_t& op_index, size_t& var_index)
	{	using CppAD::NumRes;
		using CppAD::NumArg;
		CPPAD_ASSERT_UNKNOWN( op_       == op );
		CPPAD_ASSERT_UNKNOWN( op_arg    == op_arg_ );
		CPPAD_ASSERT_UNKNOWN( op_index  == op_index_ );
		CPPAD_ASSERT_UNKNOWN( var_index == var_index_ );

		CPPAD_ASSERT_UNKNOWN( op == CSkipOp );
		CPPAD_ASSERT_UNKNOWN( NumArg(CSkipOp) == 0 );
		/*
		The variables that need fixing are op_arg_ and op_arg. Currently, 
		op_arg points first arugment for the previous operator.
		*/
		--op_arg;
		op_arg      = op_arg_    -= (op_arg[0] + 4);

		CPPAD_ASSERT_UNKNOWN(
		op_arg[1] + op_arg[2] == op_arg[ 3 + op_arg[1] + op_arg[2] ]
		);
		CPPAD_ASSERT_UNKNOWN( op_index_  < op_rec_.size() );
		CPPAD_ASSERT_UNKNOWN( op_arg_rec_.data() <= op_arg_ );
		CPPAD_ASSERT_UNKNOWN( var_index_  < num_var_rec_ );
	}
Exemplo n.º 29
0
bool compare_op(void)
{   bool ok = true;
    using CppAD::AD;
    using CppAD::NearEqual;
    double eps10 = 10.0 * std::numeric_limits<double>::epsilon();

    // domain space vector
    size_t n  = 1;
    CPPAD_TESTVECTOR(AD<double>) ax(n);
    ax[0] = 0.5;

    // range space vector
    size_t m = 1;
    CPPAD_TESTVECTOR(AD<double>) ay(m);

    for(size_t k = 0; k < 2; k++)
    {   // optimization options
        std::string options = "";
        if( k == 0 )
            options = "no_compare_op";

        // declare independent variables and start tape recording
        CppAD::Independent(ax);

        // compute function value
        tape_size before, after;
        fun(options, ax, ay, before, after);

        // create f: x -> y and stop tape recording
        CppAD::ADFun<double> f(ax, ay);
        ok &= f.size_var() == before.n_var;
        ok &= f.size_op() == before.n_op;

        // Optimize the operation sequence
        f.optimize(options);
        ok &= f.size_var() == after.n_var;
        ok &= f.size_op() == after.n_op;

        // Check result for a zero order calculation for a different x,
        // where the result of the comparison is he same.
        CPPAD_TESTVECTOR(double) x(n), y(m), check(m);
        x[0] = 0.75;
        y    = f.Forward(0, x);
        if ( options == "" )
            ok  &= f.compare_change_number() == 0;
        fun(options, x, check, before, after);
        ok &= NearEqual(y[0], check[0], eps10, eps10);

        // Check case where result of the comparision is differnent
        // (hence one needs to re-tape to get correct result)
        x[0] = 2.0;
        y    = f.Forward(0, x);
        if ( options == "" )
            ok  &= f.compare_change_number() == 1;
        fun(options, x, check, before, after);
        ok  &= std::fabs(y[0] - check[0]) > 0.5;
    }
    return ok;
}
Exemplo n.º 30
0
bool CompareChange(void)
{   bool ok = true;
    using CppAD::AD;
    using CppAD::ADFun;
    using CppAD::Independent;

    // domain space vector
    size_t n = 2;
    CPPAD_TEST_VECTOR< AD<double> > X(n);
    X[0] = 3.;
    X[1] = 4.;

    // declare independent variables and start tape recording
    CppAD::Independent(X);

    // range space vector
    size_t m = 1;
    CPPAD_TEST_VECTOR< AD<double> > Y(m);
    Y[0] = Minimum(X[0], X[1]);

    // create f: x -> y and stop tape recording
    ADFun<double> f(X, Y);

    // evaluate zero mode Forward where conditional has the same result
    // note that f.CompareChange is not defined when NDEBUG is true
    CPPAD_TEST_VECTOR<double> x(n);
    CPPAD_TEST_VECTOR<double> y(m);
    x[0] = 3.5;
    x[1] = 4.;
    y    = f.Forward(0, x);
    ok  &= (y[0] == x[0]);
    ok  &= (y[0] == Minimum(x[0], x[1]));
    ok  &= (f.CompareChange() == 0);

    // evaluate zero mode Forward where conditional has different result
    x[0] = 4.;
    x[1] = 3.;
    y    = f.Forward(0, x);
    ok  &= (y[0] == x[0]);
    ok  &= (y[0] != Minimum(x[0], x[1]));
    ok  &= (f.CompareChange() == 1);

    // re-tape to obtain the new AD operation sequence
    X[0] = 4.;
    X[1] = 3.;
    Independent(X);
    Y[0] = Minimum(X[0], X[1]);

    // stop tape and store result in f
    f.Dependent(Y);

    // evaluate the function at new argument values
    y    = f.Forward(0, x);
    ok  &= (y[0] == x[1]);
    ok  &= (y[0] == Minimum(x[0], x[1]));
    ok  &= (f.CompareChange() == 0);

    return ok;
}