Exemplo n.º 1
0
// Action_Angle::init()
Action::RetType Action_Angle::Init(ArgList& actionArgs, TopologyList* PFL, DataSetList* DSL, DataFileList* DFL, int debugIn)
{
  // Get keywords
  DataFile* outfile = DFL->AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
  useMass_ = actionArgs.hasKey("mass");

  // Get Masks
  std::string mask1 = actionArgs.GetMaskNext();
  std::string mask2 = actionArgs.GetMaskNext();
  std::string mask3 = actionArgs.GetMaskNext();
  if (mask1.empty() || mask2.empty() || mask3.empty()) {
    mprinterr("Error: angle: Requires 3 masks\n");
    return Action::ERR;
  }
  Mask1_.SetMaskString(mask1);
  Mask2_.SetMaskString(mask2);
  Mask3_.SetMaskString(mask3);

  // Dataset to store angles
  ang_ = DSL->AddSet(DataSet::DOUBLE, MetaData(actionArgs.GetStringNext(),MetaData::M_ANGLE),"Ang");
  if (ang_==0) return Action::ERR;
  // Add dataset to data file list
  if (outfile != 0) outfile->AddDataSet( ang_ );

  mprintf("    ANGLE: [%s]-[%s]-[%s]\n",Mask1_.MaskString(), Mask2_.MaskString(), 
          Mask3_.MaskString());
  if (useMass_)
    mprintf("\tUsing center of mass of atoms in masks.\n");

  return Action::OK;
}
Exemplo n.º 2
0
/** Called once before traj processing. Set up reference info. */
Action::RetType Action_DistRmsd::Init(ArgList& actionArgs, TopologyList* PFL, DataSetList* DSL, DataFileList* DFL, int debugIn)
{
  // Check for keywords
  DataFile* outfile = DFL->AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
  // Reference keywords
  // TODO: Can these just be put in the InitRef call?
  bool first = actionArgs.hasKey("first");
  ReferenceFrame REF = DSL->GetReferenceFrame( actionArgs );
  std::string reftrajname = actionArgs.GetStringKey("reftraj");
  Topology* RefParm = PFL->GetParm( actionArgs );
  // Get the RMS mask string for target 
  std::string mask0 = actionArgs.GetMaskNext();
  TgtMask_.SetMaskString(mask0);
  // Get the RMS mask string for reference
  std::string mask1 = actionArgs.GetMaskNext();
  if (mask1.empty())
    mask1 = mask0;

  // Initialize reference
  if (refHolder_.InitRef(false, first, false, false, reftrajname, REF, RefParm,
                         mask1, actionArgs, "distrmsd"))
    return Action::ERR;
 
  // Set up the RMSD data set
  drmsd_ = DSL->AddSet(DataSet::DOUBLE, actionArgs.GetStringNext(),"DRMSD");
  if (drmsd_==0) return Action::ERR;
  // Add dataset to data file list
  if (outfile != 0) outfile->AddDataSet( drmsd_ );

  mprintf("    DISTRMSD: (%s), reference is %s\n",TgtMask_.MaskString(),
          refHolder_.RefModeString());

  return Action::OK;
}
Exemplo n.º 3
0
Action::RetType Action_Channel::Init(ArgList& actionArgs, ActionInit& init, int debugIn)
{
  // Keywords.
  DataFile* outfile = init.DFL().AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
  dxyz_[0] = actionArgs.getKeyDouble("dx", 0.35);
  dxyz_[1] = actionArgs.getKeyDouble("dy", dxyz_[0]);
  dxyz_[2] = actionArgs.getKeyDouble("dz", dxyz_[1]);
  // solute mask
  std::string sMask = actionArgs.GetMaskNext();
  if (sMask.empty()) {
    mprinterr("Error: No solute mask specified.\n");
    return Action::ERR;
  }
  soluteMask_.SetMaskString( sMask );
  // solvent mask
  sMask = actionArgs.GetMaskNext();
  if (sMask.empty())
    sMask.assign(":WAT@O");
  solventMask_.SetMaskString( sMask );

  // Grid Data Set
  grid_ = init.DSL().AddSet(DataSet::GRID_FLT, actionArgs.GetStringNext(), "Channel");
  if (grid_ == 0) return Action::ERR;
  if (outfile != 0) outfile->AddDataSet( grid_ );

  mprintf("Warning: *** THIS ACTION IS EXPERIMENTAL AND NOT FULLY IMPLEMENTED. ***\n");
  mprintf("    CHANNEL: Solute mask [%s], solvent mask [%s]\n",
          soluteMask_.MaskString(), solventMask_.MaskString());
  mprintf("\tSpacing: XYZ={ %g %g %g }\n", dxyz_[0], dxyz_[1], dxyz_[2]);
  return Action::OK;
}
Exemplo n.º 4
0
// Action_AreaPerMol::Init()
Action::RetType Action_AreaPerMol::Init(ArgList& actionArgs, TopologyList* PFL, DataSetList* DSL, DataFileList* DFL, int debugIn)
{
  // Get keywords
  DataFile* outfile = DFL->AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
  if (actionArgs.hasKey("xy")) areaType_ = XY;
  else if (actionArgs.hasKey("xz")) areaType_ = XZ;
  else if (actionArgs.hasKey("yz")) areaType_ = YZ;
  else areaType_ = XY;

  Nmols_ = (double)actionArgs.getKeyInt("nmols", -1);

  // Get Masks
  if (Nmols_ < 0.0) {
    Nlayers_ = (double)actionArgs.getKeyInt("nlayers", 1);
    if (Nlayers_ < 1.0) {
      mprinterr("Error: Number of layers must be > 0\n");
      return Action::ERR;
    }
    Mask1_.SetMaskString( actionArgs.GetMaskNext() );
  }

  // DataSet
  area_per_mol_ = DSL->AddSet(DataSet::DOUBLE, actionArgs.GetStringNext(),"APM");
  if (area_per_mol_==0) return Action::ERR;
  // Add DataSet to DataFileList
  if (outfile != 0) outfile->AddDataSet( area_per_mol_ );

  mprintf("    AREAPERMOL: Calculating %s area per molecule", APMSTRING[areaType_]);
  if (Mask1_.MaskStringSet())
    mprintf(" using mask '%s', %.0f layers.\n", Mask1_.MaskString(), Nlayers_);
  else
    mprintf(" for %.0f mols\n", Nmols_);

  return Action::OK;
}
Exemplo n.º 5
0
// Action_Grid::Init()
Action::RetType Action_Grid::Init(ArgList& actionArgs, ActionInit& init, int debugIn)
{
  debug_ = debugIn;
  nframes_ = 0;
  // Get output filename
  std::string filename = actionArgs.GetStringKey("out");
  // Get grid options
  grid_ = GridInit( "GRID", actionArgs, init.DSL() );
  if (grid_ == 0) return Action::ERR;
# ifdef MPI
  if (ParallelGridInit(init.TrajComm(), grid_)) return Action::ERR;
# endif
  // Get extra options
  max_ = actionArgs.getKeyDouble("max", 0.80);
  madura_ = actionArgs.getKeyDouble("madura", 0);
  smooth_ = actionArgs.getKeyDouble("smoothdensity", 0);
  invert_ = actionArgs.hasKey("invert");
  pdbfile_ = init.DFL().AddCpptrajFile(actionArgs.GetStringKey("pdb"),"Grid PDB",DataFileList::PDB,true);
  density_ = actionArgs.getKeyDouble("density",0.033456);
  if (actionArgs.hasKey("normframe")) normalize_ = TO_FRAME;
  else if (actionArgs.hasKey("normdensity")) normalize_ = TO_DENSITY;
  else normalize_ = NONE;
  if (normalize_ != NONE && (smooth_ > 0.0 || madura_ > 0.0)) {
    mprinterr("Error: Normalize options are not compatible with smoothdensity/madura options.\n");
    init.DSL().RemoveSet( grid_ );
    return Action::ERR;
  }
  // Get mask
  std::string maskexpr = actionArgs.GetMaskNext();
  if (maskexpr.empty()) {
    mprinterr("Error: GRID: No mask specified.\n");
    init.DSL().RemoveSet( grid_ );
    return Action::ERR;
  }
  mask_.SetMaskString(maskexpr);

  // Setup output file
  // For backwards compat., if no 'out' assume next string is filename
  if (filename.empty() && actionArgs.Nargs() > 1 && !actionArgs.Marked(1))
    filename = actionArgs.GetStringNext();
  DataFile* outfile = init.DFL().AddDataFile(filename, actionArgs);
  if (outfile != 0) outfile->AddDataSet((DataSet*)grid_);

  // Info
  mprintf("    GRID:\n");
  GridInfo( *grid_ );
  if (outfile != 0) mprintf("\tGrid will be printed to file %s\n", outfile->DataFilename().full());
  mprintf("\tGrid data set: '%s'\n", grid_->legend());
  mprintf("\tMask expression: [%s]\n",mask_.MaskString());
  if (pdbfile_ != 0)
      mprintf("\tPseudo-PDB will be printed to %s\n", pdbfile_->Filename().full());
  if (normalize_ == TO_FRAME)
    mprintf("\tGrid will be normalized by number of frames.\n");
  else if (normalize_ == TO_DENSITY)
    mprintf("\tGrid will be normalized to a density of %g molecules/Ang^3.\n", density_);
  // TODO: print extra options

  return Action::OK;
}
Exemplo n.º 6
0
// Action_FilterByData::Init()
Action::RetType Action_FilterByData::Init(ArgList& actionArgs, ActionInit& init, int debugIn)
{
  maxmin_ = init.DSL().AddSet( DataSet::INTEGER, actionArgs.GetStringKey("name"), "Filter" );
  if (maxmin_ == 0) return Action::ERR;
  DataFile* maxminfile = init.DFL().AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
  if (maxminfile != 0)
    maxminfile->AddDataSet( maxmin_ );
  // Get min and max args.
  while (actionArgs.Contains("min"))
    Min_.push_back( actionArgs.getKeyDouble("min", 0.0) );
  while (actionArgs.Contains("max"))
    Max_.push_back( actionArgs.getKeyDouble("max", 0.0) );
  if (Min_.empty()) {
    mprinterr("Error: At least one 'min' arg must be specified.\n");
    return Action::ERR;
  }
  if (Max_.empty()) {
    mprinterr("Error: At least one 'max' arg must be specified.\n");
    return Action::ERR;
  }
  if (Min_.size() != Max_.size()) {
    mprinterr("Error: # of 'min' args (%zu) != # of 'max' args (%zu)\n",
              Min_.size(), Max_.size());
    return Action::ERR;
  }
  // Get DataSets from remaining arguments
  Dsets_.AddSetsFromArgs( actionArgs.RemainingArgs(), init.DSL() );

  if (Dsets_.empty()) {
    mprinterr("Error: No data sets specified.\n");
    return Action::ERR;
  }

  if ( Dsets_.size() < Min_.size() ) {
    mprinterr("Error: More 'min'/'max' args (%zu) than data sets (%zu).\n",
              Min_.size(), Dsets_.size());
    return Action::ERR;
  }
  if ( Dsets_.size() > Min_.size() ) {
    unsigned int Nremaining = Dsets_.size() - Min_.size();
    double useMin = Min_.back();
    double useMax = Max_.back();
    mprintf("Warning: More data sets than 'min'/'max' args.\n"
            "Warning:  Using min=%f and max=%f for last %zu data sets.\n",
            useMin, useMax, Nremaining);
    for (unsigned int ds = 0; ds < Nremaining; ++ds) {
      Min_.push_back( useMin );
      Max_.push_back( useMax );
    }
  }

  mprintf("    FILTER: Filtering out frames using %zu data sets.\n", Dsets_.size());
  for (unsigned int ds = 0; ds < Dsets_.size(); ds++)
    mprintf("\t%.4f < '%s' < %.4f\n", Min_[ds], Dsets_[ds]->legend(), Max_[ds]);
  if (maxminfile != 0)
    mprintf("\tFilter frame info will be written to %s\n", maxminfile->DataFilename().full());

  return Action::OK;
}
Exemplo n.º 7
0
// Action_VelocityAutoCorr::Init()
Action::RetType Action_VelocityAutoCorr::Init(ArgList& actionArgs, ActionInit& init, int debugIn)
{
  if (actionArgs.hasKey("usevelocity")) {
    mprinterr("Error: The 'usevelocity' keyword is deprecated. Velocity information\n"
              "Error:   is now used by default if present. To force cpptraj to use\n"
              "Error:   coordinates to estimate velocities (not recommended) use the\n"
              "Error:   'usecoords' keyword.\n");
    return Action::ERR;
  }
  useVelInfo_ = !actionArgs.hasKey("usecoords");
  if (mask_.SetMaskString( actionArgs.GetMaskNext() )) return Action::ERR;
  DataFile* outfile =  init.DFL().AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
  diffout_ = init.DFL().AddCpptrajFile( actionArgs.GetStringKey("diffout"),
                                        "VAC diffusion constants", DataFileList::TEXT, true );
  maxLag_ = actionArgs.getKeyInt("maxlag", -1);
  tstep_ = actionArgs.getKeyDouble("tstep", 1.0);
  useFFT_ = !actionArgs.hasKey("direct");
  normalize_ = actionArgs.hasKey("norm");
  // Set up output data set
  VAC_ = init.DSL().AddSet(DataSet::DOUBLE, actionArgs.GetStringNext(), "VAC");
  if (VAC_ == 0) return Action::ERR;
  // TODO: This should just be a scalar
  diffConst_ = init.DSL().AddSet(DataSet::DOUBLE,
                                 MetaData(VAC_->Meta().Name(), "D", MetaData::NOT_TS));
  if (diffConst_ == 0) return Action::ERR;
  if (outfile != 0) outfile->AddDataSet( VAC_ );
# ifdef MPI
  trajComm_ = init.TrajComm(); 
  if (trajComm_.Size() > 1 && !useVelInfo_)
    mprintf("\nWarning: When calculating velocities between consecutive frames,\n"
            "\nWarning:   'velocityautocorr' in parallel will not work correctly if\n"
            "\nWarning:   coordinates have been modified by previous actions (e.g. 'rms').\n\n");
  diffConst_->SetNeedsSync( false );
# endif
  mprintf("    VELOCITYAUTOCORR:\n"
          "\tCalculate velocity auto-correlation function for atoms in mask '%s'\n",
          mask_.MaskString());
  if (useVelInfo_)
    mprintf("\tUsing velocity information present in frames.\n");
  else
    mprintf("\tCalculating velocities between consecutive frames from coordinates.\n");
  if (outfile != 0)
    mprintf("\tOutput velocity autocorrelation function '%s' to '%s'\n", VAC_->legend(), 
            outfile->DataFilename().full());
  mprintf("\tWriting diffusion constants to '%s'\n", diffout_->Filename().full());
  if (maxLag_ < 1)
    mprintf("\tMaximum lag will be half total # of frames");
  else
    mprintf("\tMaximum lag is %i frames", maxLag_);
  mprintf(", time step between frames is %f ps\n", tstep_);
  if (useFFT_)
    mprintf("\tUsing FFT to calculate autocorrelation function.\n");
  else
    mprintf("\tUsing direct method to calculate autocorrelation function.\n");
  if (normalize_)
    mprintf("\tNormalizing autocorrelation function to 1.0\n");
  return Action::OK;
}
Exemplo n.º 8
0
// Analysis_Wavelet::Setup
Analysis::RetType Analysis_Wavelet::Setup(ArgList& analyzeArgs, DataSetList* datasetlist,
        TopologyList* PFLin, DataFileList* DFLin, int debugIn)
{
    // Attempt to get COORDS DataSet from DataSetList. If none specified the
    // default COORDS set will be used.
    std::string setname = analyzeArgs.GetStringKey("crdset");
    coords_ = (DataSet_Coords*)datasetlist->FindCoordsSet( setname );
    if (coords_ == 0) {
        mprinterr("Error: Could not locate COORDS set corresponding to %s\n", setname.c_str());
        return Analysis::ERR;
    }
    // Get keywords
    DataFile* outfile = DFLin->AddDataFile( analyzeArgs.GetStringKey("out"), analyzeArgs );
    setname = analyzeArgs.GetStringKey("name");
    // TODO: Check defaults
    nb_ = analyzeArgs.getKeyInt("nb", 0); // FIXME: Should be more descriptive? nscale?
    if (nb_ < 1) {
        mprinterr("Error: Scaling number must be > 0\n");
        return Analysis::ERR;
    }
    S0_ = analyzeArgs.getKeyDouble("s0", 0.2);
    ds_ = analyzeArgs.getKeyDouble("ds", 1.0/3.0);
    correction_ = analyzeArgs.getKeyDouble("correction", 1.01);
    chival_ = analyzeArgs.getKeyDouble("chival", 0.2231);
    // Wavelet type: default to Morlet
    std::string wavelet_name = analyzeArgs.GetStringKey("type");
    if (wavelet_name.empty())
        wavelet_type_ = W_MORLET;
    else {
        wavelet_type_ = W_NONE;
        for (int itoken = 0; itoken != (int)W_NONE; itoken++)
            if (wavelet_name.compare(Tokens_[itoken].key_) == 0) {
                wavelet_type_ = (WaveletType)itoken;
                break;
            }
        if (wavelet_type_ == W_NONE) {
            mprinterr("Error: Unrecognized wavelet type: %s\n", wavelet_name.c_str());
            return Analysis::ERR;
        }
    }
    // Atom mask
    mask_.SetMaskString( analyzeArgs.GetMaskNext() );
    // Set up output data set
    output_ = datasetlist->AddSet( DataSet::MATRIX_FLT, setname, "WAVELET" );
    if (output_ == 0) return Analysis::ERR;
    if (outfile != 0) outfile->AddDataSet( output_ );

    mprintf("    WAVELET: Using COORDS set '%s', wavelet type %s\n",
            coords_->legend(), Tokens_[wavelet_type_].description_);
    mprintf("\tCalculating for atoms in mask '%s'\n", mask_.MaskString());
    mprintf("\tScaling wavelet %i times starting from %g with delta of %g\n",
            nb_, S0_, ds_);
    mprintf("\tCorrection: %g\n", correction_);
    mprintf("\tChiVal:     %g\n", chival_);
    if (outfile != 0) mprintf("\tOutput to '%s'\n", outfile->DataFilename().full());

    return Analysis::OK;
}
Exemplo n.º 9
0
// Action_AtomicFluct::Init()
Action::RetType Action_AtomicFluct::Init(ArgList& actionArgs, TopologyList* PFL, DataSetList* DSL, DataFileList* DFL, int debugIn)
{
    // Get frame # keywords
    if (InitFrameCounter(actionArgs)) return Action::ERR;
    // Get other keywords
    bfactor_ = actionArgs.hasKey("bfactor");
    calc_adp_ = actionArgs.hasKey("calcadp");
    adpoutfile_ = DFL->AddCpptrajFile(actionArgs.GetStringKey("adpout"), "PDB w/ADP",
                                      DataFileList::PDB);;
    if (adpoutfile_!=0) calc_adp_ = true; // adpout implies calcadp
    if (calc_adp_ && !bfactor_) bfactor_ = true;
    DataFile* outfile = DFL->AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
    if (actionArgs.hasKey("byres"))
        outtype_ = BYRES;
    else if (actionArgs.hasKey("bymask"))
        outtype_ = BYMASK;
    else if (actionArgs.hasKey("byatom") || actionArgs.hasKey("byatm"))
        outtype_ = BYATOM;
    // Get Mask
    Mask_.SetMaskString( actionArgs.GetMaskNext()  );
    // Get DataSet name
    std::string setname = actionArgs.GetStringNext();
    // Add output dataset
    MetaData md( setname );
    md.SetTimeSeries( MetaData::NOT_TS );
    if (bfactor_)
        md.SetLegend("B-factors");
    else
        md.SetLegend("AtomicFlx");
    dataout_ = DSL->AddSet( DataSet::XYMESH, md, "Fluct" );
    if (dataout_ == 0) {
        mprinterr("Error: AtomicFluct: Could not allocate dataset for output.\n");
        return Action::ERR;
    }
    if (outfile != 0)
        outfile->AddDataSet( dataout_ );

    mprintf("    ATOMICFLUCT: calculating");
    if (bfactor_)
        mprintf(" B factors");
    else
        mprintf(" atomic positional fluctuations");
    if (outfile != 0)
        mprintf(", output to file %s", outfile->DataFilename().full());
    mprintf("\n                 Atom mask: [%s]\n",Mask_.MaskString());
    FrameCounterInfo();
    if (calc_adp_) {
        mprintf("\tCalculating anisotropic displacement parameters.\n");
        if (adpoutfile_!=0) mprintf("\tWriting PDB with ADP to '%s'\n", adpoutfile_->Filename().full());
    }
    if (!setname.empty())
        mprintf("\tData will be saved to set named %s\n", setname.c_str());

    return Action::OK;
}
Exemplo n.º 10
0
Analysis::RetType Analysis_AutoCorr::Setup(ArgList& analyzeArgs, DataSetList* datasetlist,
                            TopologyList* PFLin, DataFileList* DFLin, int debugIn)
{
  const char* calctype;

  std::string setname = analyzeArgs.GetStringKey("name");
  DataFile* outfile = DFLin->AddDataFile( analyzeArgs.GetStringKey("out"), analyzeArgs );
  lagmax_ = analyzeArgs.getKeyInt("lagmax",-1);
  calc_covar_ = !analyzeArgs.hasKey("nocovar");
  usefft_ = !analyzeArgs.hasKey("direct");
  // Select datasets from remaining args
  ArgList dsetArgs = analyzeArgs.RemainingArgs();
  for (ArgList::const_iterator dsa = dsetArgs.begin(); dsa != dsetArgs.end(); ++dsa)
    dsets_ += datasetlist->GetMultipleSets( *dsa );
  if (dsets_.empty()) {
    mprinterr("Error: autocorr: No data sets selected.\n");
    return Analysis::ERR;
  }
  // If setname is empty generate a default name
  if (setname.empty())
    setname = datasetlist->GenerateDefaultName( "autocorr" );
  // Setup output datasets
  int idx = 0;
  MetaData md( setname );
  for (DataSetList::const_iterator DS = dsets_.begin(); DS != dsets_.end(); ++DS) {
    md.SetIdx( idx++ );
    DataSet* dsout = datasetlist->AddSet( DataSet::DOUBLE, md );
    if (dsout==0) return Analysis::ERR;
    dsout->SetLegend( (*DS)->Meta().Legend() );
    outputData_.push_back( dsout );
    // Add set to output file
    if (outfile != 0) outfile->AddDataSet( outputData_.back() );
  }
 
  if (calc_covar_)
    calctype = "covariance";
  else
    calctype = "correlation";
 
  mprintf("    AUTOCORR: Calculating auto-%s for %i data sets:\n", calctype, dsets_.size());
  dsets_.List();
  if (lagmax_!=-1)
    mprintf("\tLag max= %i\n", lagmax_);
  if ( !setname.empty() )
    mprintf("\tSet name: %s\n", setname.c_str() );
  if ( outfile != 0 )
    mprintf("\tOutfile name: %s\n", outfile->DataFilename().base());
  if (usefft_)
    mprintf("\tUsing FFT to calculate %s.\n", calctype);
  else
    mprintf("\tUsing direct method to calculate %s.\n", calctype);

  return Analysis::OK;
}
Exemplo n.º 11
0
// Action_SymmetricRmsd::Init()
Action::RetType Action_SymmetricRmsd::Init(ArgList& actionArgs, ActionInit& init, int debugIn)
{
  // Check for keywords
  bool fit = !actionArgs.hasKey("nofit");
  bool useMass = actionArgs.hasKey("mass");
  DataFile* outfile = init.DFL().AddDataFile(actionArgs.GetStringKey("out"), actionArgs);
  remap_ = actionArgs.hasKey("remap");
  // Reference keywords
  bool previous = actionArgs.hasKey("previous");
  bool first = actionArgs.hasKey("first");
  ReferenceFrame REF = init.DSL().GetReferenceFrame( actionArgs );
  std::string reftrajname = actionArgs.GetStringKey("reftraj");
  Topology* RefParm = init.DSL().GetTopology( actionArgs );
  // Get the RMS mask string for target
  std::string tMaskExpr = actionArgs.GetMaskNext();
  if (tgtMask_.SetMaskString( tMaskExpr )) return Action::ERR;
  // Initialize Symmetric RMSD calc.
  if (SRMSD_.InitSymmRMSD( fit, useMass, debugIn )) return Action::ERR;
  // Initialize reference
  std::string rMaskExpr = actionArgs.GetMaskNext();
  if (rMaskExpr.empty())
    rMaskExpr = tMaskExpr;
  if (REF_.InitRef(previous, first, useMass, fit, reftrajname, REF, RefParm,
                   rMaskExpr, actionArgs, "symmrmsd"))
    return Action::ERR;
  // Set up the RMSD data set.
  MetaData md(actionArgs.GetStringNext(), MetaData::M_RMS); 
  rmsd_ = init.DSL().AddSet(DataSet::DOUBLE, md, "RMSD");
  if (rmsd_==0) return Action::ERR;
  // Add dataset to data file list
  if (outfile != 0) outfile->AddDataSet( rmsd_ );
  if (remap_ || SRMSD_.Fit())
    action_return_ = Action::MODIFY_COORDS;
  else
    action_return_ = Action::OK;
  
  mprintf("    SYMMRMSD: (%s), reference is %s", tgtMask_.MaskString(),
          REF_.RefModeString());
  if (!SRMSD_.Fit())
    mprintf(", no fitting");
  else
    mprintf(", with fitting");
  if (SRMSD_.UseMass())
    mprintf(", mass-weighted");
  mprintf(".\n");
  if (remap_) mprintf("\tAtoms will be re-mapped for symmetry.\n");
  return Action::OK;
}
Exemplo n.º 12
0
void Action_Spam::Print() {
  // Print the spam info file if we didn't do pure water
  if (!purewater_) {
    // Warn about any overflows
    if (overflow_)
      mprinterr("Warning: SPAM: Some frames had a box too small for the cutoff.\n");

    // Print information about each missing peak
    infofile_->Printf("# There are %d density peaks and %d frames\n\n",
                (int)peaks_.size(), Nframes_);
    // Loop over every Data set
    for (unsigned int i = 0; i < peakFrameData_.size(); i++) {
      // Skip peaks with 0 unoccupied sites
      if (peakFrameData_[i].size() == 0) continue;
      // Find out how many double-occupied frames there are
      int ndouble = 0;
      for (unsigned int j = 0; j < peakFrameData_[i].size(); j++)
        if (peakFrameData_[i][j] < 0) ndouble++;
      infofile_->Printf("# Peak %u has %d omitted frames (%d double-occupied)\n",
                  i, peakFrameData_[i].size(), ndouble);
      for (unsigned int j = 0; j < peakFrameData_[i].size(); j++) {
        if (j > 0 && j % 10 == 0) infofile_->Printf("\n");
        infofile_->Printf("%7d ", peakFrameData_[i][j]);
      }
      infofile_->Printf("\n\n");
    }
  }

  // Print the summary file with the calculated SPAM energies
  if (!summaryfile_.empty()) {
    // Not enabled yet -- just print out the data files.
    mprinterr("Warning: SPAM: SPAM calculation not yet enabled.\n");
    if (datafile_.empty()) datafile_ = summaryfile_;
  }
  // Now print the energy data
  if (!datafile_.empty()) {
    // Now write the data file with all of the SPAM energies
    DataFile dfl;
    ArgList dummy;
    dfl.SetupDatafile(datafile_, dummy, 0);
    for (int i = 0; i < (int)myDSL_.size(); i++) {
      dfl.AddDataSet(myDSL_[i]);
    }
    dfl.WriteDataOut();
  }
}
Exemplo n.º 13
0
// Action_Distance::Init()
Action::RetType Action_Distance::Init(ArgList& actionArgs, ActionInit& init, int debugIn)
{
  AssociatedData_NOE noe;
  // Get Keywords
  image_.InitImaging( !(actionArgs.hasKey("noimage")) );
  useMass_ = !(actionArgs.hasKey("geom"));
  DataFile* outfile = init.DFL().AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
  MetaData::scalarType stype = MetaData::UNDEFINED;
  std::string stypename = actionArgs.GetStringKey("type");
  if ( stypename == "noe" ) {
    stype = MetaData::NOE;
    if (noe.NOE_Args( actionArgs )) return Action::ERR;
  }
  // Get Masks
  std::string mask1 = actionArgs.GetMaskNext();
  std::string mask2 = actionArgs.GetMaskNext();
  if (mask1.empty() || mask2.empty()) {
    mprinterr("Error: distance requires 2 masks\n");
    return Action::ERR;
  }
  Mask1_.SetMaskString(mask1);
  Mask2_.SetMaskString(mask2);

  // Dataset to store distances TODO store masks in data set?
  dist_ = init.DSL().AddSet(DataSet::DOUBLE, MetaData(actionArgs.GetStringNext(),
                                                MetaData::M_DISTANCE, stype), "Dis");
  if (dist_==0) return Action::ERR;
  if ( stype == MetaData::NOE ) {
    dist_->AssociateData( &noe );
    dist_->SetLegend(Mask1_.MaskExpression() + " and " + Mask2_.MaskExpression());
  }
  // Add dataset to data file
  if (outfile != 0) outfile->AddDataSet( dist_ );

  mprintf("    DISTANCE: %s to %s",Mask1_.MaskString(), Mask2_.MaskString());
  if (!image_.UseImage()) 
    mprintf(", non-imaged");
  if (useMass_) 
    mprintf(", center of mass");
  else
    mprintf(", geometric center");
  mprintf(".\n");

  return Action::OK;
}
Exemplo n.º 14
0
// Analysis_VectorMath::Setup()
Analysis::RetType Analysis_VectorMath::Setup(ArgList& analyzeArgs, DataSetList* DSLin, DataFileList* DFLin, int debugIn)
{
  // Get Vectors
  vinfo1_ = (DataSet_Vector*)DSLin->FindSetOfType( analyzeArgs.GetStringKey("vec1"),
                                                   DataSet::VECTOR );
  vinfo2_ = (DataSet_Vector*)DSLin->FindSetOfType( analyzeArgs.GetStringKey("vec2"),
                                                   DataSet::VECTOR );
  if (vinfo1_ == 0 ) {
    mprinterr("Error: 'vec1' not found.\n");
    return Analysis::ERR;
  }
  if (vinfo2_ == 0) {
    mprinterr("Error: 'vec2' not found.\n");
    return Analysis::ERR;
  }
  std::string setname = analyzeArgs.GetStringKey("name");
  norm_ = analyzeArgs.hasKey("norm");
  // Check for dotproduct/crossproduct keywords
  DataOut_ = 0;
  if (analyzeArgs.hasKey("dotproduct")) {
    mode_ = DOTPRODUCT;
    if ((DataOut_ = DSLin->AddSet(DataSet::DOUBLE, setname, "Dot")) == 0) return Analysis::ERR;
  } else if (analyzeArgs.hasKey("dotangle")) {
    mode_ = DOTANGLE;
    norm_ = true; // Vecs must be normalized for angle calc to work
    if ((DataOut_ = DSLin->AddSet(DataSet::DOUBLE, setname, "Angle")) == 0) return Analysis::ERR;
  } else if (analyzeArgs.hasKey("crossproduct")) {
    mode_ = CROSSPRODUCT;
    if ((DataOut_ = DSLin->AddSet(DataSet::VECTOR, setname, "Cross")) == 0) return Analysis::ERR;
  } else
    mode_ = DOTPRODUCT;
  // Set up output file in DataFileList if necessary
  DataFile* outfile = DFLin->AddDataFile( analyzeArgs.GetStringKey("out"), analyzeArgs );
  if (outfile != 0) outfile->AddDataSet( DataOut_ );

  // Print Status
  mprintf("    VECTORMATH: Calculating %s of vectors %s and %s\n", 
            ModeString[mode_], vinfo1_->legend(), vinfo2_->legend());
  if (norm_) mprintf("\tVectors will be normalized.\n");
  if (outfile != 0)
    mprintf("\tResults are written to %s\n", outfile->DataFilename().full());

  return Analysis::OK;
}
Exemplo n.º 15
0
// Action_VelocityAutoCorr::Init()
Action::RetType Action_VelocityAutoCorr::Init(ArgList& actionArgs, ActionInit& init, int debugIn)
{
  useVelInfo_ = actionArgs.hasKey("usevelocity");
  mask_.SetMaskString( actionArgs.GetMaskNext() );
  DataFile* outfile =  init.DFL().AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
  maxLag_ = actionArgs.getKeyInt("maxlag", -1);
  tstep_ = actionArgs.getKeyDouble("tstep", 1.0);
  useFFT_ = !actionArgs.hasKey("direct");
  normalize_ = actionArgs.hasKey("norm");
  // Set up output data set
  VAC_ = init.DSL().AddSet(DataSet::DOUBLE, actionArgs.GetStringNext(), "VAC");
  if (VAC_ == 0) return Action::ERR;
  if (outfile != 0) outfile->AddDataSet( VAC_ );
# ifdef MPI
  trajComm_ = init.TrajComm(); 
  if (trajComm_.Size() > 1 && !useVelInfo_)
    mprintf("\nWarning: When calculating velocities between consecutive frames,\n"
            "\nWarning:   'velocityautocorr' in parallel will not work correctly if\n"
            "\nWarning:   coordinates have been modified by previous actions (e.g. 'rms').\n\n");
# endif
  mprintf("    VELOCITYAUTOCORR:\n"
          "\tCalculate velocity auto-correlation function for atoms in mask '%s'\n",
          mask_.MaskString());
  if (useVelInfo_)
    mprintf("\tUsing velocity information present in frames.\n");
  else
    mprintf("\tCalculating velocities between consecutive frames.\n");
  if (outfile != 0)
    mprintf("\tOutput data set '%s' to '%s'\n", VAC_->legend(), 
            outfile->DataFilename().full());
  if (maxLag_ < 1)
    mprintf("\tMaximum lag will be half total # of frames");
  else
    mprintf("\tMaximum lag is %i frames", maxLag_);
  mprintf(", time step is %f ps\n", tstep_);
  if (useFFT_)
    mprintf("\tUsing FFT to calculate autocorrelation function.\n");
  else
    mprintf("\tUsing direct method to calculate autocorrelation function.\n");
  if (normalize_)
    mprintf("\tNormalizing autocorrelation function to 1.0\n");
  return Action::OK;
}
Exemplo n.º 16
0
// Action_GridFreeEnergy::init()
Action::RetType Action_GridFreeEnergy::Init(ArgList& actionArgs, ActionInit& init, int debugIn)
{
  // Get output filename
  DataFile* outfile = init.DFL().AddDataFile(actionArgs.GetStringNext(), actionArgs);
  if (outfile == 0) {
    mprinterr("Error: GridFreeEnergy: no output filename specified.\n");
    return Action::ERR;
  }
  // Get grid options (<nx> <dx> <ny> <dy> <nz> <dz> [box|origin] [negative])
  grid_ = GridInit( "GridFreeEnergy", actionArgs, init.DSL() );
  if (grid_ == 0) return Action::ERR;
# ifdef MPI
  if (ParallelGridInit(init.TrajComm(), grid_)) return Action::ERR;
# endif
  //grid_.PrintXplor( filename_, "", "REMARKS Change in Free energy from bulk solvent with bin normalisation of " + integerToString(currentLargestVoxelOccupancyCount) );

  // Get mask
  std::string maskexpr = actionArgs.GetMaskNext();
  if (maskexpr.empty()) {
    mprinterr("Error: GridFreeEnergy: No mask specified.\n");
    init.DSL().RemoveSet( grid_ );
    return Action::ERR;
  }
  mask_.SetMaskString(maskexpr);

  // Get extra args
  tempInKevin_ = actionArgs.getKeyDouble("temp", 293.0);
  outfile->AddDataSet( grid_ );

  // Info
  mprintf("Warning: DNAIONTRACKER is experimental code!\n");
  mprintf("    GridFreeEnergy\n");
  GridInfo( *grid_ );
  mprintf("\tGrid will be printed to file %s\n",outfile->DataFilename().full());
  mprintf("\tMask expression: [%s]\n",mask_.MaskString());
  mprintf("\tTemp is : %f K\n",tempInKevin_);

  // Allocate grid
  //if (GridAllocate()) return 1;

  return Action::OK;
}
Exemplo n.º 17
0
Analysis::RetType Analysis_KDE::ExternalSetup(DataSet_1D* dsIn, std::string const& histname,
                                       int setidx, std::string const& outfilenameIn,
                                       bool minArgSetIn, double minIn,
                                       bool maxArgSetIn, double maxIn,
                                       double stepIn, int binsIn, double tempIn,
                                       DataSetList& datasetlist, DataFileList& DFLin)
{
  if (dsIn == 0) return Analysis::ERR;
  data_ = dsIn;
  q_data_ = 0;
  kldiv_ = 0;
  amddata_ = 0;
  bandwidth_ = -1.0;
  minArgSet_ = minArgSetIn;
  if (minArgSet_)
    default_min_ = minIn;
  maxArgSet_ = maxArgSetIn;
  if (maxArgSet_)
    default_max_ = maxIn;
  default_step_ = stepIn;
  default_bins_ = binsIn;
  Temp_ = tempIn;
  if (Temp_ != -1.0)
    calcFreeE_ = true;
  else
    calcFreeE_ = false;
  std::string setname = histname;
  std::string htype;
  if (calcFreeE_)
    htype = "FreeE_";
  else
    htype = "KDE_";
  if (setname.empty())
    setname = datasetlist.GenerateDefaultName(htype + dsIn->Meta().Name());
  DataFile* outfile = DFLin.AddDataFile( outfilenameIn );
  output_ = datasetlist.AddSet(DataSet::DOUBLE, MetaData(setname, dsIn->Meta().Aspect(), setidx));
  if (output_ == 0) return Analysis::ERR;
  output_->SetLegend(htype + dsIn->Meta().Legend());
  if (outfile != 0) outfile->AddDataSet( output_ );
  return Analysis::OK;
}
Exemplo n.º 18
0
// Action_Surf::Init()
Action::RetType Action_Surf::Init(ArgList& actionArgs, TopologyList* PFL, DataSetList* DSL, DataFileList* DFL, int debugIn)
{
  // Get keywords
  DataFile* outfile = DFL->AddDataFile( actionArgs.GetStringKey("out"), actionArgs);

  // Get Masks
  Mask1_.SetMaskString( actionArgs.GetMaskNext() );

  // Dataset to store surface area 
  surf_ = DSL->AddSet(DataSet::DOUBLE, actionArgs.GetStringNext(), "SA");
  if (surf_==0) return Action::ERR;
  // Add dataset to data file list
  if (outfile != 0) outfile->AddDataSet( surf_ );

  mprintf("    SURF: Calculating surface area for atoms in mask [%s]\n",Mask1_.MaskString());
  mprintf("#Citation: Weiser, J.; Shenkin, P. S.; Still, W. C.; \"Approximate atomic\n"
          "#          surfaces from linear combinations of pairwise overlaps (LCPO).\"\n"
          "#          J. Comp. Chem. (1999), V.20, pp.217-230.\n");

  return Action::OK;
}
Exemplo n.º 19
0
// Analysis_FFT::Setup()
Analysis::RetType Analysis_FFT::Setup(ArgList& analyzeArgs, DataSetList* datasetlist, DataFileList* DFLin, int debugIn)
{
  std::string setname = analyzeArgs.GetStringKey("name");
  DataFile* outfile = DFLin->AddDataFile(analyzeArgs.GetStringKey("out"), analyzeArgs);
  dt_ = analyzeArgs.getKeyDouble("dt",1.0);
  // Select datasets from remaining args
  if (input_dsets_.AddSetsFromArgs( analyzeArgs.RemainingArgs(), *datasetlist )) {
    mprinterr("Error: Could not add data sets.\n");
    return Analysis::ERR;
  }
  if (input_dsets_.empty()) {
    mprinterr("Error: No input data sets.\n");
    return Analysis::ERR;
  }
  // If setname is empty generate a default name
  if (setname.empty())
    setname = datasetlist->GenerateDefaultName( "FFT" );
  // Setup output datasets.
  int idx = 0;
  if ( input_dsets_.size() == 1 )
    idx = -1; // Only one input set, no need to refer to it by index
  for ( Array1D::const_iterator DS = input_dsets_.begin(); 
                                DS != input_dsets_.end(); ++DS) 
  {
    DataSet* dsout = datasetlist->AddSet( DataSet::DOUBLE, MetaData(setname, idx++) );
    if (dsout==0) return Analysis::ERR;
    dsout->SetLegend( (*DS)->Meta().Legend() );
    output_dsets_.push_back( (DataSet_1D*)dsout );
    if (outfile != 0) outfile->AddDataSet( dsout );
  }

  mprintf("    FFT: Calculating FFT for %u data sets.\n", input_dsets_.size());
  mprintf("\tTime step: %f\n", dt_);
  if ( !setname.empty() )
    mprintf("\tSet name: %s\n", setname.c_str() );
  if ( outfile != 0 )
    mprintf("\tOutfile name: %s\n", outfile->DataFilename().base());

  return Analysis::OK;
}
Exemplo n.º 20
0
// Action_Temperature::Init()
Action::RetType Action_Temperature::Init(ArgList& actionArgs, TopologyList* PFL, DataSetList* DSL, DataFileList* DFL, int debugIn)
{
  // Keywords
  if (actionArgs.hasKey("frame")) {
    getTempFromFrame_ = true;
    shakeType_ = OFF;
    degrees_of_freedom_ = 0;
  } else {
    getTempFromFrame_ = false;
    int ntc = actionArgs.getKeyInt("ntc",-1);
    if (ntc != -1) {
      if (ntc < 1 || ntc > 3) {
        mprinterr("Error: temperature: ntc must be 1, 2, or 3\n");
        return Action::ERR;
      }
      shakeType_ = (ShakeType)(ntc - 1);
    } else
      shakeType_ = OFF;
  }
  DataFile* outfile = DFL->AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
  // Masks
  if (!getTempFromFrame_)
    Mask_.SetMaskString( actionArgs.GetMaskNext() );
  // DataSet 
  Tdata_ =  DSL->AddSet(DataSet::DOUBLE, actionArgs.GetStringNext(), "Tdata");
  if (Tdata_ == 0) return Action::ERR;
  if (outfile != 0) outfile->AddDataSet( Tdata_ );
  
  if (getTempFromFrame_) {
    mprintf("    TEMPERATURE: Frame temperatures will be saved in data set %s\n",
             Tdata_->legend());
  } else {
    mprintf("    TEMPERATURE: Calculate temperature for atoms in mask [%s]\n", Mask_.MaskString());
    mprintf("\tUsing SHAKE (ntc) value of [%s]\n", ShakeString[shakeType_]);
  }
  return Action::OK;
}
Exemplo n.º 21
0
// Analysis_RemLog::Setup()
Analysis::RetType Analysis_RemLog::Setup(ArgList& analyzeArgs, DataSetList* datasetlist, DataFileList* DFLin, int debugIn)
{
  debug_ = debugIn;
  // Get remlog dataset
  std::string remlogName = analyzeArgs.GetStringNext();
  if (remlogName.empty()) {
    mprinterr("Error: no remlog data set or file name specified.\n");
    return Analysis::ERR;
  }
  // Check if data set exists
  remlog_ = (DataSet_RemLog*)datasetlist->FindSetOfType( remlogName, DataSet::REMLOG );
  if (remlog_ == 0) {
    mprinterr("Error: remlog data with name %s not found.\n", remlogName.c_str());
    return Analysis::ERR;
  }
  if (remlog_->Size() < 1 || remlog_->NumExchange() < 1) {
    mprinterr("Error: remlog data set appears to be empty.\n");
    return Analysis::ERR;
  }
  acceptout_ = DFLin->AddCpptrajFile( analyzeArgs.GetStringKey("acceptout"), "replica acceptance",
                                      DataFileList::TEXT, true );
  if (acceptout_ == 0) return Analysis::ERR;
  lifetimes_ = DFLin->AddCpptrajFile( analyzeArgs.GetStringKey("lifetime"), "remlog lifetimes" );
  calculateLifetimes_ = (lifetimes_ != 0);
  calculateStats_ = analyzeArgs.hasKey("stats");
  if (calculateStats_) {
    statsout_ = DFLin->AddCpptrajFile( analyzeArgs.GetStringKey("statsout"), "remlog stats",
                                       DataFileList::TEXT, true );
    reptime_ = DFLin->AddCpptrajFile( analyzeArgs.GetStringKey("reptime"), "replica times",
                                      DataFileList::TEXT, true );
    if (statsout_ == 0 || reptime_ == 0) return Analysis::ERR;
  }
  calcRepFracSlope_ = analyzeArgs.getKeyInt("reptimeslope", 0);
  std::string rfs_name = analyzeArgs.GetStringKey("reptimeslopeout");
  if (!calculateStats_) {
    calcRepFracSlope_ = 0;
    rfs_name.clear();
  }
  if ( (calcRepFracSlope_ > 0) != (!rfs_name.empty()) ) {
    mprinterr("Error: Both reptimeslope and reptimeslopeout must be specified.\n");
    return Analysis::ERR;
  }
  repFracSlope_ = DFLin->AddCpptrajFile( rfs_name, "replica fraction slope" );
  printIndividualTrips_ = analyzeArgs.hasKey("printtrips");
  // Get mode
  if (analyzeArgs.hasKey("crdidx"))
    mode_ = CRDIDX;
  else if (analyzeArgs.hasKey("repidx"))
    mode_ = REPIDX;
  else
    mode_ = NONE;
  const char* def_name = 0;
  const char* yaxis = 0;
  if (mode_ == CRDIDX) {
    def_name = "repidx";
    yaxis = "ylabel CrdIdx";
  } else if (mode_ == REPIDX) {
    def_name = "crdidx";
    yaxis = "ylabel RepIdx";
  }
  // Set up an output set for each replica
  DataFile* dfout = 0;
  if (mode_ != NONE) {
    // Get output filename
    std::string outname = analyzeArgs.GetStringKey("out");
    if (!outname.empty()) {
      dfout = DFLin->AddDataFile( outname, analyzeArgs );
      if (dfout == 0 ) return Analysis::ERR;
      if (yaxis != 0 ) dfout->ProcessArgs(yaxis);
    }
    std::string dsname = analyzeArgs.GetStringKey("name");
    if (dsname.empty())
      dsname = datasetlist->GenerateDefaultName(def_name);
    MetaData md(dsname);
    for (int i = 0; i < (int)remlog_->Size(); i++) {
      md.SetIdx(i+1);
      DataSet_integer* ds = (DataSet_integer*)datasetlist->AddSet(DataSet::INTEGER, md);
      if (ds == 0) return Analysis::ERR;
      outputDsets_.push_back( (DataSet*)ds );
      if (dfout != 0) dfout->AddDataSet( (DataSet*)ds );
      ds->Resize( remlog_->NumExchange() ); 
    }
  }
  mprintf("   REMLOG: %s, %i replicas, %i exchanges\n", remlog_->legend(),
          remlog_->Size(), remlog_->NumExchange());
  if (mode_ == CRDIDX)
    mprintf("\tGetting coordinate index vs exchange.\n");
  else if (mode_ == REPIDX)
    mprintf("\tGetting replica index vs exchange.\n");
  if (mode_ != NONE && dfout != 0)
    mprintf("\tOutput is to %s\n", dfout->DataFilename().base());
  if (calculateStats_) {
    mprintf("\tGetting replica exchange stats, output to %s\n", statsout_->Filename().full());
    if (printIndividualTrips_)
      mprintf("\tIndividual round trips will be printed.\n");
    mprintf("\tWriting time spent at each replica to %s\n", reptime_->Filename().full());
  }
  if (calculateLifetimes_)
    mprintf("\tThe lifetime of each crd at each replica will be calculated.\n");
  if (acceptout_ != 0)
    mprintf("\tOverall exchange acceptance % will be written to %s\n",
            acceptout_->Filename().full());

  return Analysis::OK;
}
Exemplo n.º 22
0
Action::RetType Action_DNAionTracker::Init(ArgList& actionArgs, TopologyList* PFL, DataSetList* DSL, DataFileList* DFL, int debugIn)
{
  // Get keywords
  DataFile* outfile = DFL->AddDataFile(actionArgs.GetStringKey("out"), actionArgs);
  poffset_ = actionArgs.getKeyDouble("poffset", 5.0);
  InitImaging( !actionArgs.hasKey("noimage") );
  if (actionArgs.hasKey("shortest"))
    bintype_ = SHORTEST;
  else if (actionArgs.hasKey("counttopcone"))
    bintype_ = TOPCONE;
  else if (actionArgs.hasKey("countbottomcone"))
    bintype_ = BOTTOMCONE;
  else if (actionArgs.hasKey("count"))
    bintype_ = COUNT;

  // Get masks - 4 must be specified
  std::string m1 = actionArgs.GetMaskNext();
  std::string m2 = actionArgs.GetMaskNext();
  std::string m3 = actionArgs.GetMaskNext();
  std::string m4 = actionArgs.GetMaskNext();
  if (m1.empty() || m2.empty() || m3.empty() || m4.empty()) {
    mprinterr("Error: dnaiontracker requires 4 masks.\n");
    return Action::ERR;
  }
  p1_.SetMaskString(m1);
  p2_.SetMaskString(m2);
  base_.SetMaskString(m3);
  ions_.SetMaskString(m4);

  // Add dataset to dataset list (and datafile list if filename specified)
  distance_ = DSL->AddSet(DataSet::DOUBLE, MetaData(actionArgs.GetStringNext(),
                                                    MetaData::M_DISTANCE), "DNAion");
  if (distance_==0) return Action::ERR;
  if (outfile != 0)
    outfile->AddDataSet( distance_ );

  // INFO
  mprintf("    DNAIONTRACKER: Data representing the ");
  switch (bintype_) {
    case COUNT : 
      mprintf("count within the cone will be\n"); break;
    case SHORTEST: 
      mprintf("shortest distance to a phosphate or base centroid will be\n"); break;
    case TOPCONE: 
      mprintf("count in the top half of the cone (and sort-of bound) will be\n"); break;
    case BOTTOMCONE: 
      mprintf("count in the bottom half of the cone will be\n"); break;
  }
  mprintf("      saved to array named %s\n", distance_->legend());
  mprintf("      Perpendicular offset for cone is %5.2f angstroms\n", poffset_);
  if (!UseImage())
    mprintf("      Imaging has been disabled\n");
  mprintf("\tPhosphate1 Mask [%s]\n", p1_.MaskString());
  mprintf("\tPhosphate2 Mask [%s]\n", p2_.MaskString());
  mprintf("\tBase Mask       [%s]\n", base_.MaskString());
  mprintf("\tIons Mask       [%s]\n", ions_.MaskString());
  if (outfile != 0)
    mprintf("\tData will be printed to a file named %s\n", outfile->DataFilename().full());

  return Action::OK;
}
Exemplo n.º 23
0
// -----------------------------------------------------------------------------
// Action_NMRrst::Init()
Action::RetType Action_NMRrst::Init(ArgList& actionArgs, ActionInit& init, int debugIn)
{
# ifdef MPI
  if (init.TrajComm().Size() > 1) {
    mprinterr("Error: 'nmrrst' action does not work with > 1 thread (%i threads currently).\n",
              init.TrajComm().Size());
    return Action::ERR;
  }
# endif
  debug_ = debugIn;
  // Get Keywords
  Image_.InitImaging( !(actionArgs.hasKey("noimage")) );
  useMass_ = !(actionArgs.hasKey("geom"));
  findNOEs_ = actionArgs.hasKey("findnoes");
  findOutput_ = init.DFL().AddCpptrajFile(actionArgs.GetStringKey("findout"), "Found NOEs",
                                    DataFileList::TEXT, true);
  specOutput_ = init.DFL().AddCpptrajFile(actionArgs.GetStringKey("specout"), "Specified NOEs",
                                    DataFileList::TEXT, true);
  if (findOutput_ == 0 || specOutput_ == 0) return Action::ERR;
  resOffset_ = actionArgs.getKeyInt("resoffset", 0);
  DataFile* outfile = init.DFL().AddDataFile( actionArgs.GetStringKey("out"), actionArgs );
  max_cut_ = actionArgs.getKeyDouble("cut", 6.0);
  strong_cut_ = actionArgs.getKeyDouble("strongcut", 2.9);
  medium_cut_ = actionArgs.getKeyDouble("mediumcut", 3.5);
  weak_cut_ = actionArgs.getKeyDouble("weakcut", 5.0);
  series_ = actionArgs.hasKey("series");
  std::string rstfilename = actionArgs.GetStringKey("file");
  viewrst_ = actionArgs.GetStringKey("viewrst");
  setname_ = actionArgs.GetStringKey("name");
  if (setname_.empty())
    setname_ = init.DSL().GenerateDefaultName("NMR");
  nframes_ = 0;

  // Atom Mask
  Mask_.SetMaskString( actionArgs.GetMaskNext() );

  // Pairs specified on command line.
  std::string pair1 = actionArgs.GetStringKey("pair");
  while (!pair1.empty()) {
    std::string pair2 = actionArgs.GetStringNext();
    if (pair2.empty()) {
      mprinterr("Error: Only one mask specified for pair (%s)\n", pair1.c_str());
      return Action::ERR;
    }
    Pairs_.push_back( MaskPairType(AtomMask(pair1), AtomMask(pair2)) );
    pair1 = actionArgs.GetStringKey("pair");
  }

  // Check that something will be done
  if (!findNOEs_ && rstfilename.empty() && Pairs_.empty()) {
    mprinterr("Error: Must specify restraint file, 'pair', and/or 'findnoes'.\n");
    return Action::ERR;
  }

  // Read in NMR restraints.
  if (!rstfilename.empty()) {
    if (ReadNmrRestraints( rstfilename )) return Action::ERR;
  }

  // Set up distances.
  int num_noe = 1;
  for (noeDataArray::iterator noe = NOEs_.begin(); noe != NOEs_.end(); ++noe, ++num_noe) {
    // Translate any ambiguous atom names
    TranslateAmbiguous( noe->aName1_ ); 
    TranslateAmbiguous( noe->aName2_ );
    // Create mask expressions from resnum/atom name
    noe->dMask1_.SetMaskString( MaskExpression( noe->resNum1_, noe->aName1_ ) ); 
    noe->dMask2_.SetMaskString( MaskExpression( noe->resNum2_, noe->aName2_ ) ); 
    // Dataset to store distances
    AssociatedData_NOE noeData(noe->bound_, noe->boundh_, noe->rexp_);
    MetaData md(setname_, "NOE", num_noe);
    md.SetLegend( noe->dMask1_.MaskExpression() + " and " + noe->dMask2_.MaskExpression());
    md.SetScalarMode( MetaData::M_DISTANCE );
    md.SetScalarType( MetaData::NOE );
    noe->dist_ = init.DSL().AddSet(DataSet::DOUBLE, md);
    if (noe->dist_==0) return Action::ERR;
    noe->dist_->AssociateData( &noeData );
    // Add dataset to data file
    if (outfile != 0) outfile->AddDataSet( noe->dist_ );
  }

  masterDSL_ = init.DslPtr();
 
  mprintf("Warning: *** THIS ACTION IS EXPERIMENTAL. ***\n");
  mprintf("    NMRRST: %zu NOEs from NMR restraint file.\n", NOEs_.size());
  mprintf("\tShifting residue numbers in restraint file by %i\n", resOffset_);
  // DEBUG - print NOEs
  for (noeDataArray::const_iterator noe = NOEs_.begin(); noe != NOEs_.end(); ++noe)
    mprintf("\t'%s'  %f < %f < %f\n", noe->dist_->legend(),
            noe->bound_, noe->rexp_, noe->boundh_);
  if (findNOEs_) {
    mprintf("\tSearching for potential NOEs. Max cutoff is %g Ang.\n", max_cut_);
    mprintf("\tNOE distance criteria (Ang.): S= %g, M= %g, W= %g\n",
            strong_cut_, medium_cut_, weak_cut_);
    if (series_)
      mprintf("\tDistance data for NOEs less than cutoff will be saved as '%s[foundNOE]'.\n",
              setname_.c_str());
    mprintf("\tFound NOEs will be written to '%s'\n", findOutput_->Filename().full());
  }
  if (!Pairs_.empty()) {
    mprintf("\tSpecified NOE pairs:\n");
    for (MaskPairArray::const_iterator mp = Pairs_.begin(); mp != Pairs_.end(); ++mp)
      mprintf("\t\t[%s] to [%s]\n", mp->first.MaskString(), mp->second.MaskString());
    mprintf("\tSpecified NOE data will be written to '%s'\n", specOutput_->Filename().full());
  }
  if (!Image_.UseImage()) 
    mprintf("\tNon-imaged");
  else
    mprintf("\tImaged");
  if (useMass_) 
    mprintf(", center of mass.\n");
  else
    mprintf(", geometric center.\n");
  if (!viewrst_.empty())
    mprintf("\tTopologies corresponding to found NOEs will be written to '%s'\n", viewrst_.c_str());

  return Action::OK;
}
Exemplo n.º 24
0
// Analysis_KDE::Setup()
Analysis::RetType Analysis_KDE::Setup(ArgList& analyzeArgs, AnalysisSetup& setup, int debugIn)
{
  if (analyzeArgs.Contains("min")) {
    default_min_ = analyzeArgs.getKeyDouble("min", 0.0);
    minArgSet_ = true;
  }
  if (analyzeArgs.Contains("max")) {
    default_max_ = analyzeArgs.getKeyDouble("max", 0.0);
    maxArgSet_ = true;
  }
  default_step_ = analyzeArgs.getKeyDouble("step", 0.0);
  default_bins_ = analyzeArgs.getKeyInt("bins", -1);
  if (default_step_ == 0.0 && default_bins_ < 1) {
    mprinterr("Error: Must set either bins or step.\n");
    return Analysis::ERR;
  }
  Temp_ = analyzeArgs.getKeyDouble("free",-1.0);
  if (Temp_!=-1.0) 
    calcFreeE_ = true;
  else
    calcFreeE_ = false;
  std::string setname = analyzeArgs.GetStringKey("name");
  bandwidth_ = analyzeArgs.getKeyDouble("bandwidth", -1.0);
  DataFile* outfile = setup.DFL().AddDataFile( analyzeArgs.GetStringKey("out"), analyzeArgs );
  DataFile* klOutfile = 0;
  // Get second data set for KL divergence calc.
  std::string q_dsname = analyzeArgs.GetStringKey("kldiv");
  if (!q_dsname.empty()) {
    q_data_ = setup.DSL().GetDataSet( q_dsname );
    if (q_data_ == 0) {
      mprinterr("Error: Data set %s not found.\n", q_dsname.c_str());
      return Analysis::ERR;
    }
    if (q_data_->Ndim() != 1) {
      mprinterr("Error: Only 1D data sets supported.\n");
      return Analysis::ERR;
    }
    klOutfile = setup.DFL().AddDataFile( analyzeArgs.GetStringKey("klout"), analyzeArgs );
  } else {
    q_data_ = 0;
    kldiv_ = 0;
  }
  // Get AMD boost data set
  std::string amdname = analyzeArgs.GetStringKey("amd");
  if (!amdname.empty()) {
    amddata_ = setup.DSL().GetDataSet( amdname );
    if (amddata_ == 0) {
      mprinterr("Error: AMD data set %s not found.\n", amdname.c_str());
      return Analysis::ERR;
    }
    if (amddata_->Ndim() != 1) {
      mprinterr("Error: AMD data set must be 1D.\n");
      return Analysis::ERR;
    }
  } else
    amddata_ = 0;

  // Get data set
  data_ = setup.DSL().GetDataSet( analyzeArgs.GetStringNext() );
  if (data_ == 0) {
    mprinterr("Error: No data set or invalid data set name specified\n");
    return Analysis::ERR;
  }
  if (data_->Ndim() != 1) {
    mprinterr("Error: Only 1D data sets supported.\n");
    return Analysis::ERR;
  }
  
  // Output data set
  output_ = setup.DSL().AddSet(DataSet::DOUBLE, setname, "kde");
  if (output_ == 0) return Analysis::ERR;
  if (outfile != 0) outfile->AddDataSet( output_ );
  // Output for KL divergence calc.
  if ( q_data_ != 0 ) {
    kldiv_ = setup.DSL().AddSet(DataSet::DOUBLE, MetaData(output_->Meta().Name(), "kld"));
    if (klOutfile != 0) klOutfile->AddDataSet( kldiv_ );
  }

  mprintf("    KDE: Using gaussian KDE to histogram set \"%s\"\n", data_->legend());
  if (amddata_!=0)
    mprintf("\tPopulating bins using AMD boost from data set %s\n",
            amddata_->legend());
  if (q_data_ != 0) {
    mprintf("\tCalculating Kullback-Leibler divergence with set \"%s\"\n", 
            q_data_->legend());
  }
  if (bandwidth_ < 0.0)
    mprintf("\tBandwidth will be estimated.\n");
  else
    mprintf("\tBandwidth= %f\n", bandwidth_);
  if (calcFreeE_)
    mprintf("\tFree energy in kcal/mol will be calculated from bin populations at %f K.\n",Temp_);
  return Analysis::OK;
}
Exemplo n.º 25
0
// Action_LIE::init()
Action::RetType Action_LIE::Init(ArgList& actionArgs, ActionInit& init, int debugIn)
{
  // Always use imaged distances
  InitImaging(true);

  double cut;
  // Get Keywords
  doelec_ = !(actionArgs.hasKey("noelec"));
  dovdw_ = !(actionArgs.hasKey("novdw"));
  DataFile* datafile = init.DFL().AddDataFile(actionArgs.GetStringKey("out"), actionArgs);
  dielc_ = actionArgs.getKeyDouble("diel", 1.0);
  cut = actionArgs.getKeyDouble("cutvdw", 12.0);
  cut2vdw_ = cut * cut; // store square of cut for computational efficiency
  cut = actionArgs.getKeyDouble("cutelec", 12.0);
  cut2elec_ = cut * cut; // store square of cut for computational efficiency
  onecut2_ = 1 / cut2elec_;
  bool has_mask2 = false;

  if (!doelec_ && !dovdw_) {
    mprinterr("Error: LIE: Cannot skip both ELEC and VDW calcs\n");
    return Action::ERR;
  }

  // Get Masks
  Mask1_.SetMaskString( actionArgs.GetMaskNext() );
  std::string refmask = actionArgs.GetMaskNext();
  if (!refmask.empty()) {
    Mask2_.SetMaskString(refmask);
    has_mask2 = true;
  }
  else {
    Mask2_ = Mask1_;
    Mask2_.InvertMaskExpression();
  }
  
  // Get data set name
  std::string ds_name = actionArgs.GetStringNext();
  if (ds_name.empty())
    ds_name = init.DSL().GenerateDefaultName("LIE");

  // Datasets
  if (doelec_) {
    elec_ = init.DSL().AddSet(DataSet::DOUBLE, MetaData(ds_name, "EELEC"));
    if (elec_ == 0) return Action::ERR;
    if (datafile != 0) datafile->AddDataSet(elec_);
  }
  if (dovdw_) {
    vdw_ = init.DSL().AddSet(DataSet::DOUBLE, MetaData(ds_name, "EVDW"));
    if (vdw_ == 0) return Action::ERR;
    if (datafile != 0) datafile->AddDataSet(vdw_);
  }

  mprintf("    LIE: Ligand mask is %s. Surroundings are ", Mask1_.MaskString());
  if (!has_mask2)
    mprintf("everything else. ");
  else
    mprintf("atoms in mask %s. ", Mask2_.MaskString());
  mprintf("Cutoff is %.3lf Ang. ", cut);
  if (!doelec_)
    mprintf("Skipping Electrostatic Calc. ");
  if (!dovdw_)
    mprintf("Skipping VDW Calc. ");
  mprintf("\n");

  return Action::OK;
}
Exemplo n.º 26
0
// Exec_PermuteDihedrals::Execute()
Exec::RetType Exec_PermuteDihedrals::Execute(CpptrajState& State, ArgList& argIn) {
  debug_ = State.Debug();
  mode_ = INTERVAL;
  // Get Keywords - first determine mode
  if (argIn.hasKey("random"))
    mode_ = RANDOM;
  else if (argIn.hasKey("interval"))
    mode_ = INTERVAL;
  // Get input COORDS set
  std::string setname = argIn.GetStringKey("crdset");
  if (setname.empty()) {
    mprinterr("Error: Specify COORDS dataset name with 'crdset'.\n");
    return CpptrajState::ERR;
  }
  DataSet_Coords* CRD = (DataSet_Coords*)State.DSL().FindCoordsSet( setname );
  if (CRD == 0) {
    mprinterr("Error: Could not find COORDS set '%s'\n", setname.c_str());
    return CpptrajState::ERR;
  }
  mprintf("    PERMUTEDIHEDRALS: Using COORDS '%s'\n", CRD->legend());

  // Get residue range
  Range resRange;
  resRange.SetRange(argIn.GetStringKey("resrange"));
  if (!resRange.Empty())
    resRange.ShiftBy(-1); // User res args start from 1
  mprintf("\tPermutating dihedrals in");
  if (resRange.Empty())
    mprintf(" all solute residues.\n");
  else
    mprintf(" residue range [%s]\n", resRange.RangeArg());

  // Determine which angles to search for
  DihedralSearch dihSearch;
  dihSearch.SearchForArgs(argIn);
  // If nothing is enabled, enable all 
  dihSearch.SearchForAll();
  mprintf("\tSearching for types:");
  dihSearch.PrintTypes();
  mprintf("\n");

  // Setup output trajectory
  outframe_ = 0; 
  std::string outfilename = argIn.GetStringKey("outtraj");
  if (!outfilename.empty()) {
    mprintf("\tCoordinates output to '%s'\n", outfilename.c_str());
    Topology* outtop = State.DSL().GetTopology( argIn );
    if (outtop == 0) {
      mprinterr("Error: No topology for output traj.\n");
      return CpptrajState::ERR;
    }
    // Setup output trajectory FIXME: Correct frames for # of rotations
    if (outtraj_.PrepareTrajWrite(outfilename, argIn, CRD->TopPtr(), CRD->CoordsInfo(),
                                  CRD->Size(), TrajectoryFile::UNKNOWN_TRAJ))
      return CpptrajState::ERR;
  }

  // Setup output coords
  outfilename = argIn.GetStringKey("crdout");
  if (!outfilename.empty()) {
    mprintf("\tCoordinates saved to set '%s'\n", outfilename.c_str());
    crdout_ = (DataSet_Coords_CRD*)State.DSL().AddSet(DataSet::COORDS, outfilename);
    if (crdout_ == 0) return CpptrajState::ERR;
    crdout_->CoordsSetup( CRD->Top(), CRD->CoordsInfo() );
  }

  // Get specific mode options.
  double interval_in_deg = 60.0;
  if ( mode_ == INTERVAL ) {
    interval_in_deg = argIn.getNextDouble(60.0);
    mprintf("\tDihedrals will be rotated at intervals of %.2f degrees.\n", interval_in_deg);
  } else if (mode_ == RANDOM) {
    check_for_clashes_ = argIn.hasKey("check");
    checkAllResidues_ = argIn.hasKey("checkallresidues");
    cutoff_ = argIn.getKeyDouble("cutoff",0.8);
    rescutoff_ = argIn.getKeyDouble("rescutoff",10.0);
    backtrack_ = argIn.getKeyInt("backtrack",4);
    increment_ = argIn.getKeyInt("increment",1);
    max_factor_ = argIn.getKeyInt("maxfactor",2);
    int iseed = argIn.getKeyInt("rseed",-1);
    // Output file for # of problems
    DataFile* problemFile = State.DFL().AddDataFile(argIn.GetStringKey("out"), argIn);
    // Dataset to store number of problems
    number_of_problems_ = State.DSL().AddSet(DataSet::INTEGER, argIn.GetStringNext(),"Nprob");
    if (number_of_problems_==0) return CpptrajState::ERR;
   // Add dataset to data file list
    if (problemFile != 0) problemFile->AddDataSet(number_of_problems_);
    // Check validity of args
    if (cutoff_ < Constants::SMALL) {
      mprinterr("Error: cutoff too small.\n");
      return CpptrajState::ERR;
    }
    if (rescutoff_ < Constants::SMALL) {
      mprinterr("Error: rescutoff too small.\n");
      return CpptrajState::ERR;
    }
    if (backtrack_ < 0) {
      mprinterr("Error: backtrack value must be >= 0\n");
      return CpptrajState::ERR;
    }
    if ( increment_<1 || (360 % increment_)!=0 ) {
      mprinterr("Error: increment must be a factor of 360.\n");
      return CpptrajState::ERR;
    }
    // Calculate max increment
    max_increment_ = 360 / increment_;
    // Seed random number gen
    RN_.rn_set( iseed );
    // Print info
    mprintf("\tDihedrals will be rotated to random values.\n");
    if (iseed==-1)
      mprintf("\tRandom number generator will be seeded using time.\n");
    else
      mprintf("\tRandom number generator will be seeded using %i\n",iseed);
    if (check_for_clashes_) {
      mprintf("\tWill attempt to recover from bad steric clashes.\n");
      if (checkAllResidues_)
        mprintf("\tAll residues will be checked.\n");
      else
        mprintf("\tResidues up to the currenly rotating dihedral will be checked.\n");
      mprintf("\tAtom cutoff %.2f, residue cutoff %.2f, backtrack = %i\n",
              cutoff_, rescutoff_, backtrack_);
      mprintf("\tWhen clashes occur dihedral will be incremented by %i\n",increment_);
      mprintf("\tMax # attempted rotations = %i times number dihedrals.\n",
              max_factor_);
    }
    // Square cutoffs to compare to dist^2 instead of dist
    cutoff_ *= cutoff_;
    rescutoff_ *= rescutoff_;
    // Increment backtrack by 1 since we need to skip over current res
    ++backtrack_;
    // Initialize CheckStructure
    if (checkStructure_.SetOptions( false, false, false, State.Debug(), "*", "", 0.8, 1.15, 4.0 )) {
      mprinterr("Error: Could not set up structure check.\n");
      return CpptrajState::ERR;
    }
    // Set up CheckStructure for this parm (false = nobondcheck)
    if (checkStructure_.Setup(CRD->Top(), CRD->CoordsInfo().TrajBox()))
      return CpptrajState::ERR;
  }

  // Determine from selected mask atoms which dihedrals will be rotated.
  PermuteDihedralsType dst;
  // If range is empty (i.e. no resrange arg given) look through all 
  // solute residues.
  Range actualRange;
  if (resRange.Empty())
    actualRange = CRD->Top().SoluteResidues();
  else 
    actualRange = resRange;
  // Search for dihedrals
  if (dihSearch.FindDihedrals(CRD->Top(), actualRange))
    return CpptrajState::ERR;
  // For each found dihedral, set up mask of atoms that will move upon 
  // rotation. Also set up mask of atoms in this residue that will not
  // move, including atom2.
  if (debug_>0)
    mprintf("DEBUG: Dihedrals:\n");
  for (DihedralSearch::mask_it dih = dihSearch.begin();
                               dih != dihSearch.end(); ++dih)
  {
    dst.checkAtoms.clear();
    // Set mask of atoms that will move during dihedral rotation.
    dst.Rmask = DihedralSearch::MovingAtoms(CRD->Top(), dih->A1(), dih->A2());
    // If randomly rotating angles, check for atoms that are in the same
    // residue as A1 but will not move. They need to be checked for clashes
    // since further rotations will not help them.
    if (mode_ == RANDOM && check_for_clashes_) {
      CharMask cMask( dst.Rmask.ConvertToCharMask(), dst.Rmask.Nselected() );
      int a1res = CRD->Top()[dih->A1()].ResNum();
      for (int maskatom = CRD->Top().Res(a1res).FirstAtom();
               maskatom < CRD->Top().Res(a1res).LastAtom(); ++maskatom)
        if (!cMask.AtomInCharMask(maskatom))
          dst.checkAtoms.push_back( maskatom );
      dst.checkAtoms.push_back(dih->A1()); // TODO: Does this need to be added first?
      // Since only the second atom and atoms it is bonded to move during 
      // rotation, base the check on the residue of the second atom.
      dst.resnum = a1res;
    }
    dst.atom0 = dih->A0(); // FIXME: This duplicates info
    dst.atom1 = dih->A1();
    dst.atom2 = dih->A2();
    dst.atom3 = dih->A3();
    BB_dihedrals_.push_back(dst);
    // DEBUG: List dihedral info.
    if (debug_ > 0) {
      mprintf("\t%s-%s-%s-%s\n", 
              CRD->Top().TruncResAtomName(dih->A0()).c_str(),
              CRD->Top().TruncResAtomName(dih->A1()).c_str(),
              CRD->Top().TruncResAtomName(dih->A2()).c_str(),
              CRD->Top().TruncResAtomName(dih->A3()).c_str() );
      if (debug_ > 1 && mode_ == RANDOM && check_for_clashes_) {
        mprintf("\t\tCheckAtoms=");
        for (std::vector<int>::const_iterator ca = dst.checkAtoms.begin();
                                              ca != dst.checkAtoms.end(); ++ca)
          mprintf(" %i", *ca + 1);
        mprintf("\n");
      }
      if (debug_ > 2) {
        mprintf("\t\t");
        dst.Rmask.PrintMaskAtoms("Rmask:");
      }
    }
  }

  // Set up simple structure check. First step is coarse; check distances 
  // between a certain atom in each residue (first, COM, CA, some other atom?)
  // to see if residues are in each others neighborhood. Second step is to 
  // check the atoms in each close residue.
  if (check_for_clashes_) {
    ResidueCheckType rct;
    int res = 0;
    for (Topology::res_iterator residue = CRD->Top().ResStart();
                                residue != CRD->Top().ResEnd(); ++residue)
    {
      rct.resnum = res++;
      rct.start = residue->FirstAtom();
      rct.stop = residue->LastAtom();
      rct.checkatom = rct.start;
      ResCheck_.push_back(rct);
    }
  }

  // Perform dihedral permute
  Frame currentFrame = CRD->AllocateFrame();
  for (unsigned int set = 0; set != CRD->Size(); set++)
  {
    CRD->GetFrame(set, currentFrame);
    int n_problems = 0;
    switch (mode_) {
      case RANDOM:
        RandomizeAngles(currentFrame, CRD->Top());
        // Check the resulting structure
        n_problems = checkStructure_.CheckOverlaps( currentFrame );
        //mprintf("%i\tResulting structure has %i problems.\n",frameNum,n_problems);
        number_of_problems_->Add(set, &n_problems);
        if (outtraj_.IsInitialized()) outtraj_.WriteSingle(outframe_++, currentFrame);
        if (crdout_ != 0) crdout_->AddFrame( currentFrame );
        break;
      case INTERVAL: IntervalAngles(currentFrame, CRD->Top(), interval_in_deg); break;
    }
  }
  if (outtraj_.IsInitialized()) outtraj_.EndTraj();
  return CpptrajState::OK;
}
Exemplo n.º 27
0
Analysis::RetType Analysis_AutoCorr::Setup(ArgList& analyzeArgs, AnalysisSetup& setup, int debugIn)
{
  const char* calctype;

  std::string setname = analyzeArgs.GetStringKey("name");
  DataFile* outfile = setup.DFL().AddDataFile( analyzeArgs.GetStringKey("out"), analyzeArgs );
  lagmax_ = analyzeArgs.getKeyInt("lagmax",-1);
  calc_covar_ = !analyzeArgs.hasKey("nocovar");
  usefft_ = !analyzeArgs.hasKey("direct");
  // Select datasets from remaining args
  dsets_.clear();
  ArgList dsetArgs = analyzeArgs.RemainingArgs();
  for (ArgList::const_iterator dsa = dsetArgs.begin(); dsa != dsetArgs.end(); ++dsa) {
    DataSetList setsIn = setup.DSL().GetMultipleSets( *dsa );
    for (DataSetList::const_iterator ds = setsIn.begin(); ds != setsIn.end(); ++ds) {
      if ( (*ds)->Group() != DataSet::SCALAR_1D && (*ds)->Type() != DataSet::VECTOR )
        mprintf("Warning: Set '%s' type not supported in AUTOCORR - skipping.\n",
                (*ds)->legend());
      else
        dsets_.push_back( *ds );
    }
  }
  if (dsets_.empty()) {
    mprinterr("Error: No data sets selected.\n");
    return Analysis::ERR;
  }
  // If setname is empty generate a default name
  if (setname.empty())
    setname = setup.DSL().GenerateDefaultName( "autocorr" );
  // Setup output datasets
  MetaData md( setname );
  for (unsigned int idx = 0; idx != dsets_.size(); idx++) {
    md.SetIdx( idx );
    DataSet* dsout = setup.DSL().AddSet( DataSet::DOUBLE, md );
    if (dsout==0) return Analysis::ERR;
    dsout->SetLegend( dsets_[idx]->Meta().Legend() );
    outputData_.push_back( dsout );
    // Add set to output file
    if (outfile != 0) outfile->AddDataSet( outputData_.back() );
  }
 
  if (calc_covar_)
    calctype = "covariance";
  else
    calctype = "correlation";
 
  mprintf("    AUTOCORR: Calculating auto-%s for %i data sets:\n\t", calctype, dsets_.size());
  for (unsigned int idx = 0; idx != dsets_.size(); ++idx)
    mprintf(" %s", dsets_[idx]->legend());
  mprintf("\n");
  if (lagmax_!=-1)
    mprintf("\tLag max= %i\n", lagmax_);
  if ( !setname.empty() )
    mprintf("\tSet name: %s\n", setname.c_str() );
  if ( outfile != 0 )
    mprintf("\tOutfile name: %s\n", outfile->DataFilename().base());
  if (usefft_)
    mprintf("\tUsing FFT to calculate %s.\n", calctype);
  else
    mprintf("\tUsing direct method to calculate %s.\n", calctype);

  return Analysis::OK;
}
Exemplo n.º 28
0
// Analysis_Timecorr::Setup()
Analysis::RetType Analysis_Timecorr::Setup(ArgList& analyzeArgs, DataSetList* DSLin,
                            TopologyList* PFLin, DataFileList* DFLin, int debugIn)
{
  // Get Vectors
  std::string vec1name = analyzeArgs.GetStringKey("vec1");
  if (vec1name.empty()) {
    mprinterr("Error: no vec1 given, ignoring command\n");
    return Analysis::ERR;
  }
  vinfo1_ = (DataSet_Vector*)DSLin->FindSetOfType( vec1name, DataSet::VECTOR );
  if (vinfo1_==0) {
    mprinterr("Error: vec1: no vector with name %s found.\n", 
              vec1name.c_str());
    return Analysis::ERR;
  }
  std::string vec2name = analyzeArgs.GetStringKey("vec2");
  if (!vec2name.empty()) {
    vinfo2_ = (DataSet_Vector*)DSLin->FindSetOfType( vec2name, DataSet::VECTOR );
    if (vinfo2_==0) {
      mprinterr("Error: vec2: no vector with name %s found.\n", 
                vec2name.c_str());
      return Analysis::ERR;
    }
  } else
    vinfo2_ = 0;
  // Get output DataSet name
  std::string setname = analyzeArgs.GetStringKey("name");
  if (setname.empty())
    setname = DSLin->GenerateDefaultName("TC");
  // Determine auto or cross correlation 
  if (vinfo2_ == 0)
    mode_ = AUTOCORR;
  else
    mode_ = CROSSCORR;
  // Get dplr, norm, drct
  dplr_ = analyzeArgs.hasKey("dplr");
  norm_ = analyzeArgs.hasKey("norm");
  drct_ = analyzeArgs.hasKey("drct");
  std::string dplrname = analyzeArgs.GetStringKey("dplrout");
  // Get order for Legendre polynomial, tstep, and tcorr
  order_ = analyzeArgs.getKeyInt("order",2);
  if (order_ < 0 || order_ > 2) {
    mprintf("Warning: vector order out of bounds (should be 0, 1, or 2), resetting to 2.\n");
    order_ = 2;
  }
  tstep_ = analyzeArgs.getKeyDouble("tstep", 1.0);
  tcorr_ = analyzeArgs.getKeyDouble("tcorr", 10000.0);
  // File output. For ptrajformat, time correlation functions and dipolar
  // are output to file specified by 'out'. Otherwise time correlation
  // functions are written to file specified by 'out' using DataFile 
  // framework and dipolar output to 'dplrname'.
  ptrajformat_ = analyzeArgs.hasKey("ptrajformat");
  std::string filename = analyzeArgs.GetStringKey("out");
  if (ptrajformat_ && filename.empty()) {
    mprinterr("Error: No output file name given ('out <filename>'). Required for 'ptrajformat'.\n");
    return Analysis::ERR;
  }
  DataFile* dataout = 0;
  if (!ptrajformat_) {
    dataout = DFLin->AddDataFile( filename, analyzeArgs );
    if (dplr_) {
      if (!dplrname.empty() && dplrname == filename) {
        mprinterr("Error: 'dplrname' cannot be the same file as 'out' when 'ptrajformat' not specified.\n");
        return Analysis::ERR;
      }
      outfile_ = DFLin->AddCpptrajFile( dplrname, "Timecorr dipolar", DataFileList::TEXT, true );
      if (outfile_ == 0) return Analysis::ERR;
    }
  } else {
    outfile_ = DFLin->AddCpptrajFile( filename, "Timecorr output" );
    if (outfile_ == 0) return Analysis::ERR;
  }
  // Set up output DataSets
  tc_p_ = DSLin->AddSet( DataSet::DOUBLE, MetaData(setname, "P"));
  if (tc_p_ == 0) return Analysis::ERR;
  tc_p_->SetLegend( Plegend_[order_] );
  if (dataout != 0) dataout->AddDataSet( tc_p_ );
  if (dplr_) {
    tc_c_ = DSLin->AddSet( DataSet::DOUBLE, MetaData(setname, "C"));
    tc_r3r3_ = DSLin->AddSet( DataSet::DOUBLE, MetaData(setname, "R3R3"));
    if (tc_c_ == 0 || tc_r3r3_ == 0) return Analysis::ERR;
    tc_c_->SetLegend("<C>");
    tc_r3r3_->SetLegend( "<1/(r^3*r^3)>" );
    if (dataout != 0) {
      dataout->AddDataSet( tc_c_ );
      dataout->AddDataSet( tc_r3r3_ );
    }
  }

  // Print Status
  mprintf("    TIMECORR: Calculating %s", ModeString[mode_]);
  if (mode_ == AUTOCORR)
    mprintf(" of vector %s\n", vinfo1_->legend());
  else // CROSSCORR
    mprintf(" of vectors %s and %s\n", vinfo1_->legend(),
            vinfo2_->legend());
  mprintf("\tCorrelation time %f, time step %f, order %i\n", tcorr_, tstep_, order_);
  mprintf("\tCorr. func. are");
  if (dplr_)
    mprintf(" for dipolar interactions and");
  if (norm_)
    mprintf(" normalized.\n");
  else
    mprintf(" not normalized.\n");
  mprintf("\tCorr. func. are calculated using the");
  if (drct_)
    mprintf(" direct approach.\n");
  else
    mprintf(" FFT approach.\n");
  if (ptrajformat_)
    mprintf("\tResults are written to %s\n", outfile_->Filename().full());
  else {
    if (dataout != 0) mprintf("\tTime correlation functions written to %s\n", dataout->DataFilename().full());
    if (outfile_ != 0) mprintf("\tDipolar results written to %s\n", outfile_->Filename().full()); 
  }
  return Analysis::OK;
}
Exemplo n.º 29
0
// Action_Radial::Init()
Action::RetType Action_Radial::Init(ArgList& actionArgs, ActionInit& init, int debugIn)
{
  debug_ = debugIn;
  // Get Keywords
  image_.InitImaging( !(actionArgs.hasKey("noimage")) );
  std::string outfilename = actionArgs.GetStringKey("out");
  // Default particle density (mols/Ang^3) for water based on 1.0 g/mL
  density_ = actionArgs.getKeyDouble("density",0.033456);
  if (actionArgs.hasKey("center1"))
    rmode_ = CENTER1;
  else if (actionArgs.hasKey("center2"))
    rmode_ = CENTER2;
  else if (actionArgs.hasKey("nointramol"))
    rmode_ = NO_INTRAMOL;
  else
    rmode_ = NORMAL;
  useVolume_ = actionArgs.hasKey("volume");
  DataFile* intrdfFile = init.DFL().AddDataFile(actionArgs.GetStringKey("intrdf"));
  DataFile* rawrdfFile = init.DFL().AddDataFile(actionArgs.GetStringKey("rawrdf"));
  spacing_ = actionArgs.getNextDouble(-1.0);
  if (spacing_ < 0) {
    mprinterr("Error: Radial: No spacing argument or arg < 0.\n");
    Help();
    return Action::ERR;
  }
  double maximum = actionArgs.getNextDouble(-1.0);
  if (maximum < 0) {
    mprinterr("Error: Radial: No maximum argument or arg < 0.\n");
    Help();
    return Action::ERR;
  }
  // Store max^2, distances^2 greater than max^2 do not need to be
  // binned and therefore do not need a sqrt calc.
  maximum2_ = maximum * maximum;

  // Get First Mask
  std::string mask1 = actionArgs.GetMaskNext();
  if (mask1.empty()) {
    mprinterr("Error: Radial: No mask given.\n");
    return Action::ERR;
  }
  Mask1_.SetMaskString(mask1);

  // Check for second mask - if none specified use first mask
  std::string mask2 = actionArgs.GetMaskNext();
  if (!mask2.empty()) 
    Mask2_.SetMaskString(mask2);
  else
    Mask2_.SetMaskString(mask1);
  // If filename not yet specified check for backwards compat.
  if (outfilename.empty() && actionArgs.Nargs() > 1 && !actionArgs.Marked(1))
    outfilename = actionArgs.GetStringNext();

  // Set up output dataset. 
  Dset_ = init.DSL().AddSet( DataSet::DOUBLE, actionArgs.GetStringNext(), "g(r)");
  if (Dset_ == 0) return RDF_ERR("Could not allocate RDF data set.");
  DataFile* outfile = init.DFL().AddDataFile(outfilename, actionArgs);
  if (outfile != 0) outfile->AddDataSet( Dset_ );
  // Make default precision a little higher than normal
  Dset_->SetupFormat().SetFormatWidthPrecision(12,6);
  // Set DataSet legend from mask strings.
  Dset_->SetLegend(Mask1_.MaskExpression() + " => " + Mask2_.MaskExpression());
  // TODO: Set Yaxis label in DataFile
  // Calculate number of bins
  one_over_spacing_ = 1 / spacing_;
  double temp_numbins = maximum * one_over_spacing_;
  temp_numbins = ceil(temp_numbins);
  numBins_ = (int) temp_numbins;
  // Setup output datafile. Align on bin centers instead of left.
  // TODO: Use Rdim for binning?
  Dimension Rdim( spacing_ / 2.0, spacing_, "Distance (Ang)" ); 
  Dset_->SetDim(Dimension::X, Rdim);
  // Set up output for integral of mask2 if specified.
  if (intrdfFile != 0) {
    intrdf_ = init.DSL().AddSet( DataSet::DOUBLE, MetaData(Dset_->Meta().Name(), "int" ));
    if (intrdf_ == 0) return RDF_ERR("Could not allocate RDF integral data set.");
    intrdf_->SetupFormat().SetFormatWidthPrecision(12,6);
    intrdf_->SetLegend("Int[" + Mask2_.MaskExpression() + "]");
    intrdf_->SetDim(Dimension::X, Rdim);
    intrdfFile->AddDataSet( intrdf_ );
  } else
    intrdf_ = 0;
  // Set up output for raw rdf
  if (rawrdfFile != 0) {
    rawrdf_ = init.DSL().AddSet( DataSet::DOUBLE, MetaData(Dset_->Meta().Name(), "raw" ));
    if (rawrdf_ == 0) return RDF_ERR("Could not allocate raw RDF data set.");
    rawrdf_->SetupFormat().SetFormatWidthPrecision(12,6);
    rawrdf_->SetLegend("Raw[" + Dset_->Meta().Legend() + "]");
    rawrdf_->SetDim(Dimension::X, Rdim);
    rawrdfFile->AddDataSet( rawrdf_ );
  } else
    rawrdf_ = 0;

  // Set up histogram
  RDF_ = new int[ numBins_ ];
  std::fill(RDF_, RDF_ + numBins_, 0);
# ifdef _OPENMP
  // Since RDF is shared by all threads and we cant guarantee that a given
  // bin in RDF wont be accessed at the same time by the same thread,
  // each thread needs its own bin space.
#pragma omp parallel
{
  if (omp_get_thread_num()==0)
    numthreads_ = omp_get_num_threads();
}
  rdf_thread_ = new int*[ numthreads_ ];
  for (int i=0; i < numthreads_; i++) {
    rdf_thread_[i] = new int[ numBins_ ];
    std::fill(rdf_thread_[i], rdf_thread_[i] + numBins_, 0);
  }
# endif
  
  mprintf("    RADIAL: Calculating RDF for atoms in mask [%s]",Mask1_.MaskString());
  if (!mask2.empty()) 
    mprintf(" to atoms in mask [%s]",Mask2_.MaskString());
  mprintf("\n");
  if (outfile != 0)
    mprintf("            Output to %s.\n", outfile->DataFilename().full());
  if (intrdf_ != 0)
    mprintf("            Integral of mask2 atoms will be output to %s\n",
            intrdfFile->DataFilename().full());
  if (rawrdf_ != 0)
    mprintf("            Raw RDF bin values will be output to %s\n",
            rawrdfFile->DataFilename().full());
  if (rmode_==CENTER1)
    mprintf("            Using center of atoms in mask1.\n");
  else if (rmode_==CENTER2)
    mprintf("            Using center of atoms in mask2.\n");
  mprintf("            Histogram max %f, spacing %f, bins %i.\n",maximum,
          spacing_,numBins_);
  if (useVolume_)
    mprintf("            Normalizing based on cell volume.\n");
  else
    mprintf("            Normalizing using particle density of %f molecules/Ang^3.\n",density_);
  if (!image_.UseImage()) 
    mprintf("            Imaging disabled.\n");
  if (numthreads_ > 1)
    mprintf("            Parallelizing RDF calculation with %i threads.\n",numthreads_);

  return Action::OK;
}
Exemplo n.º 30
0
// Analysis_TI::Setup()
Analysis::RetType Analysis_TI::Setup(ArgList& analyzeArgs, AnalysisSetup& setup, int debugIn)
{
  debug_ = debugIn;
  int nq = analyzeArgs.getKeyInt("nq", 0);
  ArgList nskipArg(analyzeArgs.GetStringKey("nskip"), ","); // Comma-separated
  avg_increment_ = analyzeArgs.getKeyInt("avgincrement", -1);
  avg_max_ = analyzeArgs.getKeyInt("avgmax", -1);
  avg_skip_ = analyzeArgs.getKeyInt("avgskip", 0);
  n_bootstrap_pts_ = analyzeArgs.getKeyInt("bs_pts", -1);
  n_bootstrap_samples_ = analyzeArgs.getKeyInt("bs_samples", 0);
  bootstrap_seed_ = analyzeArgs.getKeyInt("bs_seed", -1);
  bootstrap_fac_ = analyzeArgs.getKeyDouble("bs_fac", 0.75);
  if (!nskipArg.empty()) {
    avgType_ = SKIP;
    // Specified numbers of points to skip
    nskip_.clear();
    for (int i = 0; i != nskipArg.Nargs(); i++) {
      nskip_.push_back( nskipArg.getNextInteger(0) );
      if (nskip_.back() < 0) nskip_.back() = 0;
    }
  } else if (avg_increment_ > 0)
    avgType_ = INCREMENT;
  else if (n_bootstrap_samples_ > 0)
    avgType_ = BOOTSTRAP;
  else
    avgType_ = AVG;
  masterDSL_ = setup.DslPtr();
  // Get lambda values
  ArgList xArgs(analyzeArgs.GetStringKey("xvals"), ","); // Also comma-separated
  if (!xArgs.empty()) {
    xval_.clear();
    for (int i = 0; i != xArgs.Nargs(); i++)
      xval_.push_back( xArgs.getNextDouble(0.0) );
  }
  std::string setname = analyzeArgs.GetStringKey("name");
  DataFile* outfile = setup.DFL().AddDataFile(analyzeArgs.GetStringKey("out"), analyzeArgs);
  curveout_ = setup.DFL().AddDataFile(analyzeArgs.GetStringKey("curveout"), analyzeArgs);
  // Select datasets from remaining args
  if (input_dsets_.AddSetsFromArgs( analyzeArgs.RemainingArgs(), setup.DSL() )) {
    mprinterr("Error: Could not add data sets.\n");
    return Analysis::ERR;
  }
  if (input_dsets_.empty()) {
    mprinterr("Error: No input data sets.\n");
    return Analysis::ERR;
  }
  if (SetQuadAndWeights(nq)) return Analysis::ERR;
  // Determine integration mode
  if (nq > 0)
    mode_ = GAUSSIAN_QUAD;
  else
    mode_ = TRAPEZOID;
  // Check that # abscissas matches # data sets
  if (xval_.size() != input_dsets_.size()) {
     mprinterr("Error: Expected %zu data sets for integration, got %zu\n",
               input_dsets_.size(), xval_.size());
    return Analysis::ERR;
  }
  // Set up output data sets
  DataSet::DataType dtype = DataSet::DOUBLE;
  if (avgType_ == SKIP || avgType_ == INCREMENT)
    dtype = DataSet::XYMESH;
  dAout_ = setup.DSL().AddSet(dtype, setname, "TI");
  if (dAout_ == 0) return Analysis::ERR;
  if (outfile != 0) outfile->AddDataSet( dAout_ );
  MetaData md(dAout_->Meta().Name(), "TIcurve");
  if (avgType_ == AVG) {
    // Single curve
    curve_.push_back( setup.DSL().AddSet(DataSet::XYMESH, md) );
    if (curve_.back() == 0) return Analysis::ERR;
    curve_.back()->ModifyDim(Dimension::X).SetLabel("Lambda");
    if (curveout_ != 0) curveout_->AddDataSet( curve_.back() );
    if (outfile != 0) outfile->ProcessArgs("noxcol");
  } else if (avgType_ == SKIP) {
    // As many curves as skip values
    for (Iarray::const_iterator it = nskip_.begin(); it != nskip_.end(); ++it) {
      md.SetIdx( *it );
      DataSet* ds = setup.DSL().AddSet(DataSet::XYMESH, md);
      if (ds == 0) return Analysis::ERR;
      ds->ModifyDim(Dimension::X).SetLabel("Lambda");
      ds->SetLegend( md.Name() + "_Skip" + integerToString(*it) );
      if (curveout_ != 0) curveout_->AddDataSet( ds );
      curve_.push_back( ds );
    }
  } else if (avgType_ == BOOTSTRAP) {
    // As many curves as resamples
    for (int nsample = 0; nsample != n_bootstrap_samples_; nsample++) {
      md.SetIdx(nsample);
      DataSet* ds = setup.DSL().AddSet(DataSet::XYMESH, md);
      if (ds == 0) return Analysis::ERR;
      ds->ModifyDim(Dimension::X).SetLabel("Lambda");
      ds->SetLegend( md.Name() + "_Sample" + integerToString(nsample) );
      if (curveout_ != 0) curveout_->AddDataSet( ds );
      curve_.push_back( ds );
    }
    // Standard devation of avg free energy over samples
    dA_SD_ = setup.DSL().AddSet(DataSet::DOUBLE, MetaData(md.Name(), "SD"));
    if (dA_SD_ == 0) return Analysis::ERR;
    if (outfile != 0) {
      outfile->AddDataSet( dA_SD_ );
      outfile->ProcessArgs("noxcol");
    }
  }
  // NOTE: INCREMENT is set up once data set size is known 

  mprintf("    TI: Calculating TI");
  if (mode_ == GAUSSIAN_QUAD) {
    mprintf(" using Gaussian quadrature with %zu points.\n", xval_.size());
    mprintf("\t%6s %8s %8s %s\n", "Point", "Abscissa", "Weight", "SetName");
    for (unsigned int i = 0; i != xval_.size(); i++)
      mprintf("\t%6i %8.5f %8.5f %s\n", i, xval_[i], wgt_[i], input_dsets_[i]->legend());
  } else {
    mprintf(" using the trapezoid rule.\n");
    mprintf("\t%6s %8s %s\n", "Point", "Abscissa", "SetName");
    for (unsigned int i = 0; i != xval_.size(); i++)
      mprintf("\t%6i %8.5f %s\n", i, xval_[i], input_dsets_[i]->legend());
  }
  mprintf("\tResult(s) of integration(s) saved in set '%s'\n", dAout_->legend());
  if (avgType_ == AVG)
    mprintf("\tUsing all data points in <DV/DL> calc.\n");
  else if (avgType_ == SKIP) {
    mprintf("\tSkipping first");
    for (Iarray::const_iterator it = nskip_.begin(); it != nskip_.end(); ++it)
      mprintf(" %i", *it);
    mprintf(" data points for <DV/DL> calc.\n");
  } else if (avgType_ == INCREMENT) {
    mprintf("\tCalculating <DV/DL> starting from point %i, increment by %i.",
            avg_skip_, avg_increment_);
    if (avg_max_ != -1)
      mprintf(" Max %i points.", avg_max_);
    mprintf("\n");
  } else if (avgType_ == BOOTSTRAP) {
    mprintf("\tStandard devation of result stored in set '%s'\n", dA_SD_->legend());
    mprintf("\tCalculating <DV/DL> from %i bootstrap resamples.\n", n_bootstrap_samples_);
    if (n_bootstrap_pts_ > 0)
      mprintf("\tBootstrap resample size is %i data points.\n", n_bootstrap_pts_);
    else
      mprintf("\tWill use bootstrap resample size of %g%% of total points.\n",
              bootstrap_fac_*100.0);
    if (bootstrap_seed_ != -1)
      mprintf("\tBoostrap base seed is %i\n", bootstrap_seed_);
  }
  mprintf("\tTI curve(s) saved in set(s)");
  if (avgType_ != INCREMENT)
    for (DSarray::const_iterator ds = curve_.begin(); ds != curve_.end(); ++ds)
      mprintf(" '%s'", (*ds)->legend());
  else
    mprintf(" named '%s'", md.PrintName().c_str());
  mprintf("\n");
  if (outfile != 0) mprintf("\tResults written to '%s'\n", outfile->DataFilename().full());
  if (curveout_!= 0) mprintf("\tTI curve(s) written to '%s'\n", curveout_->DataFilename().full());

  return Analysis::OK;
}