Exemplo n.º 1
0
void
DuckDrag_SmoothMove::duck_drag(Duckmatic* duckmatic, const synfig::Vector& vector)
{
	const DuckList selected_ducks(duckmatic->get_selected_ducks());
	DuckList::const_iterator iter;
	synfig::Vector vect(duckmatic->snap_point_to_grid(vector)-drag_offset_+snap);

	int i;

	Time time(duckmatic->get_time());

	// process vertex and position ducks first
	for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
	{
		// skip this duck if it is NOT a vertex or a position
		if (((*iter)->get_type() != Duck::TYPE_VERTEX &&
			 (*iter)->get_type() != Duck::TYPE_POSITION))
			continue;
		Point p(positions[i]);

		float dist(1.0f-(p-drag_offset_).mag()/get_radius());
		if(dist<0)
			dist=0;

		last_[i]=vect*dist;
		(*iter)->set_trans_point(p+last_[i], time);
	}

	// then process non vertex and non position ducks
	for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
	{
		// skip this duck if it IS a vertex or a position
		if (!((*iter)->get_type() != Duck::TYPE_VERTEX &&
			 (*iter)->get_type() != Duck::TYPE_POSITION))
			continue;
		Point p(positions[i]);

		float dist(1.0f-(p-drag_offset_).mag()/get_radius());
		if(dist<0)
			dist=0;

		last_[i]=vect*dist;
		(*iter)->set_trans_point(p+last_[i], time);
	}

	// then patch up the tangents for the vertices we've moved
	duckmatic->update_ducks();

	last_translate_=vect;
	//snap=Vector(0,0);
}
Exemplo n.º 2
0
void
DuckDrag_Rotate::begin_duck_drag(Duckmatic* duckmatic, const synfig::Vector& offset)
{
	last_rotate=Vector(1,1);

	const DuckList selected_ducks(duckmatic->get_selected_ducks());
	DuckList::const_iterator iter;

/*
	if(duckmatic->get_selected_ducks().size()<2)
	{
		bad_drag=true;
		return;
	}
*/
	bad_drag=false;

		drag_offset=duckmatic->find_duck(offset)->get_trans_point();

		//snap=drag_offset-duckmatic->snap_point_to_grid(drag_offset);
		//snap=offset-drag_offset;
		snap=Vector(0,0);

	// Calculate center
	Point vmin(100000000,100000000);
	Point vmax(-100000000,-100000000);
	//std::set<etl::handle<Duck> >::iterator iter;
	positions.clear();
	int i;
	for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
	{
		Point p((*iter)->get_trans_point());
		vmin[0]=min(vmin[0],p[0]);
		vmin[1]=min(vmin[1],p[1]);
		vmax[0]=max(vmax[0],p[0]);
		vmax[1]=max(vmax[1],p[1]);
		positions.push_back(p);
	}
	center=(vmin+vmax)*0.5;
	if((vmin-vmax).mag()<=EPSILON)
		move_only=true;
	else
		move_only=false;


	synfig::Vector vect(offset-center);
	original_angle=Angle::tan(vect[1],vect[0]);
	original_mag=vect.mag();
}
Exemplo n.º 3
0
void
DuckDrag_Mirror::begin_duck_drag(Duckmatic* duckmatic, const synfig::Vector& /*offset*/)
{
	const DuckList selected_ducks(duckmatic->get_selected_ducks());
	DuckList::const_iterator iter;

	positions.clear();
	int i;
	for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
	{
		Point p((*iter)->get_trans_point());
		positions.push_back(p);
	}

}
Exemplo n.º 4
0
void
DuckDrag_Mirror::duck_drag(Duckmatic* duckmatic, const synfig::Vector& vector)
{
	center=vector;
	int i;

	const DuckList selected_ducks(duckmatic->get_selected_ducks());
	DuckList::const_iterator iter;

	Time time(duckmatic->get_time());

	// do the Vertex and Position ducks first
	for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
		if ((*iter)->get_type() == Duck::TYPE_VERTEX ||
			(*iter)->get_type() == Duck::TYPE_POSITION)
		{
			Vector p(positions[i]);

			if		(axis==AXIS_X) p[0] = -(p[0]-center[0]) + center[0];
			else if	(axis==AXIS_Y) p[1] = -(p[1]-center[1]) + center[1];

			(*iter)->set_trans_point(p);
		}

	// then do the other ducks
	for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
		if ((*iter)->get_type() != Duck::TYPE_VERTEX &&
			(*iter)->get_type() != Duck::TYPE_POSITION)
		{
			// we don't need to mirror radius ducks - they're one-dimensional
			if ((*iter)->is_radius())
				continue;

			Vector p(positions[i]);

			if		(axis==AXIS_X) p[0] = -(p[0]-center[0]) + center[0];
			else if	(axis==AXIS_Y) p[1] = -(p[1]-center[1]) + center[1];

			(*iter)->set_trans_point(p);
		}
}
Exemplo n.º 5
0
void
DuckDrag_SmoothMove::begin_duck_drag(Duckmatic* duckmatic, const synfig::Vector& offset)
{
	last_translate_=Vector(0,0);
		drag_offset_=duckmatic->find_duck(offset)->get_trans_point();

		//snap=drag_offset-duckmatic->snap_point_to_grid(drag_offset);
		//snap=offset-drag_offset_;
		snap=Vector(0,0);

	last_.clear();
	positions.clear();
	const DuckList selected_ducks(duckmatic->get_selected_ducks());
	DuckList::const_iterator iter;
	int i;
	for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
	{
		last_.push_back(Vector(0,0));
		positions.push_back((*iter)->get_trans_point());
	}
}
Exemplo n.º 6
0
Smach::event_result
StateNormal_Context::event_multiple_ducks_clicked_handler(const Smach::event& x)
{
	// synfig::info("STATE NORMAL: Received multiple duck click event");

	//const EventMouse& event(*reinterpret_cast<const EventMouse*>(&x));

	std::list<synfigapp::ValueDesc> value_desc_list;

	// Create a list of value_descs associated with selection
	const DuckList selected_ducks(get_work_area()->get_selected_ducks());
	DuckList::const_iterator iter;
	for(iter=selected_ducks.begin();iter!=selected_ducks.end();++iter)
	{
		synfigapp::ValueDesc value_desc((*iter)->get_value_desc());

		if(!value_desc.is_valid())
			continue;
		value_desc_list.push_back(value_desc);
	}

	Gtk::Menu *menu=manage(new Gtk::Menu());
	menu->signal_hide().connect(sigc::bind(sigc::ptr_fun(&delete_widget), menu));

	const EventMouse& event(*reinterpret_cast<const EventMouse*>(&x));
	canvas_view_->get_instance()->make_param_menu(
			menu,
			canvas_view_->get_canvas(),
			value_desc_list,
			event.duck ? event.duck->get_value_desc() : synfigapp::ValueDesc()
		);

	menu->popup(3,gtk_get_current_event_time());

	return Smach::RESULT_ACCEPT;
}
Exemplo n.º 7
0
void
DuckDrag_Rotate::duck_drag(Duckmatic* duckmatic, const synfig::Vector& vector)
{
	if(bad_drag)
		return;

	//std::set<etl::handle<Duck> >::iterator iter;
	synfig::Vector vect(duckmatic->snap_point_to_grid(vector)-center+snap);

	const DuckList selected_ducks(duckmatic->get_selected_ducks());
	DuckList::const_iterator iter;

	if(move_only)
	{
		int i;
		for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
		{
			if((*iter)->get_type()!=Duck::TYPE_VERTEX&&(*iter)->get_type()!=Duck::TYPE_POSITION)continue;

			Vector p(positions[i]);

			p[0]+=vect[0];
			p[1]+=vect[1];
			(*iter)->set_trans_point(p);
		}
		for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
		{
			if(!((*iter)->get_type()!=Duck::TYPE_VERTEX&&(*iter)->get_type()!=Duck::TYPE_POSITION))continue;

			Vector p(positions[i]);

			p[0]+=vect[0];
			p[1]+=vect[1];
			(*iter)->set_trans_point(p);
		}
		return;
	}

	Angle::tan angle(vect[1],vect[0]);
	angle=original_angle-angle;
	Real mag(vect.mag()/original_mag);
	Real sine(Angle::sin(angle).get());
	Real cosine(Angle::cos(angle).get());

	int i;
	for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
	{
		if((*iter)->get_type()!=Duck::TYPE_VERTEX&&(*iter)->get_type()!=Duck::TYPE_POSITION)continue;

		Vector x(positions[i]-center),p;

		p[0]=cosine*x[0]+sine*x[1];
		p[1]=-sine*x[0]+cosine*x[1];
		if(use_magnitude)p*=mag;
		p+=center;
		(*iter)->set_trans_point(p);
	}
	for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
	{
		if(!((*iter)->get_type()!=Duck::TYPE_VERTEX&&(*iter)->get_type()!=Duck::TYPE_POSITION))continue;

		Vector x(positions[i]-center),p;

		p[0]=cosine*x[0]+sine*x[1];
		p[1]=-sine*x[0]+cosine*x[1];
		if(use_magnitude)p*=mag;
		p+=center;
		(*iter)->set_trans_point(p);
	}

	last_rotate=vect;
	//snap=Vector(0,0);
}
Exemplo n.º 8
0
void
DuckDrag_Combo::duck_drag(Duckmatic* duckmatic, const synfig::Vector& vector)
{
	if (!duckmatic) return;

	if(bad_drag)
		return;

	//Override axis lock set in workarea when holding down the shift key
	if (!move_only && (scale || rotate))
		duckmatic->set_axis_lock(false);

	synfig::Vector vect;
	if (move_only || (!scale && !rotate))
		vect= duckmatic->snap_point_to_grid(vector)-drag_offset+snap;
	else
		vect= duckmatic->snap_point_to_grid(vector)-center+snap;

	last_move=vect;

	const DuckList selected_ducks(duckmatic->get_selected_ducks());
	DuckList::const_iterator iter;

	Time time(duckmatic->get_time());

	int i;
	if( move_only || (!scale && !rotate) )
	{
		for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
		{
			if((*iter)->get_type()==Duck::TYPE_VERTEX || (*iter)->get_type()==Duck::TYPE_POSITION)
				(*iter)->set_trans_point(positions[i]+vect, time);
		}
		for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
		{
			if((*iter)->get_type()!=Duck::TYPE_VERTEX&&(*iter)->get_type()!=Duck::TYPE_POSITION)
				(*iter)->set_trans_point(positions[i]+vect, time);
		}
	}

	if (rotate)
	{
		Angle::deg angle(Angle::tan(vect[1],vect[0]));
		angle=original_angle-angle;
		if (constrain)
		{
			float degrees = angle.get()/15;
			angle= Angle::deg (degrees>0?std::floor(degrees)*15:std::ceil(degrees)*15);
		}
		Real mag(vect.mag()/original_mag);
		Real sine(Angle::sin(angle).get());
		Real cosine(Angle::cos(angle).get());

		for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
		{
			if((*iter)->get_type()!=Duck::TYPE_VERTEX&&(*iter)->get_type()!=Duck::TYPE_POSITION)continue;

			Vector x(positions[i]-center),p;

			p[0]=cosine*x[0]+sine*x[1];
			p[1]=-sine*x[0]+cosine*x[1];
			if(scale)p*=mag;
			p+=center;
			(*iter)->set_trans_point(p, time);
		}
		for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
		{
			if(!((*iter)->get_type()!=Duck::TYPE_VERTEX&&(*iter)->get_type()!=Duck::TYPE_POSITION))continue;

			Vector x(positions[i]-center),p;

			p[0]=cosine*x[0]+sine*x[1];
			p[1]=-sine*x[0]+cosine*x[1];
			if(scale)p*=mag;
			p+=center;
			(*iter)->set_trans_point(p, time);
		}
	} else if (scale)
	{
		if(!constrain)
		{
			if(abs(drag_offset[0]-center[0])>EPSILON)
				vect[0]/=drag_offset[0]-center[0];
			else
				vect[0]=1;
			if(abs(drag_offset[1]-center[1])>EPSILON)
				vect[1]/=drag_offset[1]-center[1];
			else
				vect[1]=1;
			}
		else
		{
			Real amount;
			if((drag_offset-center).mag() < EPSILON)
				amount = 1;
			else
				amount = vect.mag()/(drag_offset-center).mag();

			vect[0]=vect[1]=amount;
		}

		if(vect[0]<EPSILON && vect[0]>-EPSILON)
			vect[0]=1;
		if(vect[1]<EPSILON && vect[1]>-EPSILON)
			vect[1]=1;

		for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
		{
			if(((*iter)->get_type()!=Duck::TYPE_VERTEX&&(*iter)->get_type()!=Duck::TYPE_POSITION))continue;

			Vector p(positions[i]-center);

			p[0]*=vect[0];
			p[1]*=vect[1];
			p+=center;
			(*iter)->set_trans_point(p, time);
		}
		for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
		{
			if(!((*iter)->get_type()!=Duck::TYPE_VERTEX&&(*iter)->get_type()!=Duck::TYPE_POSITION))continue;

			Vector p(positions[i]-center);

			p[0]*=vect[0];
			p[1]*=vect[1];
			p+=center;
			(*iter)->set_trans_point(p, time);
		}

	}

	last_move=vect;

	if((last_move-Vector(1,1)).mag()>0.0001)
		is_moving = true;

	if (is_moving)
		duckmatic->signal_edited_selected_ducks(true);

	// then patch up the tangents for the vertices we've moved
	duckmatic->update_ducks();
}
Exemplo n.º 9
0
bool
DuckDrag_SmoothMove::end_duck_drag(Duckmatic* duckmatic)
{
	//synfig::info("end_duck_drag(): Diff= %f",last_translate_.mag());
	if(last_translate_.mag()>0.0001)
	{
		const DuckList selected_ducks(duckmatic->get_selected_ducks());
		DuckList::const_iterator iter;

		int i;

		smart_ptr<OneMoment> wait;if(selected_ducks.size()>20)wait.spawn();

		for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
		{
			if(last_[i].mag()>0.0001)
				{
				if ((*iter)->get_type() == Duck::TYPE_ANGLE)
					{
						if(!(*iter)->signal_edited()(**iter))
						{
							throw String("Bad edit");
						}
					}
					else if (App::restrict_radius_ducks &&
							 (*iter)->is_radius())
					{
						Point point((*iter)->get_point());
						bool changed = false;

						if (point[0] < 0)
						{
							point[0] = 0;
							changed = true;
						}
						if (point[1] < 0)
						{
							point[1] = 0;
							changed = true;
						}

						if (changed) (*iter)->set_point(point);

						if(!(*iter)->signal_edited()(point))
						{
							throw String("Bad edit");
						}
					}
					else
					{
						if(!(*iter)->signal_edited()((*iter)->get_point()))
						{
							throw String("Bad edit");
						}
					}
				}
		}
		//duckmatic->get_selected_ducks()=new_set;
		//duckmatic->refresh_selected_ducks();
		return true;
	}
	else
	{
		duckmatic->signal_user_click_selected_ducks(0);
		return false;
	}
}
Exemplo n.º 10
0
void
DuckDrag_Scale::duck_drag(Duckmatic* duckmatic, const synfig::Vector& vector)
{
	const DuckList selected_ducks(duckmatic->get_selected_ducks());
	DuckList::const_iterator iter;

	if(bad_drag)
		return;

	//std::set<etl::handle<Duck> >::iterator iter;
	synfig::Vector vect(duckmatic->snap_point_to_grid(vector)-center);
	last_scale=vect;

	if(move_only)
	{
		int i;
		for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
		{
			if(((*iter)->get_type()!=Duck::TYPE_VERTEX&&(*iter)->get_type()!=Duck::TYPE_POSITION))continue;

			Vector p(positions[i]);

			p[0]+=vect[0];
			p[1]+=vect[1];
			(*iter)->set_trans_point(p);
		}
		for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
		{
			if(!((*iter)->get_type()!=Duck::TYPE_VERTEX&&(*iter)->get_type()!=Duck::TYPE_POSITION))continue;

			Vector p(positions[i]);

			p[0]+=vect[0];
			p[1]+=vect[1];
			(*iter)->set_trans_point(p);
		}
		return;
	}

	if(!lock_aspect)
	{
		if(abs(drag_offset[0]-center[0])>EPSILON)
			vect[0]/=drag_offset[0]-center[0];
		else
			vect[0]=1;
		if(abs(drag_offset[1]-center[1])>EPSILON)
			vect[1]/=drag_offset[1]-center[1];
		else
			vect[1]=1;
		}
	else
	{
		//vect[0]=vect[1]=vect.mag()*0.707106781;
		Real amount(vect.mag()/(drag_offset-center).mag());
		vect[0]=vect[1]=amount;
	}

	if(vect[0]<EPSILON && vect[0]>-EPSILON)
		vect[0]=1;
	if(vect[1]<EPSILON && vect[1]>-EPSILON)
		vect[1]=1;

	int i;
	for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
	{
		if(((*iter)->get_type()!=Duck::TYPE_VERTEX&&(*iter)->get_type()!=Duck::TYPE_POSITION))continue;

		Vector p(positions[i]-center);

		p[0]*=vect[0];
		p[1]*=vect[1];
		p+=center;
		(*iter)->set_trans_point(p);
	}
	for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++)
	{
		if(!((*iter)->get_type()!=Duck::TYPE_VERTEX&&(*iter)->get_type()!=Duck::TYPE_POSITION))continue;

		Vector p(positions[i]-center);

		p[0]*=vect[0];
		p[1]*=vect[1];
		p+=center;
		(*iter)->set_trans_point(p);
	}

	last_scale=vect;
	//snap=Vector(0,0);
}
Exemplo n.º 11
0
void
StateWidth_Context::AdjustWidth(handle<Duckmatic::Bezier> c, float t, Real mult, bool invert)
{
	//Leave the function if there is no curve
	if(!c)return;
	Real amount1=0,amount2=0;
	//decide how much to change each width
	/*
	t \in [0,1]
	both pressure and multiply amount are in mult
		(may want to change this to allow different types of falloff)
	rsq is the squared distance from the point on the curve (also part of the falloff)
	*/
	//may want to provide a different falloff function...
	if(t <= 0.2)
		amount1 = mult;
	else if(t >= 0.8)
		amount2 = mult;
	else
	{
		float u = (t-0.2)/0.6;
		amount1 = (1-u)*mult;
		amount2 = u*mult;
	}
	// change sign if we are decreasing widths
	if(invert)
	{
		amount1 *= -1;
		amount2 *= -1;
	}
	// ducks for the bezier vertexes
	handle<Duck>	p1 = c->p1;
	handle<Duck>	p2 = c->p2;
	// ducks for the widths of the bezier vertexes
	handle<Duck>	w1,w2;
	//find w1,w2
	{
		const DuckList dl = get_work_area()->get_duck_list();
		DuckList::const_iterator i = dl.begin();
		for(;i != dl.end(); ++i)
		{
			if((*i)->get_type() == Duck::TYPE_WIDTH)
			{
				if((*i)->get_origin_duck() == p1)
				{
					w1 = *i;
				}
				if((*i)->get_origin_duck() == p2)
				{
					w2 = *i;
				}
			}
		}
	}
	// change the widths of the affected BLine of Outlines
	if(amount1 != 0 && w1)
	{
		Real width = w1->get_point().mag();
		width += amount1;
		w1->set_point(Vector(width,0));
		//log in the list of changes...
		//to truly be changed after everything is said and done
		changetable[w1] = width;
	}
	if(amount2 != 0 && w2)
	{
		Real width = w2->get_point().mag();
		width += amount2;
		w2->set_point(Vector(width,0));
		//log in the list of changes...
		//to truly be changed after everything is said and done
		changetable[w2] = width;
	}
	///////
	// Change the widths of the affected BLine of Advance Outlines
	// Parents value nodes of the value node of the p1 and p2 ducks.
	synfig::ValueNode::Handle p1pvn(p1->get_value_desc().get_parent_value_node());
	synfig::ValueNode::Handle p2pvn(p2->get_value_desc().get_parent_value_node());
	// if the bezier position ducks are linkable valuenode children
	if(p1pvn && p2pvn && p1pvn==p2pvn)
	{
		// we guess that the parent value node is a bline value node
		synfig::ValueNode::Handle bezier_bline=p1pvn;
		// Positions of the points on the bline
		Real p1_pos, bezier_size;
		// index of the first point on the bezier
		int p1_i;
		// retrieve the number of blinepoints on the bline and the loop of the bline
		int bline_size((*(bezier_bline))(get_canvas()->get_time()).get_list().size());
		bool loop((*(bezier_bline))(get_canvas()->get_time()).get_loop());
		p1_i = p1->get_value_desc().get_index();
		// bezier size depends on loop status
		bezier_size = 1.0/(loop?bline_size:(bline_size-1));
		if(loop)
		{
			// if looped and the we are in the first bezier
			if(p1_i == (bline_size -1))
				p1_i = 0;
			else
				p1_i++;
		}
		// the position is based on the index and the bezier size
		p1_pos = Real(p1_i)*bezier_size;
		// find all the widthpoints
		const DuckList dl = get_work_area()->get_duck_list();
		DuckList::const_iterator i = dl.begin();
		for(;i != dl.end(); ++i)
		{
			handle<Duck> iduck(*i);
			handle<Duck> iduck_origin(iduck->get_origin_duck());
			// If we find a width duck
			if(iduck->get_type() == Duck::TYPE_WIDTH && iduck_origin)
			{
				// if it has an origin duck
				synfigapp::ValueDesc origin_value_desc(iduck_origin->get_value_desc());
				ValueNode::Handle wpvn(ValueNode::Handle::cast_dynamic(origin_value_desc.get_value_node()));
				// if the origin duck is widthpoint type and it belongs to a list
				if(wpvn && wpvn->get_type() == type_width_point && origin_value_desc.parent_is_linkable_value_node())
				{
					// and if the width point list that it belongs to...
					ValueNode_WPList::Handle wplist(ValueNode_WPList::Handle::cast_dynamic(origin_value_desc.get_parent_value_node()));
					if(wplist)
					{
						// ... has a bline valid and is the same as the bline
						// we found for the bezier previously catched...
						ValueNode::Handle bline(wplist->get_bline());
						if(bline && (bline==bezier_bline))
						{
							// ... then update the values properly
							synfig::WidthPoint wpoint((*wpvn)(get_canvas()->get_time()).get(synfig::WidthPoint()));
							Real pos(wpoint.get_norm_position(wplist->get_loop()));
							Real tpos(p1_pos+t*bezier_size);
							// The factor of 20 can be modified by the user as a preference.
							// The higher value the more local effect has the
							// Width Tool around the widths points.
							Real amount(mult*exp(-20.0*(fabs(pos-tpos)+0.000001)));
							amount*=invert?-1.0:1.0;
							Real width = iduck->get_point().mag();
							width += amount;
							iduck->set_point(Vector(width,0));
							changetable[iduck] = width;
						}
					}
				}
			}
		}
	}
}