Exemplo n.º 1
0
//! @brief Sets the size of the system from the number of vertices in the graph.
int XC::BandArpackSOE::setSize(Graph &theGraph)
  {
    int result = 0;
    size= checkSize(theGraph);

    // determine the number of superdiagonals and subdiagonals
    theGraph.getBand(numSubD,numSuperD);

    const int newSize = size * (2*numSubD + numSuperD +1);
    if(newSize > A.Size())
      A.resize(newSize);
    A.Zero();
    factored = false;

    // invoke setSize() on the XC::Solver
    EigenSolver *theSolvr = this->getSolver();
    int solverOK = theSolvr->setSize();
    if(solverOK < 0)
      {
        std::cerr << "WARNING: BandArpackSOE::setSize :";
        std::cerr << " solver failed setSize()\n";
        return solverOK;
      }
    return result;
  }
int main(int, char**)
{
  cout.precision(3);
  EigenSolver<MatrixXf> es;
MatrixXf A = MatrixXf::Random(4,4);
es.compute(A, /* computeEigenvectors = */ false);
cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl;
es.compute(A + MatrixXf::Identity(4,4), false); // re-use es to compute eigenvalues of A+I
cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;

  return 0;
}
	AsymptoticNewmark::AsymptoticNewmark(Scalar beta, Scalar gamma, int DOFS, Scalar massDamp, Scalar stiffDamp, Scalar ts,
		const Reference<Mesh>& m, const Reference<NodeIndexer>& nodeIndexer, ReducedHyperelasticMaterial* mater)
		:Intergrator(DOFS, massDamp, stiffDamp, ts){
		int orderCount = mater->getNonlinearAsymptoticOrder();
		int entrys = orderCount*dofs;
		d = allocAligned<Scalar>(entrys);
		v = allocAligned<Scalar>(entrys);
		a = allocAligned<Scalar>(entrys);
		pre_d = allocAligned<Scalar>(entrys);
		pre_v = allocAligned<Scalar>(entrys);
		pre_a = allocAligned<Scalar>(entrys);
		externalVirtualWork = allocAligned<Scalar>(entrys);

		memset(d, 0, entrys*sizeof(Scalar));
		memset(v, 0, entrys*sizeof(Scalar));
		memset(a, 0, entrys*sizeof(Scalar));
		memset(pre_d, 0, entrys*sizeof(Scalar));
		memset(pre_v, 0, entrys*sizeof(Scalar));
		memset(pre_a, 0, entrys*sizeof(Scalar));
		memset(externalVirtualWork, 0, entrys*sizeof(Scalar));

		mesh = m;
		indexer = nodeIndexer;
		material = mater;
		betaDeltaT2 = beta*timeStep*timeStep;
		gammaDeltaT = gamma*timeStep;
		minusBetaDeltaT2 = timeStep*timeStep*Scalar(0.5) - betaDeltaT2;
		minusGammaDeltaT = timeStep - gammaDeltaT;
		totalDofs = indexer->getMatrixOrder(mesh);
		frequencies2 = allocAligned<Scalar>(dofs);
		basises = allocAligned<Scalar>(dofs*totalDofs);

		SparseMatrixAssembler M(totalDofs);
		SparseMatrixAssembler K(totalDofs);
		material->generateMassMatrix(mesh, indexer, M);
		material->generateStiffnessMatrix(mesh, indexer, K); 

		EigenSolver slover;
		slover.getEigenValVectors(dofs, M, K, frequencies2, basises);

		material->preprocessWithReduction(mesh, indexer);
		loadFactors = allocAligned<Scalar>(orderCount);
		fullDisplacements = allocAligned<Scalar>(orderCount*totalDofs);
		vwBuffer = allocAligned<Scalar>(totalDofs);

#ifdef ODER_DEBUG
		for (int i = 0; i < dofs; i++){
			if (frequencies2[i] < 0.0)
				Severe("Stiffness Matrix is not semi-define");
		}
#endif
	}
Exemplo n.º 4
0
template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m)
{
  EigenSolver<MatrixType> eig;
  VERIFY_RAISES_ASSERT(eig.eigenvectors());
  VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
  VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix());
  VERIFY_RAISES_ASSERT(eig.eigenvalues());

  MatrixType a = MatrixType::Random(m.rows(),m.cols());
  eig.compute(a, false);
  VERIFY_RAISES_ASSERT(eig.eigenvectors());
  VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
}
Exemplo n.º 5
0
int 
SymArpackSOE::setSize(Graph &theGraph)
{
    int result = 0;
    int oldSize = size;
    size = theGraph.getNumVertex();

    // fist itearte through the vertices of the graph to get nnz
    Vertex *theVertex;
    int newNNZ = 0;
    VertexIter &theVertices = theGraph.getVertices();
    while ((theVertex = theVertices()) != 0) {
        const ID &theAdjacency = theVertex->getAdjacency();
	newNNZ += theAdjacency.Size(); 
    }
    nnz = newNNZ;

    if (colA != 0)
      delete [] colA;

    colA = new int[newNNZ];	
    if (colA == 0) {
	opserr << "WARNING SymArpackSOE::SymArpackSOE :";
	opserr << " ran out of memory for colA with nnz = ";
      	opserr << newNNZ << " \n";
       	size = 0; nnz = 0;
       	result =  -1;
    } 
	
    factored = false;

    if (rowStartA != 0) 
      delete [] rowStartA;
    rowStartA = new int[size+1]; 
    if (rowStartA == 0) {
        opserr << "SymArpackSOE::ran out of memory for rowStartA." << endln;
        result = -1;
    }

    // fill in rowStartA and colA
    if (size != 0) {
        rowStartA[0] = 0;
        int startLoc = 0;
	int lastLoc = 0;

	for (int a=0; a<size; a++) {
	   theVertex = theGraph.getVertexPtr(a);
	   if (theVertex == 0) {
	        opserr << "WARNING:SymArpackSOE::setSize :";
	        opserr << " vertex " << a << " not in graph! - size set to 0\n";
	        size = 0;
	        return -1;
	   }

	   const ID &theAdjacency = theVertex->getAdjacency();
	   int idSize = theAdjacency.Size();
	
	// now we have to place the entries in the ID into order in colA
	   for (int i=0; i<idSize; i++) {
	      int row = theAdjacency(i);
	      bool foundPlace = false;
	 
	      for (int j=startLoc; j<lastLoc; j++)
	          if (colA[j] > row) { 
	      // move the entries already there one further on
	      // and place col in current location
	              for (int k=lastLoc; k>j; k--)
		          colA[k] = colA[k-1];
                      colA[j] = row;
		      foundPlace = true;
    	              j = lastLoc;
		  }
		  
	      if (foundPlace == false) // put in at the end
	      	   colA[lastLoc] = row;

	      lastLoc++;
	   }
	   rowStartA[a+1] = lastLoc;;	    
	   startLoc = lastLoc;
	}
    }

    // begin to choose different ordering schema.
    //   cout << "Enter DOF Numberer Type: \n";
    //   cout << "[1] Minimum Degree, [2] Nested Dissection, [3] RCM: ";
    int LSPARSE = 1;
    //   cin >> LSPARSE;

// call "C" function to form elimination tree and do the symbolic factorization.
//    nblks = symFactorization(rowStartA, colA, size, LSPARSE);
    nblks = symFactorization(rowStartA, colA, size, LSPARSE,
			     &xblk, &invp, &rowblks, &begblk, &first, &penv, &diag);

    // invoke setSize() on the Solver
    EigenSolver *theSolvr = this->getSolver();
    int solverOK = theSolvr->setSize();
    if (solverOK < 0) {
	opserr << "WARNING:BandArpackSOE::setSize :";
	opserr << " solver failed setSize()\n";
	return solverOK;
    } 


    return result;
}
Exemplo n.º 6
0
  void computeSimpleStars(StarSet& stars,
			  SparseOptimizer* optimizer,
			  EdgeLabeler* labeler,
			  EdgeCreator* creator,
			  OptimizableGraph::Vertex* gauge_,
			  std::string edgeTag,
			  std::string vertexTag,
			  int level,
			  int step,
			  int backboneIterations,
			  int starIterations,
			  double rejectionThreshold,
			  bool debug){

    cerr << "preforming the tree actions" << endl;
    HyperDijkstra d(optimizer);
    // compute a spanning tree based on the types of edges and vertices in the pool
    EdgeTypesCostFunction f(edgeTag, vertexTag, level);
    d.shortestPaths(gauge_,
        &f,
        std::numeric_limits< double >::max(),
        1e-6,
        false,
        std::numeric_limits< double >::max()/2);

    HyperDijkstra::computeTree(d.adjacencyMap());
    // constructs the stars on the backbone

    BackBoneTreeAction bact(optimizer, vertexTag, level, step);
    bact.init();

    cerr << "free edges size " << bact.freeEdges().size() << endl;

    // perform breadth-first visit of the visit tree and create the stars on the backbone
    d.visitAdjacencyMap(d.adjacencyMap(),&bact,true);
    stars.clear();

    for (VertexStarMultimap::iterator it=bact.vertexStarMultiMap().begin();
        it!=bact.vertexStarMultiMap().end(); it++){
      stars.insert(it->second);
    }
    cerr << "stars.size: " << stars.size() << endl;
    cerr << "size: " << bact.vertexStarMultiMap().size() << endl;


    //  for each star

    //    for all vertices in the backbone, select all edges leading/leaving from that vertex
    //    that are contained in freeEdges.

    //      mark the corresponding "open" vertices and add them to a multimap (vertex->star)

    //    select a gauge in the backbone

    //    push all vertices on the backbone

    //    compute an initial guess on the backbone

    //    one round of optimization backbone

    //    lock all vertices in the backbone

    //    push all "open" vertices

    //    for each open vertex,
    //      compute an initial guess given the backbone
    //      do some rounds of solveDirect
    //      if (fail)
    //        - remove the vertex and the edges in that vertex from the star
    //   - make the structures consistent

    //    pop all "open" vertices
    //    pop all "vertices" in the backbone
    //    unfix the vertices in the backbone

    int starNum=0;
    for (StarSet::iterator it=stars.begin(); it!=stars.end(); it++){
      Star* s =*it;
      HyperGraph::VertexSet backboneVertices = s->_lowLevelVertices;
      HyperGraph::EdgeSet backboneEdges = s->_lowLevelEdges;
      if (backboneEdges.empty())
	continue;


      // cerr << "optimizing backbone" << endl;
      // one of these  should be the gauge, to be simple we select the fisrt one in the backbone
      OptimizableGraph::VertexSet gauge;
      gauge.insert(*backboneVertices.begin());
      s->gauge()=gauge;
      s->optimizer()->push(backboneVertices);
      s->optimizer()->setFixed(gauge,true);
      s->optimizer()->initializeOptimization(backboneEdges);
      s->optimizer()->computeInitialGuess();
      s->optimizer()->optimize(backboneIterations);
      s->optimizer()->setFixed(backboneVertices, true);

      // cerr << "assignind edges.vertices not in bbone" << endl;
      HyperGraph::EdgeSet otherEdges;
      HyperGraph::VertexSet otherVertices;
      std::multimap<HyperGraph::Vertex*, HyperGraph::Edge*> vemap;
      for (HyperGraph::VertexSet::iterator bit=backboneVertices.begin(); bit!=backboneVertices.end(); bit++){
	HyperGraph::Vertex* v=*bit;
	for (HyperGraph::EdgeSet::iterator eit=v->edges().begin(); eit!=v->edges().end(); eit++){
	  OptimizableGraph::Edge* e = (OptimizableGraph::Edge*) *eit;
	  HyperGraph::EdgeSet::iterator feit=bact.freeEdges().find(e);
	  if (feit!=bact.freeEdges().end()){ // edge is admissible
	    otherEdges.insert(e);
	    bact.freeEdges().erase(feit);
	    for (size_t i=0; i<e->vertices().size(); i++){
	      OptimizableGraph::Vertex* ve= (OptimizableGraph::Vertex*)e->vertices()[i];
	      if (backboneVertices.find(ve)==backboneVertices.end()){
		otherVertices.insert(ve);
		vemap.insert(make_pair(ve,e));
	      }
	    }
	  }
	}
      }

      // RAINER TODO maybe need a better solution than dynamic casting here??
      OptimizationAlgorithmWithHessian* solverWithHessian = dynamic_cast<OptimizationAlgorithmWithHessian*>(s->optimizer()->solver());
      if (solverWithHessian) {
        s->optimizer()->push(otherVertices);
        // cerr << "optimizing vertices out of bbone" << endl;
        // cerr << "push" << endl;
        // cerr << "init" << endl;
        s->optimizer()->initializeOptimization(otherEdges);
        // cerr << "guess" << endl;
        s->optimizer()->computeInitialGuess();
        // cerr << "solver init" << endl;
        s->optimizer()->solver()->init();
        // cerr << "structure" << endl;
        if (!solverWithHessian->buildLinearStructure())
          cerr << "FATAL: failure while building linear structure" << endl;
        // cerr << "errors" << endl;
        s->optimizer()->computeActiveErrors();
        // cerr << "system" << endl;
        solverWithHessian->updateLinearSystem();
        // cerr << "directSolove" << endl;
      } else {
        cerr << "FATAL: hierarchical thing cannot be used with a solver that does not support the system structure construction" << endl;
      }


      // // then optimize the vertices one at a time to check if a solution is good
      for (HyperGraph::VertexSet::iterator vit=otherVertices.begin(); vit!=otherVertices.end(); vit++){
        OptimizableGraph::Vertex* v=(OptimizableGraph::Vertex*)(*vit);
        v->solveDirect();
        // cerr << " " << d;
        // if  a solution is found, add a vertex and all the edges in
        //othervertices that are pointing to that edge to the star
        s->_lowLevelVertices.insert(v);
        for (HyperGraph::EdgeSet::iterator eit=v->edges().begin(); eit!=v->edges().end(); eit++){
          OptimizableGraph::Edge* e = (OptimizableGraph::Edge*) *eit;
          if (otherEdges.find(e)!=otherEdges.end())
            s->_lowLevelEdges.insert(e);
        }
      }
      //cerr <<  endl;

      // relax the backbone and optimize it all
      // cerr << "relax bbone" << endl;
      s->optimizer()->setFixed(backboneVertices, false);
      //cerr << "fox gauge bbone" << endl;
      s->optimizer()->setFixed(s->gauge(),true);

      //cerr << "opt init" << endl;
      s->optimizer()->initializeOptimization(s->_lowLevelEdges);
      optimizer->computeActiveErrors();
      double initialChi = optimizer->activeChi2();
      int starOptResult = s->optimizer()->optimize(starIterations);
      //cerr << starOptResult << "(" << starIterations << ")  " << endl;
      double finalchi=-1.;

      cerr <<  "computing star: " << starNum << endl;

      int vKept=0, vDropped=0;
      if (!starIterations || starOptResult > 0  ){
	optimizer->computeActiveErrors();
	finalchi = optimizer->activeChi2();

#if 1

        s->optimizer()->computeActiveErrors();
        // cerr << "system" << endl;
        if (solverWithHessian)
          solverWithHessian->updateLinearSystem();
        HyperGraph::EdgeSet prunedStarEdges = backboneEdges;
        HyperGraph::VertexSet prunedStarVertices = backboneVertices;
        for (HyperGraph::VertexSet::iterator vit=otherVertices.begin(); vit!=otherVertices.end(); vit++){

	  //discard the vertices whose error is too big


          OptimizableGraph::Vertex* v=(OptimizableGraph::Vertex*)(*vit);
          MatrixXd h(v->dimension(), v->dimension());
          for (int i=0; i<v->dimension(); i++){
            for (int j=0; j<v->dimension(); j++)
              h(i,j)=v->hessian(i,j);
          }
          EigenSolver<Eigen::MatrixXd> esolver;
          esolver.compute(h);
          VectorXcd ev= esolver.eigenvalues();
          double emin = std::numeric_limits<double>::max();
          double emax = -std::numeric_limits<double>::max();
          for (int i=0; i<ev.size(); i++){
            emin = ev(i).real()>emin ? emin : ev(i).real();
            emax = ev(i).real()<emax ? emax : ev(i).real();
          }

          double d=emin/emax;


          // cerr << " " << d;
          if (d>rejectionThreshold){
	  // if  a solution is found, add a vertex and all the edges in
	  //othervertices that are pointing to that edge to the star
            prunedStarVertices.insert(v);
            for (HyperGraph::EdgeSet::iterator eit=v->edges().begin(); eit!=v->edges().end(); eit++){
              OptimizableGraph::Edge* e = (OptimizableGraph::Edge*) *eit;
              if (otherEdges.find(e)!=otherEdges.end())
                prunedStarEdges.insert(e);
            }
            //cerr << "K( " << v->id() << "," << d << ")" ;
            vKept ++;
          } else {
            vDropped++;
            //cerr << "R( " << v->id() << "," << d << ")" ;
          }
        }
        s->_lowLevelEdges=prunedStarEdges;
        s->_lowLevelVertices=prunedStarVertices;

#endif
	//cerr << "addHedges" << endl;
	//now add to the star the hierarchical edges
	std::vector<OptimizableGraph::Vertex*> vertices(2);
	vertices[0]= (OptimizableGraph::Vertex*) *s->_gauge.begin();

	for (HyperGraph::VertexSet::iterator vit=s->_lowLevelVertices.begin(); vit!=s->_lowLevelVertices.end(); vit++){
	  OptimizableGraph::Vertex* v=(OptimizableGraph::Vertex*)*vit;
	  vertices[1]=v;
	  if (v==vertices[0])
	    continue;
	  OptimizableGraph::Edge* e=creator->createEdge(vertices);
	  //rr << "creating edge" << e <<  Factory::instance()->tag(vertices[0]) << "->" <<  Factory::instance()->tag(v) <endl;
	  if (e) {
	    e->setLevel(level+1);
	    optimizer->addEdge(e);
	    s->_starEdges.insert(e);
	  } else {
            cerr << "HERE" << endl;
	    cerr << "FATAL, cannot create edge" << endl;
	  }
	}
      }

      cerr << " gauge: " << (*s->_gauge.begin())->id()
           << " kept: " << vKept
           << " dropped: " << vDropped
	   << " edges:" << s->_lowLevelEdges.size()
	   << " hedges" << s->_starEdges.size()
	   << " initial chi " << initialChi
	   << " final chi " << finalchi << endl;

      if (debug) {
	char starLowName[100];
	sprintf(starLowName, "star-%04d-low.g2o", starNum);
	ofstream starLowStream(starLowName);
	optimizer->saveSubset(starLowStream, s->_lowLevelEdges);
      }
      bool labelOk=false;
      if (!starIterations || starOptResult > 0)
        labelOk = s->labelStarEdges(0, labeler);
      if (labelOk) {
        if (debug) {
          char starHighName[100];
          sprintf(starHighName, "star-%04d-high.g2o", starNum);
          ofstream starHighStream(starHighName);
          optimizer->saveSubset(starHighStream, s->_starEdges);
        }
      } else {

        cerr << "FAILURE: " << starOptResult << endl;
      }
      starNum++;

      //label each hierarchical edge
      s->optimizer()->pop(otherVertices);
      s->optimizer()->pop(backboneVertices);
      s->optimizer()->setFixed(s->gauge(),false);
    }


    StarSet stars2;
    // now erase the stars that have 0 edges. They r useless
    for (StarSet::iterator it=stars.begin(); it!=stars.end(); it++){
      Star* s=*it;
      if (s->lowLevelEdges().size()==0) {
        delete s;
      } else
        stars2.insert(s);
    }
    stars=stars2;
  }
Exemplo n.º 7
0
SGMatrix<float64_t> CUWedge::diagonalize(SGNDArray<float64_t> C, SGMatrix<float64_t> V0,
					double eps, int itermax)
{
	int d = C.dims[0];
	int L = C.dims[2];

	SGMatrix<float64_t> V;
	if (V0.num_rows == d && V0.num_cols == d)
	{
		V = V0.clone();
	}
	else
	{
		Map<MatrixXd> C0(C.get_matrix(0),d,d);
		EigenSolver<MatrixXd> eig;
		eig.compute(C0);

		// sort eigenvectors
		MatrixXd eigenvectors = eig.pseudoEigenvectors();
		MatrixXd eigenvalues = eig.pseudoEigenvalueMatrix();

		bool swap = false;
		do
		{
			swap = false;
			for (int j = 1; j < d; j++)
			{
				if ( eigenvalues(j,j) > eigenvalues(j-1,j-1) )
				{
					std::swap(eigenvalues(j,j),eigenvalues(j-1,j-1));
					eigenvectors.col(j).swap(eigenvectors.col(j-1));
					swap = true;
				}
			}

		} while(swap);

		V = SGMatrix<float64_t>::create_identity_matrix(d,1);
		Map<MatrixXd> EV(V.matrix, d,d);
		EV = eigenvalues.cwiseAbs().cwiseSqrt().inverse() * eigenvectors.transpose();
	}
	Map<MatrixXd> EV(V.matrix, d,d);

	index_t * Cs_dims = SG_MALLOC(index_t, 3);
	Cs_dims[0] = d;
	Cs_dims[1] = d;
	Cs_dims[2] = L;
	SGNDArray<float64_t> Cs(Cs_dims,3);
	sg_memcpy(Cs.array, C.array, Cs.dims[0]*Cs.dims[1]*Cs.dims[2]*sizeof(float64_t));

	MatrixXd Rs(d,L);
	std::vector<float64_t> crit;
	crit.push_back(0.0);
	for (int l = 0; l < L; l++)
	{
		Map<MatrixXd> Ci(C.get_matrix(l),d,d);
		Map<MatrixXd> Csi(Cs.get_matrix(l),d,d);
		Ci = 0.5 * (Ci + Ci.transpose());
		Csi = EV * Ci * EV.transpose();
		Rs.col(l) = Csi.diagonal();
		crit.back() += Csi.cwiseAbs2().sum() - Rs.col(l).cwiseAbs2().sum();
	}

	float64_t iter = 0;
	float64_t improve = 10;
	while (improve > eps && iter < itermax)
	{
		MatrixXd B = Rs * Rs.transpose();

		MatrixXd C1 = MatrixXd::Zero(d,d);
		for (int id = 0; id < d; id++)
		{
			// rowSums
			for (int l = 0; l < L; l++)
			{
				Map<MatrixXd> Csi(Cs.get_matrix(l),d,d);
				C1.row(id) += Csi.row(id) * Rs(id,l);
			}
		}

		MatrixXd D0 = B.cwiseProduct(B.transpose()) - B.diagonal() * B.diagonal().transpose();
		MatrixXd A0 = MatrixXd::Identity(d,d) + (C1.cwiseProduct(B) - B.diagonal().asDiagonal() * C1.transpose()).cwiseQuotient(D0+MatrixXd::Identity(d,d));
		EV = A0.inverse() * EV;

		Map<MatrixXd> C0(C.get_matrix(0),d,d);
		MatrixXd Raux = EV * C0 * EV.transpose();
		MatrixXd aux = Raux.diagonal().cwiseAbs().cwiseSqrt().asDiagonal().inverse();
		EV = aux * EV;

		crit.push_back(0.0);
		for (int l = 0; l < L; l++)
		{
			Map<MatrixXd> Ci(C.get_matrix(l),d,d);
			Map<MatrixXd> Csi(Cs.get_matrix(l),d,d);
			Csi = EV * Ci * EV.transpose();
			Rs.col(l) = Csi.diagonal();
			crit.back() += Csi.cwiseAbs2().sum() - Rs.col(l).cwiseAbs2().sum();
		}

		improve = CMath::abs(crit.back() - crit[iter]);
		iter++;
	}

	if (iter == itermax)
		SG_SERROR("Convergence not reached\n")

	return V;

}