double AztecOO_StatusTestResNorm::ComputeNorm(const Epetra_Vector & vec, NormType typeofnorm) {

   double result = 0.0;
   if (typeofnorm==TwoNorm) vec.Norm2(&result);
   else if (typeofnorm==OneNorm) vec.Norm1(&result);
   else vec.NormInf(&result);
   return(result);
 }
Exemplo n.º 2
0
//
// Calculate and print the 1-norm of the solution vector x along with the parameter value.
// Used to generate the solution graph
//
  void HeqProblem::printSolution(const Epetra_Vector &x, const double conParam)
{
  double n1;                       // temporary variable to hold the value of the norm

  x.Norm1(&n1);                    // calculate the 1-norm of x
  if (outputFilePtr) {             // print out the values of c and ||x||_1
    if (Comm->MyPID()==0) { 
         (*outputFilePtr) << conParam << " " << n1 << endl;
    }
   }
  else 
         cout << "No output file!" << endl;
}
Exemplo n.º 3
0
/******************************************************************
  Compute weight balance
******************************************************************/
int compute_balance(const Epetra_Vector &wgts, double myGoalWeight,
                      double &min, double &max, double &avg)
{
  if ((myGoalWeight < 0) || (myGoalWeight > 1.0)){
    std::cerr << "compute_balance: Goal weight should be in the range [0, 1]" << std::endl;
    return -1;
  }

  double weightTotal;
  wgts.Norm1(&weightTotal);

  double weightLocal = 0.0;
  for (int i=0; i < wgts.MyLength(); i++){
    weightLocal += wgts[i];
  }

  /* My degree of imbalance. 
   * If myGoalWeight is zero, I'm in perfect balance since I got what I wanted.
   */
  double goalWeight = myGoalWeight * weightTotal;
  double imbalance = 1.0;

  if (myGoalWeight > 0.0){
    if (weightLocal >= goalWeight)
      imbalance += (weightLocal - goalWeight) / goalWeight;
    else
      imbalance += (goalWeight - weightLocal) / goalWeight;
  }

  const Epetra_Comm &comm = wgts.Comm();

  comm.MaxAll(&imbalance, &max, 1);
  comm.MinAll(&imbalance, &min, 1);
  comm.SumAll(&imbalance, &avg, 1);

  avg /= comm.NumProc();

  return 0;
}
Exemplo n.º 4
0
  int TestOneMatrix( std::string HBname, std::string MMname, std::string TRIname, Epetra_Comm &Comm, bool verbose ) { 

  if ( Comm.MyPID() != 0 ) verbose = false ; 

  Epetra_Map * readMap = 0;

  Epetra_CrsMatrix * HbA = 0; 
  Epetra_Vector * Hbx = 0; 
  Epetra_Vector * Hbb = 0; 
  Epetra_Vector * Hbxexact = 0;
   
  Epetra_CrsMatrix * TriplesA = 0; 
  Epetra_Vector * Triplesx = 0; 
  Epetra_Vector * Triplesb = 0;
  Epetra_Vector * Triplesxexact = 0;
   
  Epetra_CrsMatrix * MatrixMarketA = 0; 
  Epetra_Vector * MatrixMarketx = 0; 
  Epetra_Vector * MatrixMarketb = 0;
  Epetra_Vector * MatrixMarketxexact = 0;
   
  int TRI_Size = TRIname.size() ; 
  std::string LastFiveBytes = TRIname.substr( EPETRA_MAX(0,TRI_Size-5), TRI_Size );

  if ( LastFiveBytes == ".TimD" ) { 
    // Call routine to read in a file with a Tim Davis header and zero-based indexing
    EPETRA_CHK_ERR( Trilinos_Util_ReadTriples2Epetra64( &TRIname[0], false, Comm, 
						      readMap, TriplesA, Triplesx, 
						      Triplesb, Triplesxexact, false, true, true ) );
    delete readMap;
  } else {
    if ( LastFiveBytes == ".triU" ) { 
    // Call routine to read in unsymmetric Triplet matrix
      EPETRA_CHK_ERR( Trilinos_Util_ReadTriples2Epetra64( &TRIname[0], false, Comm, 
							readMap, TriplesA, Triplesx, 
							Triplesb, Triplesxexact, false, false ) );
      delete readMap;
    } else {
      if ( LastFiveBytes == ".triS" ) { 
	// Call routine to read in symmetric Triplet matrix
	EPETRA_CHK_ERR( Trilinos_Util_ReadTriples2Epetra64( &TRIname[0], true, Comm, 
							  readMap, TriplesA, Triplesx, 
							  Triplesb, Triplesxexact, false, false ) );
        delete readMap;
      } else {
	assert( false ) ; 
      }
    }
  }

  EPETRA_CHK_ERR( Trilinos_Util_ReadMatrixMarket2Epetra64( &MMname[0], Comm, readMap, 
							 MatrixMarketA, MatrixMarketx, 
							 MatrixMarketb, MatrixMarketxexact) );
  delete readMap;

  // Call routine to read in HB problem
  Trilinos_Util_ReadHb2Epetra64( &HBname[0], Comm, readMap, HbA, Hbx, 
			       Hbb, Hbxexact) ;


#if 0
  std::cout << " HbA " ; 
  HbA->Print( std::cout ) ; 
  std::cout << std::endl ; 

  std::cout << " MatrixMarketA " ; 
  MatrixMarketA->Print( std::cout ) ; 
  std::cout << std::endl ; 

  std::cout << " TriplesA " ; 
  TriplesA->Print( std::cout ) ; 
  std::cout << std::endl ; 
#endif


  int TripleErr = 0 ; 
  int MMerr = 0 ; 
  for ( int i = 0 ; i < 10 ; i++ ) 
    {
      double resid_Hb_Triples;
      double resid_Hb_Matrix_Market;
      double norm_A ;
      Hbx->Random();
      //
      //  Set the output vectors to different values:
      //
      Triplesb->PutScalar(1.1);
      Hbb->PutScalar(1.2);
      MatrixMarketb->PutScalar(1.3);

      HbA->Multiply( false, *Hbx, *Hbb );
      norm_A = HbA->NormOne( ) ; 

      TriplesA->Multiply( false, *Hbx, *Triplesb );
      Triplesb->Update( 1.0, *Hbb, -1.0 ) ; 


      MatrixMarketA->Multiply( false, *Hbx, *MatrixMarketb );
      MatrixMarketb->Update( 1.0, *Hbb, -1.0 ) ; 

      Triplesb->Norm1( &resid_Hb_Triples ) ; 
      MatrixMarketb->Norm1( &resid_Hb_Matrix_Market ) ; 

      TripleErr += ( resid_Hb_Triples > 1e-11 * norm_A ) ; 
      MMerr += ( resid_Hb_Matrix_Market > 1e-11 * norm_A ) ; 

      if ( verbose && resid_Hb_Triples > 1e-11 * norm_A ) 
	std::cout << " resid_Hb_Triples = " <<  resid_Hb_Triples 
	     << " norm_A = " << norm_A << std::endl ; 
      if ( verbose && resid_Hb_Matrix_Market > 1e-11 * norm_A ) 
	std::cout << " resid_Hb_Matrix_Market = " <<  resid_Hb_Matrix_Market 
	     << " norm_A = " << norm_A << std::endl ; 

    }

  if ( verbose ) { 
    if ( TripleErr ) std::cout << " Error in reading " << HBname << " or " << TRIname << std::endl ; 
    if ( MMerr ) std::cout << " Error in reading " << HBname << " or " << MMname << std::endl ; 
  }

  delete HbA; 
  delete Hbx; 
  delete Hbb; 
  delete Hbxexact;
   
  delete TriplesA; 
  delete Triplesx; 
  delete Triplesb;
  delete Triplesxexact;
   
  delete MatrixMarketA; 
  delete MatrixMarketx; 
  delete MatrixMarketb;
  delete MatrixMarketxexact;

  delete readMap;

  return TripleErr+MMerr ; 
  }
Exemplo n.º 5
0
/*----------------------------------------------------------------------*
 |  Constructor (public)                                     m.gee 01/05|
 |  IMPORTANT:                                                          |
 |  No matter on which level we are here, the vector xfine is ALWAYS    |
 |  a fine grid vector here!                                            |
 |  this is the constructor for the ismatrixfree==true case
 *----------------------------------------------------------------------*/
ML_NOX::ML_Nox_NonlinearLevel::ML_Nox_NonlinearLevel(
                          int level, int nlevel, int printlevel, ML* ml, 
                          ML_Aggregate* ag,Epetra_CrsMatrix** P, 
                          ML_NOX::Ml_Nox_Fineinterface& interface,
                          const Epetra_Comm& comm,  const Epetra_Vector& xfine, 
                          bool ismatrixfree, bool isnlnCG, int nitersCG, bool broyden,
                          string fsmoothertype, string smoothertype, string coarsesolvetype, 
                          int nsmooth_fine, int nsmooth, int nsmooth_coarse,  
                          double conv_normF, 
                          double conv_nupdate, int conv_maxiter,
                          int numPDE, int nullspdim, Epetra_CrsMatrix* Mat,
                          ML_NOX::Nox_CoarseProblem_Interface* coarseinterface) 
: fineinterface_(interface),
  comm_(comm)
{
   level_            = level;           // this level
   nlevel_           = nlevel;          // number of total levels
   ml_printlevel_    = printlevel;      // printlevel
   ml_               = ml;              // the global ML object
   ag_               = ag;              // the global ML_Aggregate object
   thislevel_prec_   = 0;               // this level's linear preconditioner
   thislevel_ml_     = 0;               // this level's local ML object 
   thislevel_ag_     = 0;               // this level's local ML_Aggregate object
   coarseinterface_  = coarseinterface; // this level's coarse interface
   coarseprepost_    = 0;
   xthis_            = 0;               // this level's current solution matching this level's map!!!!
   thislevel_A_      = 0;               // this level's NOX Matrixfree operator
   SmootherA_        = 0;               // this level's Epetra_CrsMatrix for thislevel_prec_
   ismatrixfree_     = ismatrixfree;    // matrixfree flag
   conv_normF_       = conv_normF;      // NOX convergence test stuff
   conv_nupdate_     = conv_nupdate;
   conv_maxiter_     = conv_maxiter;
   absresid_         = 0;            
   nupdate_          = 0;
   fv_               = 0;
   maxiters_         = 0;
   combo1_           = 0;
   combo2_           = 0;
   thislevel_linSys_ = 0;               // this level's NOX linear system
   nlParams_         = 0;               // NOX parameters
   initialGuess_     = 0;               // NOX initial guess
   group_            = 0;               // NOX group
   solver_           = 0;               // NOX solver
   SmootherA_        = Mat;
   isnlnCG_          = isnlnCG;
   azlinSys_         = 0;
   clone_            = 0;
   nitersCG_         = nitersCG;
   broyden_          = broyden;
   Broyd_            = 0;

#if 0   
   if (isnlnCG_==false && 
      (fsmoothertype   == "Jacobi" || 
       smoothertype    == "Jacobi" || 
       coarsesolvetype == "Jacobi" ))
   {
      cout << "**ERR**: ML_NOX::ML_Nox_NonlinearLevel::ML_Nox_NonlinearLevel:\n"
           << "**ERR**: Modified Newton's method not supported for \n"
           << "**ERR**: ismatrixfree_==true && smoothertype == Jacobi-Smoother\n"
           << "**ERR**: because no full Jacobian exists!\n"
           << "**ERR**: file/line: " << __FILE__ << "/" << __LINE__ << "\n"; throw -1;
   }
#endif   
   if (ismatrixfree_==false)
   {
      cout << "**ERR**: ML_NOX::ML_Nox_NonlinearLevel::ML_Nox_NonlinearLevel:\n"
           << "**ERR**: ismatrixfree_==false on level " << level_ << "\n"
           << "**ERR**: in constructor for ismatrixfree_==true - case\n"
           << "**ERR**: file/line: " << __FILE__ << "/" << __LINE__ << "\n"; throw -1;
   }
   if (!coarseinterface_)
   {
      cout << "**ERR**: ML_NOX::ML_Nox_NonlinearLevel::ML_Nox_NonlinearLevel:\n"
           << "**ERR**: ptr to coarseinterface=NULL on level " << level_ << "\n"
           << "**ERR**: file/line: " << __FILE__ << "/" << __LINE__ << "\n"; throw -1;
   }
   if (!Mat)
   {
      cout << "**ERR**: ML_NOX::ML_Nox_NonlinearLevel::ML_Nox_NonlinearLevel:\n"
           << "**ERR**: ptr to Matrix Mat=NULL on level " << level_ << "\n"
           << "**ERR**: file/line: " << __FILE__ << "/" << __LINE__ << "\n"; throw -1;
   }
   
   // ------------------------------------------------------------------------
   Mat->OptimizeStorage();

   // ------------------------------------------------------------------------
   // get the current solution to this level
   xthis_ = coarseinterface_->restrict_fine_to_this(xfine);

   // ------------------------------------------------------------------------
   // create this level's preconditioner
   // We use a 1-level ML-hierarchy for that
   ML_Aggregate_Create(&thislevel_ag_);
   ML_Create(&thislevel_ml_,1);
   
   // ------------------------------------------------------------------------
   // set the Jacobian on level 0 of the local ml
   EpetraMatrix2MLMatrix(thislevel_ml_,0,
                         (dynamic_cast<Epetra_RowMatrix*>(Mat)));
   
   // ------------------------------------------------------------------------
   // construct a 1-level ML-hierarchy on this level as a smoother   
   // ------------------------------------------------------------------------
   ML_Set_PrintLevel(ml_printlevel_);  
   ML_Aggregate_Set_CoarsenScheme_Uncoupled(thislevel_ag_); 
   ML_Aggregate_Set_DampingFactor(thislevel_ag_, 0.0);
   ML_Aggregate_Set_Threshold(thislevel_ag_, 0.0);
   ML_Aggregate_Set_MaxCoarseSize(thislevel_ag_,1);
   ML_Aggregate_Set_NullSpace(thislevel_ag_,numPDE,nullspdim,NULL,Mat->NumMyRows());
   int thislevel_nlevel = ML_Gen_MGHierarchy_UsingAggregation(thislevel_ml_,0,
                                                   ML_INCREASING,thislevel_ag_);
   if (thislevel_nlevel != 1)
   {
      cout << "**ERR**: ML_NOX::ML_Nox_NonlinearLevel::ML_Nox_NonlinearLevel:\n"
           << "**ERR**: ML generated a local hierarchy of " <<  thislevel_nlevel << " on level " << level_ << "\n" 
           << "**ERR**: this is supposed to be 1 Level only!\n"
           << "**ERR**: file/line: " << __FILE__ << "/" << __LINE__ << "\n"; throw -1;
   }
   
   
   // set the smoother
   if (level_==0)
      Set_Smoother(ml,ag,level_,nlevel,thislevel_ml_,thislevel_ag_,fsmoothertype,nsmooth_fine);

   else if (level_ != nlevel_-1) // set the smoother from the input
      Set_Smoother(ml,ag,level_,nlevel,thislevel_ml_,thislevel_ag_,smoothertype,nsmooth);

   else // set the coarse solver from the input
      Set_Smoother(ml,ag,level_,nlevel,thislevel_ml_,thislevel_ag_,coarsesolvetype,nsmooth_coarse);
  
   // create this level's preconditioner class
   ML_Epetra::MultiLevelOperator* ml_tmp = new ML_Epetra::MultiLevelOperator(
                                                       thislevel_ml_,comm_,
                                                       Mat->OperatorDomainMap(),
                                                       Mat->OperatorRangeMap());
   thislevel_prec_ = new ML_NOX::ML_Nox_ConstrainedMultiLevelOperator(ml_tmp,*coarseinterface_);

   if (!thislevel_prec_)
   {
      cout << "**ERR**: ML_NOX::ML_Nox_NonlinearLevel::ML_Nox_NonlinearLevel:\n"
           << "**ERR**: thislevel_prec_==NULL on level " << level_ << "\n"
           << "**ERR**: file/line: " << __FILE__ << "/" << __LINE__ << "\n"; throw -1;
   }
                                                                 
   // intensive test of this level's ML-smoother
#if 0
   {
   cout << "Test of smoother on level " << level_ << endl;
   Epetra_Vector *out = new Epetra_Vector(Copy,*xthis_,0);
   out->PutScalar(0.0);
   cout << "Input\n";
   xthis_->PutScalar(1.0);
   Mat->Multiply(false,*xthis_,*out);
   xthis_->PutScalar(3.0);
   cout << "rhs\n";
   cout << *out;
   double norm = 0.0;
   out->Norm1(&norm);
   cout << "Norm of rhs = " << norm << endl;
   thislevel_prec_->ApplyInverse(*out,*xthis_);
   cout << "result after smoother\n";
   cout << *xthis_;
   delete out; out = 0;
   }
   if (level_==2) exit(0);
#endif   

   // ------------------------------------------------------------------------
   // generate this level's coarse prepostoperator
   if (level_==0)
      coarseprepost_ = new ML_NOX::Ml_Nox_CoarsePrePostOperator(*coarseinterface_,
                                                                fineinterface_);    

   // ------------------------------------------------------------------------
   // set up NOX on this level   
   // ------------------------------------------------------------------------
   nlParams_ = new Teuchos::ParameterList();
   Teuchos::ParameterList& printParams = nlParams_->sublist("Printing");        
   printParams.setParameter("MyPID", comm_.MyPID()); 
   printParams.setParameter("Output Precision", 9);
   printParams.setParameter("Output Processor", 0);
   if (ml_printlevel_>9)
      printParams.setParameter("Output Information",
   	                       NOX::Utils::OuterIteration + 
			       //NOX::Utils::OuterIterationStatusTest + 
			       //NOX::Utils::InnerIteration +
			       //NOX::Utils::Parameters + 
			       //NOX::Utils::Details + 
			       NOX::Utils::Warning);
  else if (ml_printlevel_>8)
      printParams.setParameter("Output Information",
			       NOX::Utils::Warning);
  else
      printParams.setParameter("Output Information",0);

  if (level_==0)
    nlParams_->sublist("Solver Options").setParameter("User Defined Pre/Post Operator", *coarseprepost_);
  nlParams_->setParameter("Nonlinear Solver", "Line Search Based");         
  Teuchos::ParameterList& searchParams = nlParams_->sublist("Line Search");
  Teuchos::ParameterList* lsParamsptr  = 0;
  if (isnlnCG_)
  {
     searchParams.setParameter("Method", "NonlinearCG");
     Teuchos::ParameterList& dirParams = nlParams_->sublist("Direction"); 
     dirParams.setParameter("Method", "NonlinearCG");
     Teuchos::ParameterList& nlcgParams = dirParams.sublist("Nonlinear CG");
     nlcgParams.setParameter("Restart Frequency", 10);                         
     nlcgParams.setParameter("Precondition", "On");
     nlcgParams.setParameter("Orthogonalize", "Polak-Ribiere");
     //nlcgParams.setParameter("Orthogonalize", "Fletcher-Reeves");

     Teuchos::ParameterList& lsParams = nlcgParams.sublist("Linear Solver");     
     lsParams.setParameter("Aztec Solver", "CG"); 
     lsParams.setParameter("Max Iterations", 1);  
     lsParams.setParameter("Tolerance", 1e-11);
     lsParams.setParameter("Output Frequency", 0);   
     lsParams.setParameter("Preconditioning", "User Supplied Preconditioner");   
     lsParams.setParameter("Preconditioner","User Defined");
  }
  else // Newton's method using ML-preconditioned Aztec as linear solver
  {
     searchParams.setParameter("Method", "Full Step");
     // Sublist for direction
     Teuchos::ParameterList& dirParams = nlParams_->sublist("Direction");
     dirParams.setParameter("Method", "Newton");
     Teuchos::ParameterList& newtonParams = dirParams.sublist("Newton");
     newtonParams.setParameter("Forcing Term Method", "Constant");
     //newtonParams.setParameter("Forcing Term Method", "Type 1");
     //newtonParams.setParameter("Forcing Term Method", "Type 2");
     newtonParams.setParameter("Forcing Term Minimum Tolerance", 1.0e-6);
     newtonParams.setParameter("Forcing Term Maximum Tolerance", 0.1);

     Teuchos::ParameterList& lsParams = newtonParams.sublist("Linear Solver");
     lsParamsptr = &lsParams;
     lsParams.setParameter("Aztec Solver", "CG"); 
     lsParams.setParameter("Max Iterations", nitersCG_);  
     lsParams.setParameter("Tolerance", conv_normF_); // FIXME? is this correct?
     if (ml_printlevel_>8)
        lsParams.setParameter("Output Frequency", 50);   
     else
        lsParams.setParameter("Output Frequency", 0);   
     lsParams.setParameter("Preconditioning", "User Supplied Preconditioner");
     lsParams.setParameter("Preconditioner","User Defined");
  }
   
  // create the initial guess   
  initialGuess_ = new NOX::Epetra::Vector(*xthis_, NOX::DeepCopy, true);
  // NOTE: do not delete xthis_, it's used and destroyed by initialGuess_

  // create the necessary interfaces
  NOX::EpetraNew::Interface::Preconditioner* iPrec = 0; 
  NOX::EpetraNew::Interface::Required*       iReq  = 0;
  NOX::EpetraNew::Interface::Jacobian*       iJac  = 0;

  if (isnlnCG_)
  {
     // create the matrixfree operator used in the nlnCG
     thislevel_A_ = new NOX::EpetraNew::MatrixFree(*coarseinterface_,*xthis_,false);
  
     // create the necessary interfaces
     iPrec = 0; 
     iReq  = coarseinterface_;
     iJac  = thislevel_A_;
  
     // create the linear system 
     thislevel_linSys_ = new ML_NOX::Ml_Nox_LinearSystem(
                                    *iJac,*thislevel_A_,*iPrec,
                                    coarseinterface_,*thislevel_prec_,
                                    *xthis_,ismatrixfree_,level_,ml_printlevel_);

     // create the group
     group_ = new NOX::EpetraNew::Group(printParams,*iReq,*initialGuess_,*thislevel_linSys_);
  }
  else // Modified Newton's method
  {
     if (!broyden_)
     {
       // create the necessary interfaces   
       iPrec = this; 
       iReq  = coarseinterface_;
       iJac  = this;
     
       // create the initial guess vector
       clone_  = new Epetra_Vector(*xthis_);

       // create the linear system 
       azlinSys_ = new NOX::EpetraNew::LinearSystemAztecOO(
                                                      printParams,*lsParamsptr,
                                                      *iJac,*SmootherA_,*iPrec,
                                                      *thislevel_prec_,*clone_);
     }
     else
     {
       // create the initial guess vector
       clone_  = new Epetra_Vector(*xthis_);

       // create the necessary interfaces   
       iPrec = this; 
       iReq  = coarseinterface_;
       Broyd_ = new NOX::EpetraNew::BroydenOperator(*nlParams_,*clone_,
                                                    *SmootherA_,false);
     
       // create the linear system 
       azlinSys_ = new NOX::EpetraNew::LinearSystemAztecOO(
                                                   printParams,*lsParamsptr,
                                                   *Broyd_,*SmootherA_,*iPrec,
                                                   *thislevel_prec_,*clone_);
     }
     // create the group
     group_ = new NOX::EpetraNew::Group(printParams,*iReq,*initialGuess_,*azlinSys_);
  }


  // create convergence test
  create_Nox_Convergencetest(conv_normF_,conv_nupdate_,conv_maxiter_);

  // create the solver
  solver_ = new NOX::Solver::Manager(*group_,*combo2_,*nlParams_);
  
  return;
}