void UEnvQueryGenerator_ActorsOfClass::GenerateItems(FEnvQueryInstance& QueryInstance) const
{
	float RadiusValue = 0.0f;
	float DensityValue = 0.0f;

	UWorld* World = GEngine->GetWorldFromContextObject(QueryInstance.Owner.Get());
	// @TODO add some logging here
	if (World == NULL || QueryInstance.GetParamValue(Radius, RadiusValue, TEXT("Radius")) == false
		|| SearchedActorClass == NULL)
	{
		return;
	}

	const float RadiusSq = FMath::Square(RadiusValue);

	TArray<FVector> ContextLocations;
	QueryInstance.PrepareContext(SearchCenter, ContextLocations);

	for (TActorIterator<AActor> ItActor = TActorIterator<AActor>(World, SearchedActorClass); ItActor; ++ItActor)
	{
		for (int32 ContextIndex = 0; ContextIndex < ContextLocations.Num(); ++ContextIndex)
		{
			if (FVector::DistSquared(ContextLocations[ContextIndex], ItActor->GetActorLocation()) < RadiusSq)
			{
				QueryInstance.AddItemData<UEnvQueryItemType_Actor>(*ItActor);
				break;
			}
		}
	}
}
void UEnvQueryGenerator_OnCircle::GenerateItems(FEnvQueryInstance& QueryInstance) const
{
	float AngleDegree = 360.f;
	float RadiusValue = 0.f;
	float ItemSpace = 1.0f;

	if (QueryInstance.GetParamValue(Angle, AngleDegree, TEXT("Angle")) == false
		|| QueryInstance.GetParamValue(Radius, RadiusValue, TEXT("Radius")) == false
		|| QueryInstance.GetParamValue(ItemSpacing, ItemSpace, TEXT("ItemSpacing")) == false
		|| AngleDegree <= 0.f || AngleDegree > 360.f
		|| RadiusValue <= 0.f)
	{
		return;
	}

	AngleRadians = FMath::DegreesToRadians(Angle.Value);

	// first generate points on a circle
	const float CircumferenceLength = 2.f * PI * RadiusValue;
	const float ArcAnglePercentage = Angle.Value / 360.f;
	const float ArcLength = CircumferenceLength * ArcAnglePercentage;
	const int32 StepsCount = FMath::CeilToInt(ArcLength / ItemSpace) + 1;
	const float AngleStep = AngleDegree / (StepsCount - 1);

	FVector StartDirection = CalcDirection(QueryInstance);
	TArray<FVector> CenterLocationCandidates;
	QueryInstance.PrepareContext(CircleCenter, CenterLocationCandidates);

	StartDirection = StartDirection.RotateAngleAxis(-AngleDegree/2, FVector::UpVector) * RadiusValue;

	int NumCenterLocations = CenterLocationCandidates.Num();
	if (NumCenterLocations > 0)
	{
		for (int i = 0; i < NumCenterLocations; ++i)
		{
			GenerateItemsForCircle(CenterLocationCandidates[i], StartDirection, StepsCount, AngleStep, QueryInstance);
		}
	}
	else
	{
		FVector CenterLocation(0);

		AActor* Querier = Cast<AActor>(QueryInstance.Owner.Get());
		if (Querier)
		{
			CenterLocation = Querier->GetActorLocation();
		}

		GenerateItemsForCircle(CenterLocation, StartDirection, StepsCount, AngleStep, QueryInstance);
	}
}
Exemplo n.º 3
0
void UEnvQueryTest::NormalizeItemScores(FEnvQueryInstance& QueryInstance)
{
	if (!IsScoring())
	{
		return;
	}

	float WeightValue = 0.0f;
	if (!QueryInstance.GetParamValue(Weight, WeightValue, TEXT("Weight")))
	{
		return;
	}

	float MinScore = 0;
	float MaxScore = -BIG_NUMBER;

	if (ClampMinType == EEnvQueryTestClamping::FilterThreshold)
	{
		bool bSuccess = QueryInstance.GetParamValue(FloatFilterMin, MinScore, TEXT("FloatFilterMin"));
		if (!bSuccess)
		{
			UE_LOG(LogEQS, Warning, TEXT("Unable to get FloatFilterMin parameter value from EnvQueryInstance %s"), FloatFilterMin.IsNamedParam() ? *FloatFilterMin.ParamName.ToString() : TEXT("<No name specified>"));
		}
	}
	else if (ClampMinType == EEnvQueryTestClamping::SpecifiedValue)
	{
		bool bSuccess = QueryInstance.GetParamValue(ScoreClampingMin, MinScore, TEXT("ScoreClampingMin"));
		if (!bSuccess)
		{
			UE_LOG(LogEQS, Warning, TEXT("Unable to get ClampMinType parameter value from EnvQueryInstance %s"), ScoreClampingMin.IsNamedParam() ? *ScoreClampingMin.ParamName.ToString() : TEXT("<No name specified>"));
		}
	}

	if (ClampMaxType == EEnvQueryTestClamping::FilterThreshold)
	{
		bool bSuccess = QueryInstance.GetParamValue(FloatFilterMax, MaxScore, TEXT("FloatFilterMax"));
		if (!bSuccess)
		{
			UE_LOG(LogEQS, Warning, TEXT("Unable to get FloatFilterMax parameter value from EnvQueryInstance %s"), FloatFilterMax.IsNamedParam() ? *FloatFilterMax.ParamName.ToString() : TEXT("<No name specified>"));
		}
	}
	else if (ClampMaxType == EEnvQueryTestClamping::SpecifiedValue)
	{
		bool bSuccess = QueryInstance.GetParamValue(ScoreClampingMax, MaxScore, TEXT("ScoreClampingMax"));
		if (!bSuccess)
		{
			UE_LOG(LogEQS, Warning, TEXT("Unable to get ScoreClampingMax parameter value from EnvQueryInstance %s"), ScoreClampingMax.IsNamedParam() ? *ScoreClampingMax.ParamName.ToString() : TEXT("<No name specified>"));
		}
	}

	FEnvQueryItemDetails* DetailInfo = QueryInstance.ItemDetails.GetData();
	if ((ClampMinType == EEnvQueryTestClamping::None) ||
		(ClampMaxType == EEnvQueryTestClamping::None)
	   )
	{
		for (int32 ItemIndex = 0; ItemIndex < QueryInstance.Items.Num(); ItemIndex++, DetailInfo++)
		{
			if (!QueryInstance.Items[ItemIndex].IsValid())
			{
				continue;
			}

			float TestValue = DetailInfo->TestResults[QueryInstance.CurrentTest];
			if (TestValue != UEnvQueryTypes::SkippedItemValue)
			{
				if (ClampMinType == EEnvQueryTestClamping::None)
				{
					MinScore = FMath::Min(MinScore, TestValue);
				}

				if (ClampMaxType == EEnvQueryTestClamping::None)
				{
					MaxScore = FMath::Max(MaxScore, TestValue);
				}
			}
		}
	}

	DetailInfo = QueryInstance.ItemDetails.GetData();
	if (bNormalizeFromZero && MinScore > 0.0f)
	{
		MinScore = 0.0f;
	}

	if (MinScore != MaxScore)
	{
		for (int32 ItemIndex = 0; ItemIndex < QueryInstance.ItemDetails.Num(); ItemIndex++, DetailInfo++)
		{
			if (QueryInstance.Items[ItemIndex].IsValid() == false)
			{
				continue;
			}

			float WeightedScore = 0.0f;

			float& TestValue = DetailInfo->TestResults[QueryInstance.CurrentTest];
			if (TestValue != UEnvQueryTypes::SkippedItemValue)
			{
				const float ClampedScore = FMath::Clamp(TestValue, MinScore, MaxScore);
				const float NormalizedScore = (ClampedScore - MinScore) / (MaxScore - MinScore);
				// TODO? Add an option to invert the normalized score before applying an equation.
 				const float NormalizedScoreForEquation = /*bMirrorNormalizedScore ? (1.0f - NormalizedScore) :*/ NormalizedScore;
				switch (ScoringEquation)
				{
					case EEnvTestScoreEquation::Linear:
						WeightedScore = WeightValue * NormalizedScoreForEquation;
						break;

					case EEnvTestScoreEquation::InverseLinear:
					{
						// For now, we're avoiding having a separate flag for flipping the direction of the curve
						// because we don't have usage cases yet and want to avoid too complex UI.  If we decide
						// to add that flag later, we'll need to remove this option, since it should just be "mirror
						// curve" plus "Linear".
						float InverseNormalizedScore = (1.0f - NormalizedScoreForEquation);
						WeightedScore = WeightValue * InverseNormalizedScore;
						break;
					}

					case EEnvTestScoreEquation::Square:
						WeightedScore = WeightValue * (NormalizedScoreForEquation * NormalizedScoreForEquation);
						break;

					case EEnvTestScoreEquation::Constant:
						// I know, it's not "constant".  It's "Constant, or zero".  The tooltip should explain that.
						WeightedScore = (NormalizedScoreForEquation > 0) ? WeightValue : 0.0f;
						break;
						
					default:
						break;
				}
			}
			else
			{
				TestValue = 0.0f;
				WeightedScore = 0.0f;
			}

#if USE_EQS_DEBUGGER
			DetailInfo->TestWeightedScores[QueryInstance.CurrentTest] = WeightedScore;
#endif
			QueryInstance.Items[ItemIndex].Score += WeightedScore;
		}
	}
}
void UEnvQueryGenerator_PathingGrid::GenerateItems(FEnvQueryInstance& QueryInstance) const
{
#if WITH_RECAST
	const ARecastNavMesh* NavMesh = FEQSHelpers::FindNavMeshForQuery(QueryInstance);
	if (NavMesh == NULL) 
	{
		return;
	}

	float PathDistanceValue = 0.0f;
	float DensityValue = 0.0f;
	bool bFromContextValue = true;
	if (!QueryInstance.GetParamValue(MaxPathDistance, PathDistanceValue, TEXT("MaxPathDistance")) ||
		!QueryInstance.GetParamValue(Density, DensityValue, TEXT("Density")) ||
		!QueryInstance.GetParamValue(PathFromContext, bFromContextValue, TEXT("PathFromContext")))
	{
		return;
	}

	const int32 ItemCount = FPlatformMath::TruncToInt((PathDistanceValue * 2.0f / DensityValue) + 1);
	const int32 ItemCountHalf = ItemCount / 2;

	TArray<FVector> ContextLocations;
	QueryInstance.PrepareContext(GenerateAround, ContextLocations);
	QueryInstance.ReserveItemData(ItemCountHalf * ItemCountHalf * ContextLocations.Num());

	TArray<NavNodeRef> NavNodeRefs;
	NavMesh->BeginBatchQuery();

	int32 DataOffset = 0;
	for (int32 ContextIndex = 0; ContextIndex < ContextLocations.Num(); ContextIndex++)
	{
		// find all node refs in pathing distance
		FBox AllowedBounds;
		NavNodeRefs.Reset();
		FindNodeRefsInPathDistance(NavMesh, ContextLocations[ContextIndex], PathDistanceValue, bFromContextValue, NavNodeRefs, AllowedBounds);

		// cast 2D grid on generated node refs
		for (int32 IndexX = 0; IndexX < ItemCount; ++IndexX)
		{
			for (int32 IndexY = 0; IndexY < ItemCount; ++IndexY)
			{
				const FVector TestPoint = ContextLocations[ContextIndex] - FVector(DensityValue * (IndexX - ItemCountHalf), DensityValue * (IndexY - ItemCountHalf), 0);
				if (!AllowedBounds.IsInsideXY(TestPoint))
				{
					continue;
				}

				// trace line on navmesh, and process all hits with collected node refs
				TArray<FNavLocation> Hits;
				NavMesh->ProjectPointMulti(TestPoint, Hits, FVector::ZeroVector, AllowedBounds.Min.Z, AllowedBounds.Max.Z);

				for (int32 HitIndex = 0; HitIndex < Hits.Num(); HitIndex++)
				{
					if (IsNavLocationInPathDistance(NavMesh, Hits[HitIndex], NavNodeRefs))
					{
						// store generated point
						QueryInstance.AddItemData<UEnvQueryItemType_Point>(Hits[HitIndex].Location);
					}
				}
			}
		}
	}

	NavMesh->FinishBatchQuery();
#endif // WITH_RECAST
}