Exemplo n.º 1
0
bool ESceneObjectTools::GetBox		(Fbox& bb)
{
	bb.invalidate					();
    Fbox bbo;
    for (ObjectIt a_it=m_Objects.begin(); a_it!=m_Objects.end(); a_it++){
    	(*a_it)->GetBox				(bbo);
        bb.merge					(bbo);
    }
    return bb.is_valid();
}
Exemplo n.º 2
0
IC BOOL	ValidateMerge	(Fbox& bb_base, Fbox& bb, float& volume, float SLimit)
{
	// Size
	Fbox	merge;	merge.merge		(bb_base,bb);
	Fvector sz;		merge.getsize	(sz);	sz.add	(EPS_L);
	if (sz.x>SLimit)		return FALSE;	// Don't exceed limits (4/3 GEOM)
	if (sz.y>SLimit)		return FALSE;
	if (sz.z>SLimit)		return FALSE;

	// Volume
	volume		= merge.getvolume	();

	// OK
	return TRUE;
}
Exemplo n.º 3
0
void ESceneAIMapTool::GetBBox(Fbox& bb, bool bSelOnly)
{
    switch (LTools->GetSubTarget()){
    case estAIMapNode:{
    	if (bSelOnly){
            for (AINodeIt it=m_Nodes.begin(); it!=m_Nodes.end(); it++)
                if ((*it)->flags.is(SAINode::flSelected)){
                	bb.modify(Fvector().add((*it)->Pos,-m_Params.fPatchSize*0.5f));
                	bb.modify(Fvector().add((*it)->Pos,m_Params.fPatchSize*0.5f));
                }
        }else{
        	bb.merge		(m_AIBBox);
        }
    }break;
    }
}
Exemplo n.º 4
0
void EScene::ZoomExtents( ObjClassID cls, BOOL bSel )
{
	Fbox BB;	BB.invalidate();
    if (cls==OBJCLASS_DUMMY){
        SceneToolsMapPairIt _I = m_SceneTools.begin();
        SceneToolsMapPairIt _E = m_SceneTools.end();
        for (; _I!=_E; _I++)
            if (_I->second){
            	Fbox bb; 			bb.invalidate();
            	_I->second->GetBBox	(bb,bSel);
                if (bb.is_valid()) 	BB.merge(bb);
            }
    }else{
        ESceneToolBase* mt = GetTool(cls);
        if (mt) 			mt->GetBBox(BB,bSel);
    }
    if (BB.is_valid()) Device.m_Camera.ZoomExtents(BB);
    else ELog.Msg(mtError,"Can't calculate bounding box. Nothing selected or some object unsupported this function.");
}
Exemplo n.º 5
0
bool CGroupObject::GetBox(Fbox& bb)
{
    bb.invalidate		();
    // update box
    for (ObjectIt it=m_Objects.begin(); it!=m_Objects.end(); it++){
        switch((*it)->ClassID){
        case OBJCLASS_SPAWNPOINT:
        case OBJCLASS_SCENEOBJECT:{
            Fbox 	box;
            if ((*it)->GetBox(box))
                bb.merge(box);
        }break;
        default:
            bb.modify((*it)->PPosition);
        }
    }
    if (!bb.is_valid()){
    	bb.set			(PPosition,PPosition);
        bb.grow			(EMPTY_GROUP_SIZE);
    }
    return bb.is_valid();
}
Exemplo n.º 6
0
BOOL	CreateNode(Fvector& vAt, vertex& N)
{
	// *** Query and cache polygons for ray-casting
	Fvector	PointUp;		PointUp.set(vAt);	PointUp.y	+= RCAST_Depth;		SnapXZ	(PointUp);
	Fvector	PointDown;		PointDown.set(vAt);	PointDown.y	-= RCAST_Depth;		SnapXZ	(PointDown);

	Fbox	BB;				BB.set	(PointUp,PointUp);		BB.grow(g_params.fPatchSize/2);	// box 1
	Fbox	B2;				B2.set	(PointDown,PointDown);	B2.grow(g_params.fPatchSize/2);	// box 2
	BB.merge(B2			);
	BoxQuery(BB,false	);
	u32	dwCount = XRC.r_count();
	if (dwCount==0)	{
//		Log("chasm1");
		return FALSE;			// chasm?
	}

	// *** Transfer triangles and compute sector
	R_ASSERT(dwCount<RCAST_MaxTris);
	static svector<tri,RCAST_MaxTris> tris;		tris.clear();
	for (u32 i=0; i<dwCount; i++)
	{
		tri&		D = tris.last();
		CDB::RESULT	&rp = XRC.r_begin()[i];
		CDB::TRI&	T = *(Level.get_tris()+rp.id);

		D.v[0].set	(rp.verts[0]);
		D.v[1].set	(rp.verts[1]);
		D.v[2].set	(rp.verts[2]);
		D.sector	= T.sector;
		D.N.mknormal(D.v[0],D.v[1],D.v[2]);
		if (D.N.y<=0)	continue;

		tris.inc	();
	}
	if (tris.size()==0)	{
//		Log("chasm2");
		return FALSE;			// chasm?
	}

	// *** Perform ray-casts and calculate sector
	WORD Sector = 0xfffe;	// mark as first time

	static svector<Fvector,RCAST_Total>	points;		points.clear();
	static svector<Fvector,RCAST_Total>	normals;	normals.clear();
	Fvector P,D; D.set(0,-1,0);

	float coeff = 0.5f*g_params.fPatchSize/float(RCAST_Count);

	for (int x=-RCAST_Count; x<=RCAST_Count; x++) 
	{
		P.x = vAt.x + coeff*float(x);
		for (int z=-RCAST_Count; z<=RCAST_Count; z++) {
			P.z = vAt.z + coeff*float(z);
			P.y = vAt.y + 10.f;

			float	tri_min_range	= flt_max;
			int		tri_selected	= -1;
			float	range,u,v;
			for (i=0; i<u32(tris.size()); i++) 
			{
				if (CDB::TestRayTri(P,D,tris[i].v,u,v,range,false)) 
				{
					if (range<tri_min_range) {
						tri_min_range	= range;
						tri_selected	= i;
					}
				}
			}
			if (tri_selected>=0) {
				P.y -= tri_min_range;
				points.push_back(P);
				normals.push_back(tris[tri_selected].N);
				WORD TS = WORD(tris[tri_selected].sector);
				if (Sector==0xfffe)	Sector = TS;
				else 				if (Sector!=TS) Sector=InvalidSector;
			}
		}
	}
	if (points.size()<3) {
//		Msg		("Failed to create node at [%f,%f,%f].",vAt.x,vAt.y,vAt.z);
		return	FALSE;
	}
	if (float(points.size())/float(RCAST_Total) < 0.7f) {
//		Msg		("Partial chasm at [%f,%f,%f].",vAt.x,vAt.y,vAt.z);
		return	FALSE;
	}

	// *** Calc normal
	Fvector vNorm;
	vNorm.set(0,0,0);
	for (u32 n=0; n<normals.size(); n++)
		vNorm.add(normals[n]);
	vNorm.div(float(normals.size()));
	vNorm.normalize();
	/*
	{
		// second algorithm (Magic)
		Fvector N,O;
		N.set(vNorm);
		O.set(points[0]);
		Mgc::OrthogonalPlaneFit(
			points.size(),(Mgc::Vector3*)points.begin(),
			*((Mgc::Vector3*)&O),
			*((Mgc::Vector3*)&N)
		);
		if (N.y<0) N.invert();
		N.normalize();
		vNorm.lerp(vNorm,N,.3f);
		vNorm.normalize();
	}
	*/

 
	// *** Align plane
	Fvector vOffs;
	vOffs.set(0,-1000,0);
	Fplane PL; 	PL.build(vOffs,vNorm);
	for (u32 p=0; p<points.size(); p++)
	{
		float dist = PL.classify(points[p]);
		if (dist>0) {
			vOffs = points[p];
			PL.build(vOffs,vNorm);
		}
	}

	// *** Create node and register it
	N.Sector		=Sector;						// sector
	N.Plane.build	(vOffs,vNorm);					// build plane
	D.set			(0,1,0);
	N.Plane.intersectRayPoint(PointDown,D,N.Pos);	// "project" position

	// *** Validate results
	vNorm.set(0,1,0);
	if (vNorm.dotproduct(N.Plane.n)<_cos(deg2rad(60.f)))  return FALSE;

	float y_old = vAt.y;
	float y_new = N.Pos.y;
	if (y_old>y_new) {
		// down
		if (y_old-y_new > g_params.fCanDOWN ) return FALSE;
	} else {
		// up
		if (y_new-y_old > g_params.fCanUP	) return FALSE;
	}
 
	// *** Validate plane
	{
		Fvector PLP; D.set(0,-1,0);
		int num_successed_rays = 0;
		for (int x=-RCAST_Count; x<=RCAST_Count; x++) 
		{
			P.x = N.Pos.x + coeff*float(x);
			for (int z=-RCAST_Count; z<=RCAST_Count; z++) {
				P.z = N.Pos.z + coeff*float(z);
				P.y = N.Pos.y;
				N.Plane.intersectRayPoint(P,D,PLP);	// "project" position
				P.y = PLP.y+RCAST_VALID*0.01f;
				
				float	tri_min_range	= flt_max;
				int		tri_selected	= -1;
				float	range,u,v;
				for (i=0; i<float(tris.size()); i++) 
				{
					if (CDB::TestRayTri(P,D,tris[i].v,u,v,range,false)) 
					{
						if (range<tri_min_range) {
							tri_min_range	= range;
							tri_selected	= i;
						}
					}
				}
				if (tri_selected>=0) {
					if (tri_min_range<RCAST_VALID) num_successed_rays++;
				}
			}
		}
		float perc = float(num_successed_rays)/float(RCAST_Total);
		if (perc < 0.5f) {
			//			Msg		("Floating node.");
			return	FALSE;
		}
	}

	// *** Mask check
	// ???

	return TRUE;
}
Exemplo n.º 7
0
BOOL ESceneAIMapTool::CreateNode(Fvector& vAt, SAINode& N, bool bIC)
{
	// *** Query and cache polygons for ray-casting
	Fvector	PointUp;		PointUp.set(vAt);	PointUp.y	+= RCAST_Depth;		SnapXZ	(PointUp,m_Params.fPatchSize);
	Fvector	PointDown;		PointDown.set(vAt);	PointDown.y	-= RCAST_Depth;		SnapXZ	(PointDown,m_Params.fPatchSize);

	Fbox	BB;				BB.set	(PointUp,PointUp);		BB.grow(m_Params.fPatchSize/2);	// box 1
	Fbox	B2;				B2.set	(PointDown,PointDown);	B2.grow(m_Params.fPatchSize/2);	// box 2
	BB.merge				(B2);

    if (m_CFModel)
    {
    	/*
        for(u32 i=0; i<m_CFModel->get_tris_count(); ++i)
        {
            CDB::TRI* tri = (m_CFModel->get_tris()+i);
            if(tri->material!=0)
            	Msg("non-default material");
        }
        */
    	Scene->BoxQuery(PQ,BB,CDB::OPT_FULL_TEST,m_CFModel);
    }else
    	Scene->BoxQuery(PQ,BB,CDB::OPT_FULL_TEST,GetSnapList());

	DWORD	dwCount 		= PQ.r_count();
	if (dwCount==0){
//		Log("chasm1");
		return FALSE;			// chasm?
	}

	// *** Transfer triangles and compute sector
//	R_ASSERT(dwCount<RCAST_MaxTris);
	static xr_vector<tri> tris;	tris.reserve(RCAST_MaxTris);	tris.clear();
	for (DWORD i=0; i<dwCount; i++)
	{
    	SPickQuery::SResult* R = PQ.r_begin()+i;

        if (R->e_obj&&R->e_mesh)
        {
            CSurface* surf		= R->e_mesh->GetSurfaceByFaceID(R->tag);
//.			SGameMtl* mtl 		= GMLib.GetMaterialByID(surf->_GameMtl());
//.			if (mtl->Flags.is(SGameMtl::flPassable))continue;


            Shader_xrLC* c_sh	= Device.ShaderXRLC.Get(surf->_ShaderXRLCName());
            if (!c_sh->flags.bCollision) 			continue;
        }
  /*
		if(m_CFModel)
        {
            u16 mtl_id 	= R->material;

            if(std::find(m_ignored_materials.begin(), m_ignored_materials.end(), mtl_id) != m_ignored_materials.end() )
            {
//.                Msg("--ignore");
                continue;
            }
        }
*/
    	tris.push_back	(tri());
		tri&		D = tris.back();
		Fvector*	V = R->verts;   

		D.v[0]		= &V[0];
		D.v[1]		= &V[1];
		D.v[2]		= &V[2];
		D.N.mknormal(*D.v[0],*D.v[1],*D.v[2]);
		if (D.N.y<=0)	tris.pop_back	();
	}
	if (tris.size()==0){
//		Log("chasm2");
		return FALSE;			// chasm?
	}

	static xr_vector<Fvector>	points;		points.reserve(RCAST_Total); points.clear();
	static xr_vector<Fvector>	normals;	normals.reserve(RCAST_Total);normals.clear();
	Fvector P,D; D.set(0,-1,0);

	float coeff 	= 0.5f*m_Params.fPatchSize/float(RCAST_Count);

	for (int x=-RCAST_Count; x<=RCAST_Count; x++) 
	{
		P.x = vAt.x + coeff*float(x); 
		for (int z=-RCAST_Count; z<=RCAST_Count; z++) {
			P.z = vAt.z + coeff*float(z);
			P.y = vAt.y + 10.f;

			float	tri_min_range	= flt_max;
			int		tri_selected	= -1;
			float	range,u,v;
			for (i=0; i<DWORD(tris.size()); i++){
				if (ETOOLS::TestRayTriA(P,D,tris[i].v,u,v,range,false)){
					if (range<tri_min_range){
						tri_min_range	= range;
						tri_selected	= i;
					}
				}
			}
			if (tri_selected>=0) {
				P.y -= tri_min_range;
				points.push_back(P);
				normals.push_back(tris[tri_selected].N);
			}
		}
	}
	if (points.size()<3) {
//		Msg		("Failed to create node at [%f,%f,%f].",vAt.x,vAt.y,vAt.z);
		return	FALSE;
	}
//.
	float rc_lim = bIC?0.015f:0.7f;
	if (float(points.size())/float(RCAST_Total) < rc_lim) {
//		Msg		("Partial chasm at [%f,%f,%f].",vAt.x,vAt.y,vAt.z);
		return	FALSE;
	}

	// *** Calc normal
	Fvector vNorm;
	vNorm.set(0,0,0);
	for (DWORD n=0; n<normals.size(); n++)
		vNorm.add(normals[n]);
	vNorm.div(float(normals.size()));
	vNorm.normalize();
	/*
	{
		// second algorithm (Magic)
		Fvector N,O;
		N.set(vNorm);
		O.set(points[0]);
		Mgc::OrthogonalPlaneFit(
			points.size(),(Mgc::Vector3*)points.begin(),
			*((Mgc::Vector3*)&O),
			*((Mgc::Vector3*)&N)
		);
		if (N.y<0) N.invert();
		N.normalize();
		vNorm.lerp(vNorm,N,.3f);
		vNorm.normalize();
	}
	*/

 
	// *** Align plane
	Fvector vOffs;
	vOffs.set(0,-1000,0);
	Fplane PL; 	PL.build(vOffs,vNorm);
	for (DWORD p=0; p<points.size(); p++)
	{
		float dist = PL.classify(points[p]);
		if (dist>0) {
			vOffs = points[p];
			PL.build(vOffs,vNorm);
		}
	}

	// *** Create node and register it
	N.Plane.build	(vOffs,vNorm);					// build plane
	D.set			(0,1,0);
	N.Plane.intersectRayPoint(PointDown,D,N.Pos);	// "project" position

	// *** Validate results
	vNorm.set(0,1,0);
	if (vNorm.dotproduct(N.Plane.n)<_cos(deg2rad(60.f)))  return FALSE;

	float y_old = vAt.y;
	float y_new = N.Pos.y;
	if (y_old>y_new) {
		// down
		if (y_old-y_new > m_Params.fCanDOWN ) return FALSE;
	} else {
		// up
		if (y_new-y_old > m_Params.fCanUP	) return FALSE;
	}
 
	// *** Validate plane
	{
		Fvector PLP; D.set(0,-1,0);
		int num_successed_rays = 0;
		for (int x=-RCAST_Count; x<=RCAST_Count; x++) 
		{
			P.x = N.Pos.x + coeff*float(x);
			for (int z=-RCAST_Count; z<=RCAST_Count; z++) {
				P.z = N.Pos.z + coeff*float(z);
				P.y = N.Pos.y;
				N.Plane.intersectRayPoint(P,D,PLP);	// "project" position
				P.y = PLP.y+RCAST_VALID*0.01f;
				
				float	tri_min_range	= flt_max;
				int		tri_selected	= -1;
				float	range,u,v;
				for (i=0; i<tris.size(); i++){
					if (ETOOLS::TestRayTriA(P,D,tris[i].v,u,v,range,false)){
						if (range<tri_min_range){
							tri_min_range	= range;
							tri_selected	= i;
						}
					}
				}
				if (tri_selected>=0){
					if (tri_min_range<RCAST_VALID) num_successed_rays++;
				}
			}
		}
		float perc = float(num_successed_rays)/float(RCAST_Total);
//.		if (!bIC&&(perc < 0.5f)){
		float perc_lim = bIC?0.015f:0.5f;
		if (perc < perc_lim){
			//			Msg		("Floating node.");
			return	FALSE;
		}
	}

	// *** Mask check
	// ???

	return TRUE;
}
Exemplo n.º 8
0
BOOL	ValidNode(vertex& N)
{
	// *** Query and cache polygons for ray-casting
	Fvector	PointUp;		PointUp.set(N.Pos);		PointUp.y	+= RCAST_Depth/2;
	Fvector	PointDown;		PointDown.set(N.Pos);	PointDown.y	-= RCAST_Depth/2;

	Fbox	BB;				BB.set	(PointUp,PointUp);		BB.grow(g_params.fPatchSize/2);	// box 1
	Fbox	B2;				B2.set	(PointDown,PointDown);	B2.grow(g_params.fPatchSize/2);	// box 2
	BB.merge(B2			);
	BoxQuery(BB,false	);
	u32	dwCount = XRC.r_count();
	if (dwCount==0)	{
		Log("chasm1");
		return FALSE;			// chasm?
	}

	// *** Transfer triangles and compute sector
	R_ASSERT(dwCount<RCAST_MaxTris);
	static svector<tri,RCAST_MaxTris> tris;		tris.clear();
	for (u32 i=0; i<dwCount; i++)
	{
		tri&		D = tris.last();
		CDB::RESULT&rp = XRC.r_begin()[i];
		*(Level.get_tris()+XRC.r_begin()[i].id);

		D.v[0].set	(rp.verts[0]);
		D.v[1].set	(rp.verts[1]);
		D.v[2].set	(rp.verts[2]);

		Fvector		N;
		N.mknormal	(D.v[0],D.v[1],D.v[2]);
		if (N.y<=0)	continue;

		tris.inc	();
	}
	if (tris.size()==0)	{
		Log("chasm2");
		return FALSE;			// chasm?
	}

	// *** Perform ray-casts and calculate sector
	Fvector P,D,PLP; D.set(0,-1,0);

	float coeff = 0.5f*g_params.fPatchSize/float(RCAST_Count);

	int num_successed_rays = 0;
	for (int x=-RCAST_Count; x<=RCAST_Count; x++) 
	{
		P.x = N.Pos.x + coeff*float(x);
		for (int z=-RCAST_Count; z<=RCAST_Count; z++) {
			P.z = N.Pos.z + coeff*float(z);
			P.y = N.Pos.y;
			N.Plane.intersectRayPoint(P,D,PLP);	// "project" position
			P.y = PLP.y+RCAST_DepthValid/2;

			float	tri_min_range	= flt_max;
			int		tri_selected	= -1;
			float	range = 0.f,u,v;
			for (i=0; i<u32(tris.size()); i++) 
			{
				if (CDB::TestRayTri(P,D,tris[i].v,u,v,range,false)) 
				{
					if (range<tri_min_range) {
						tri_min_range	= range;
						tri_selected	= i;
					}
				}
			}
			if (tri_selected>=0) {
				if (range<RCAST_DepthValid)	num_successed_rays++;

			}
		}
	}
	if (float(num_successed_rays)/float(RCAST_Total) < 0.5f) {
		Msg		("Floating node.");
		return	FALSE;
	}
	return TRUE;
}
Exemplo n.º 9
0
void CParticleGroup::SItem::OnFrame(u32 u_dt, const CPGDef::SEffect& def, Fbox& box, bool& bPlaying)
{
    CParticleEffect* E		= static_cast<CParticleEffect*>(_effect);
    if (E){
        E->OnFrame			(u_dt);
        if (E->IsPlaying()){
            bPlaying		= true;
            if (E->vis.box.is_valid())     box.merge	(E->vis.box);
            if (def.m_Flags.is(CPGDef::SEffect::flOnPlayChild)&&def.m_OnPlayChildName.size()){
                PAPI::Particle* particles;
                u32 p_cnt;
                PAPI::ParticleManager()->GetParticles(E->GetHandleEffect(),particles,p_cnt);
                VERIFY(p_cnt==_children_related.size());
                if (p_cnt){
                    for(u32 i = 0; i < p_cnt; i++){
                        PAPI::Particle &m	= particles[i]; 
                        CParticleEffect* C 	= static_cast<CParticleEffect*>(_children_related[i]);
                        Fmatrix M; 			M.translate(m.pos);
                        Fvector vel; 		vel.sub(m.pos,m.posB); vel.div(fDT_STEP);
                        C->UpdateParent		(M,vel,FALSE);
                    }
                }
            }
        }
    }
    VisualVecIt it;
    if (!_children_related.empty()){
        for (it=_children_related.begin(); it!=_children_related.end(); it++){
            CParticleEffect* E	= static_cast<CParticleEffect*>(*it);
            if (E){
                E->OnFrame		(u_dt);
                if (E->IsPlaying()){
                    bPlaying	= true;
                    if (E->vis.box.is_valid())     box.merge	(E->vis.box);
                }else{
                	if (def.m_Flags.is(CPGDef::SEffect::flOnPlayChildRewind)){
                    	E->Play	();
                    }
                }
            }
        }
    }
    if (!_children_free.empty()){
    	u32 rem_cnt				= 0;
        for (it=_children_free.begin(); it!=_children_free.end(); it++){
            CParticleEffect* E	= static_cast<CParticleEffect*>(*it);
            if (E){
                E->OnFrame		(u_dt);
                if (E->IsPlaying()){ 
                    bPlaying	= true;
                    if (E->vis.box.is_valid()) box.merge	(E->vis.box);
                }else{
                	rem_cnt++	;
                    ::Render->model_Delete(*it);
                }
            }
        }
        // remove if stopped
        if (rem_cnt){
            VisualVecIt new_end=std::remove_if(_children_free.begin(),_children_free.end(),zero_vis_pred());
            _children_free.erase(new_end,_children_free.end());
        }
    }
//	Msg("C: %d CS: %d",_children.size(),_children_stopped.size());
}