Exemplo n.º 1
0
const char *GDALProxyPoolDataset::GetMetadataItem( const char * pszName,
                                                   const char * pszDomain  )
{
    if (metadataItemSet == NULL)
        metadataItemSet = CPLHashSetNew(hash_func_get_metadata_item,
                                        equal_func_get_metadata_item,
                                        free_func_get_metadata_item);

    GDALDataset* poUnderlyingDataset = RefUnderlyingDataset();
    if (poUnderlyingDataset == NULL)
        return NULL;

    const char* pszUnderlyingMetadataItem =
            poUnderlyingDataset->GetMetadataItem(pszName, pszDomain);

    GetMetadataItemElt* pElt = (GetMetadataItemElt*) CPLMalloc(sizeof(GetMetadataItemElt));
    pElt->pszName = (pszName) ? CPLStrdup(pszName) : NULL;
    pElt->pszDomain = (pszDomain) ? CPLStrdup(pszDomain) : NULL;
    pElt->pszMetadataItem = (pszUnderlyingMetadataItem) ? CPLStrdup(pszUnderlyingMetadataItem) : NULL;
    CPLHashSetInsert(metadataItemSet, pElt);

    UnrefUnderlyingDataset(poUnderlyingDataset);

    return pElt->pszMetadataItem;
}
Exemplo n.º 2
0
const char *GDALOverviewDataset::GetMetadataItem( const char * pszName,
        const char * pszDomain )
{
    if (poOvrDS != NULL)
    {
        const char* pszValue = poOvrDS->GetMetadataItem(pszName, pszDomain);
        if( pszValue != NULL )
            return pszValue;
    }

    if( pszDomain != NULL && (EQUAL(pszDomain, "RPC") ||
                              EQUAL(pszDomain, "GEOLOCATION")) )
    {
        char** papszMD = GetMetadata(pszDomain);
        return CSLFetchNameValue(papszMD, pszName);
    }

    return poMainDS->GetMetadataItem(pszName, pszDomain);
}
Exemplo n.º 3
0
CPLErr
GTIFFBuildOverviews( const char * pszFilename,
                     int nBands, GDALRasterBand **papoBandList,
                     int nOverviews, int * panOverviewList,
                     const char * pszResampling,
                     GDALProgressFunc pfnProgress, void * pProgressData )

{
    if( nBands == 0 || nOverviews == 0 )
        return CE_None;

    if( !GTiffOneTimeInit() )
        return CE_Failure;

    TIFF *hOTIFF = nullptr;
    int nBitsPerPixel = 0;
    int nCompression = COMPRESSION_NONE;
    int nPhotometric = 0;
    int nSampleFormat = 0;
    int nPlanarConfig = 0;
    int iOverview = 0;
    int nXSize = 0;
    int nYSize = 0;

/* -------------------------------------------------------------------- */
/*      Verify that the list of bands is suitable for emitting in       */
/*      TIFF file.                                                      */
/* -------------------------------------------------------------------- */
    for( int iBand = 0; iBand < nBands; iBand++ )
    {
        int nBandBits = 0;
        int nBandFormat = 0;
        GDALRasterBand *hBand = papoBandList[iBand];

        switch( hBand->GetRasterDataType() )
        {
          case GDT_Byte:
            nBandBits = 8;
            nBandFormat = SAMPLEFORMAT_UINT;
            break;

          case GDT_UInt16:
            nBandBits = 16;
            nBandFormat = SAMPLEFORMAT_UINT;
            break;

          case GDT_Int16:
            nBandBits = 16;
            nBandFormat = SAMPLEFORMAT_INT;
            break;

          case GDT_UInt32:
            nBandBits = 32;
            nBandFormat = SAMPLEFORMAT_UINT;
            break;

          case GDT_Int32:
            nBandBits = 32;
            nBandFormat = SAMPLEFORMAT_INT;
            break;

          case GDT_Float32:
            nBandBits = 32;
            nBandFormat = SAMPLEFORMAT_IEEEFP;
            break;

          case GDT_Float64:
            nBandBits = 64;
            nBandFormat = SAMPLEFORMAT_IEEEFP;
            break;

          case GDT_CInt16:
            nBandBits = 32;
            nBandFormat = SAMPLEFORMAT_COMPLEXINT;
            break;

          case GDT_CInt32:
            nBandBits = 64;
            nBandFormat = SAMPLEFORMAT_COMPLEXINT;
            break;

          case GDT_CFloat32:
            nBandBits = 64;
            nBandFormat = SAMPLEFORMAT_COMPLEXIEEEFP;
            break;

          case GDT_CFloat64:
            nBandBits = 128;
            nBandFormat = SAMPLEFORMAT_COMPLEXIEEEFP;
            break;

          default:
            CPLAssert( false );
            return CE_Failure;
        }

        if( hBand->GetMetadataItem( "NBITS", "IMAGE_STRUCTURE" ) )
        {
            nBandBits =
                atoi(hBand->GetMetadataItem("NBITS", "IMAGE_STRUCTURE"));

            if( nBandBits == 1
                && STARTS_WITH_CI(pszResampling, "AVERAGE_BIT2") )
                nBandBits = 8;
        }

        if( iBand == 0 )
        {
            nBitsPerPixel = nBandBits;
            nSampleFormat = nBandFormat;
            nXSize = hBand->GetXSize();
            nYSize = hBand->GetYSize();
        }
        else if( nBitsPerPixel != nBandBits || nSampleFormat != nBandFormat )
        {
            CPLError( CE_Failure, CPLE_NotSupported,
                      "GTIFFBuildOverviews() doesn't support a mixture of band"
                      " data types." );
            return CE_Failure;
        }
        else if( hBand->GetColorTable() != nullptr )
        {
            CPLError( CE_Failure, CPLE_NotSupported,
                      "GTIFFBuildOverviews() doesn't support building"
                      " overviews of multiple colormapped bands." );
            return CE_Failure;
        }
        else if( hBand->GetXSize() != nXSize
                 || hBand->GetYSize() != nYSize )
        {
            CPLError( CE_Failure, CPLE_NotSupported,
                      "GTIFFBuildOverviews() doesn't support building"
                      " overviews of different sized bands." );
            return CE_Failure;
        }
    }

/* -------------------------------------------------------------------- */
/*      Use specified compression method.                               */
/* -------------------------------------------------------------------- */
    const char *pszCompress = CPLGetConfigOption( "COMPRESS_OVERVIEW", nullptr );

    if( pszCompress != nullptr && pszCompress[0] != '\0' )
    {
        nCompression =
            GTIFFGetCompressionMethod(pszCompress, "COMPRESS_OVERVIEW");
        if( nCompression < 0 )
            return CE_Failure;
    }

    if( nCompression == COMPRESSION_JPEG && nBitsPerPixel > 8 )
    {
        if( nBitsPerPixel > 16 )
        {
            CPLError( CE_Failure, CPLE_NotSupported,
                      "GTIFFBuildOverviews() doesn't support building"
                      " JPEG compressed overviews of nBitsPerPixel > 16." );
            return CE_Failure;
        }

        nBitsPerPixel = 12;
    }

/* -------------------------------------------------------------------- */
/*      Figure out the planar configuration to use.                     */
/* -------------------------------------------------------------------- */
    if( nBands == 1 )
        nPlanarConfig = PLANARCONFIG_CONTIG;
    else
        nPlanarConfig = PLANARCONFIG_SEPARATE;

    bool bSourceIsPixelInterleaved = false;
    bool bSourceIsJPEG2000 = false;
    if( nBands > 1 )
    {
        GDALDataset* poSrcDS = papoBandList[0]->GetDataset();
        if( poSrcDS )
        {
            const char* pszSrcInterleave = poSrcDS->GetMetadataItem("INTERLEAVE",
                                                                "IMAGE_STRUCTURE");
            if( pszSrcInterleave && EQUAL(pszSrcInterleave, "PIXEL") )
            {
                bSourceIsPixelInterleaved = true;
            }
        }

        const char* pszSrcCompression = papoBandList[0]->GetMetadataItem("COMPRESSION",
                                                                "IMAGE_STRUCTURE");
        if( pszSrcCompression )
        {
            bSourceIsJPEG2000 = EQUAL(pszSrcCompression, "JPEG2000");
        }
        if( bSourceIsPixelInterleaved && bSourceIsJPEG2000 )
        {
            nPlanarConfig = PLANARCONFIG_CONTIG;
        }
    }

    const char* pszInterleave =
        CPLGetConfigOption( "INTERLEAVE_OVERVIEW", nullptr );
    if( pszInterleave != nullptr && pszInterleave[0] != '\0' )
    {
        if( EQUAL( pszInterleave, "PIXEL" ) )
            nPlanarConfig = PLANARCONFIG_CONTIG;
        else if( EQUAL( pszInterleave, "BAND" ) )
            nPlanarConfig = PLANARCONFIG_SEPARATE;
        else
        {
            CPLError(
                CE_Failure, CPLE_AppDefined,
                "INTERLEAVE_OVERVIEW=%s unsupported, "
                "value must be PIXEL or BAND. ignoring",
                pszInterleave );
        }
    }

/* -------------------------------------------------------------------- */
/*      Figure out the photometric interpretation to use.               */
/* -------------------------------------------------------------------- */
    if( nBands == 3 )
        nPhotometric = PHOTOMETRIC_RGB;
    else if( papoBandList[0]->GetColorTable() != nullptr
             && !STARTS_WITH_CI(pszResampling, "AVERAGE_BIT2") )
    {
        nPhotometric = PHOTOMETRIC_PALETTE;
        // Should set the colormap up at this point too!
    }
    else if( nBands >= 3 &&
             papoBandList[0]->GetColorInterpretation() == GCI_RedBand &&
             papoBandList[1]->GetColorInterpretation() == GCI_GreenBand &&
             papoBandList[2]->GetColorInterpretation() == GCI_BlueBand )
    {
        nPhotometric = PHOTOMETRIC_RGB;
    }
    else
        nPhotometric = PHOTOMETRIC_MINISBLACK;

    const char* pszPhotometric =
        CPLGetConfigOption( "PHOTOMETRIC_OVERVIEW", nullptr );
    if( pszPhotometric != nullptr && pszPhotometric[0] != '\0' )
    {
        if( EQUAL( pszPhotometric, "MINISBLACK" ) )
            nPhotometric = PHOTOMETRIC_MINISBLACK;
        else if( EQUAL( pszPhotometric, "MINISWHITE" ) )
            nPhotometric = PHOTOMETRIC_MINISWHITE;
        else if( EQUAL( pszPhotometric, "RGB" ))
        {
            nPhotometric = PHOTOMETRIC_RGB;
        }
        else if( EQUAL( pszPhotometric, "CMYK" ))
        {
            nPhotometric = PHOTOMETRIC_SEPARATED;
        }
        else if( EQUAL( pszPhotometric, "YCBCR" ))
        {
            nPhotometric = PHOTOMETRIC_YCBCR;

            // Because of subsampling, setting YCBCR without JPEG compression
            // leads to a crash currently. Would need to make
            // GTiffRasterBand::IWriteBlock() aware of subsampling so that it
            // doesn't overrun buffer size returned by libtiff.
            if( nCompression != COMPRESSION_JPEG )
            {
                CPLError(
                    CE_Failure, CPLE_NotSupported,
                    "Currently, PHOTOMETRIC_OVERVIEW=YCBCR requires "
                    "COMPRESS_OVERVIEW=JPEG" );
                return CE_Failure;
            }

            if( pszInterleave != nullptr &&
                pszInterleave[0] != '\0' &&
                nPlanarConfig == PLANARCONFIG_SEPARATE )
            {
                CPLError(
                    CE_Failure, CPLE_NotSupported,
                    "PHOTOMETRIC_OVERVIEW=YCBCR requires "
                    "INTERLEAVE_OVERVIEW=PIXEL" );
                return CE_Failure;
            }
            else
            {
                nPlanarConfig = PLANARCONFIG_CONTIG;
            }

            // YCBCR strictly requires 3 bands. Not less, not more
            // Issue an explicit error message as libtiff one is a bit cryptic:
            // JPEGLib:Bogus input colorspace.
            if( nBands != 3 )
            {
                CPLError(
                    CE_Failure, CPLE_NotSupported,
                    "PHOTOMETRIC_OVERVIEW=YCBCR requires a source raster "
                    "with only 3 bands (RGB)" );
                return CE_Failure;
            }
        }
        else if( EQUAL( pszPhotometric, "CIELAB" ))
        {
            nPhotometric = PHOTOMETRIC_CIELAB;
        }
        else if( EQUAL( pszPhotometric, "ICCLAB" ))
        {
            nPhotometric = PHOTOMETRIC_ICCLAB;
        }
        else if( EQUAL( pszPhotometric, "ITULAB" ))
        {
            nPhotometric = PHOTOMETRIC_ITULAB;
        }
        else
        {
            CPLError(
                CE_Warning, CPLE_IllegalArg,
                "PHOTOMETRIC_OVERVIEW=%s value not recognised, ignoring.",
                pszPhotometric );
        }
    }

/* -------------------------------------------------------------------- */
/*      Figure out the predictor value to use.                          */
/* -------------------------------------------------------------------- */
    int nPredictor = PREDICTOR_NONE;
    if( nCompression == COMPRESSION_LZW ||
        nCompression == COMPRESSION_ADOBE_DEFLATE )
    {
        const char* pszPredictor =
            CPLGetConfigOption( "PREDICTOR_OVERVIEW", nullptr );
        if( pszPredictor != nullptr )
        {
            nPredictor = atoi( pszPredictor );
        }
    }

/* -------------------------------------------------------------------- */
/*      Create the file, if it does not already exist.                  */
/* -------------------------------------------------------------------- */
    VSIStatBufL sStatBuf;
    VSILFILE* fpL = nullptr;

    if( VSIStatExL( pszFilename, &sStatBuf, VSI_STAT_EXISTS_FLAG ) != 0 )
    {
    /* -------------------------------------------------------------------- */
    /*      Compute the uncompressed size.                                  */
    /* -------------------------------------------------------------------- */
        double dfUncompressedOverviewSize = 0;
        int nDataTypeSize =
            GDALGetDataTypeSizeBytes(papoBandList[0]->GetRasterDataType());

        for( iOverview = 0; iOverview < nOverviews; iOverview++ )
        {
            const int nOXSize = (nXSize + panOverviewList[iOverview] - 1)
                / panOverviewList[iOverview];
            const int nOYSize = (nYSize + panOverviewList[iOverview] - 1)
                / panOverviewList[iOverview];

            dfUncompressedOverviewSize +=
                nOXSize * static_cast<double>(nOYSize) * nBands * nDataTypeSize;
        }

        if( nCompression == COMPRESSION_NONE
            && dfUncompressedOverviewSize > 4200000000.0 )
        {
    #ifndef BIGTIFF_SUPPORT
            CPLError(
                CE_Failure, CPLE_NotSupported,
                "The overview file would be larger than 4GB, "
                "but this is the largest size a TIFF can be, "
                "and BigTIFF is unavailable.  "
                "Creation failed." );
            return CE_Failure;
    #endif
        }
    /* -------------------------------------------------------------------- */
    /*      Should the file be created as a bigtiff file?                   */
    /* -------------------------------------------------------------------- */
        const char *pszBIGTIFF = CPLGetConfigOption( "BIGTIFF_OVERVIEW", nullptr );

        if( pszBIGTIFF == nullptr )
            pszBIGTIFF = "IF_SAFER";

        bool bCreateBigTIFF = false;
        if( EQUAL(pszBIGTIFF,"IF_NEEDED") )
        {
            if( nCompression == COMPRESSION_NONE
                && dfUncompressedOverviewSize > 4200000000.0 )
                bCreateBigTIFF = true;
        }
        else if( EQUAL(pszBIGTIFF,"IF_SAFER") )
        {
            // Look at the size of the base image and suppose that
            // the added overview levels won't be more than 1/2 of
            // the size of the base image. The theory says 1/3 of the
            // base image size if the overview levels are 2, 4, 8, 16.
            // Thus take 1/2 as the security margin for 1/3.
            const double dfUncompressedImageSize =
                nXSize * static_cast<double>(nYSize) * nBands * nDataTypeSize;
            if( dfUncompressedImageSize * 0.5 > 4200000000.0 )
                bCreateBigTIFF = true;
        }
        else
        {
            bCreateBigTIFF = CPLTestBool( pszBIGTIFF );
            if( !bCreateBigTIFF && nCompression == COMPRESSION_NONE
                && dfUncompressedOverviewSize > 4200000000.0 )
            {
                CPLError(
                    CE_Failure, CPLE_NotSupported,
                    "The overview file will be larger than 4GB, "
                    "so BigTIFF is necessary.  "
                    "Creation failed.");
                return CE_Failure;
            }
        }

    #ifndef BIGTIFF_SUPPORT
        if( bCreateBigTIFF )
        {
            CPLError(
                CE_Warning, CPLE_NotSupported,
                "BigTIFF requested, but GDAL built without BigTIFF "
                "enabled libtiff, request ignored." );
            bCreateBigTIFF = false;
        }
    #endif

        if( bCreateBigTIFF )
            CPLDebug( "GTiff", "File being created as a BigTIFF." );

        fpL = VSIFOpenL( pszFilename, "w+" );
        if( fpL == nullptr )
            hOTIFF = nullptr;
        else
            hOTIFF =
               VSI_TIFFOpen( pszFilename, bCreateBigTIFF ? "w+8" : "w+", fpL );
        if( hOTIFF == nullptr )
        {
            if( CPLGetLastErrorNo() == 0 )
                CPLError( CE_Failure, CPLE_OpenFailed,
                          "Attempt to create new tiff file `%s' "
                          "failed in VSI_TIFFOpen().",
                          pszFilename );
            if( fpL != nullptr )
                CPL_IGNORE_RET_VAL(VSIFCloseL(fpL));
            return CE_Failure;
        }
    }
/* -------------------------------------------------------------------- */
/*      Otherwise just open it for update access.                       */
/* -------------------------------------------------------------------- */
    else
    {
        fpL = VSIFOpenL( pszFilename, "r+" );
        if( fpL == nullptr )
            hOTIFF = nullptr;
        else
            hOTIFF = VSI_TIFFOpen( pszFilename, "r+", fpL );
        if( hOTIFF == nullptr )
        {
            if( CPLGetLastErrorNo() == 0 )
                CPLError( CE_Failure, CPLE_OpenFailed,
                          "Attempt to create new tiff file `%s' "
                          "failed in VSI_TIFFOpen().",
                          pszFilename );
            if( fpL != nullptr )
                CPL_IGNORE_RET_VAL(VSIFCloseL(fpL));
            return CE_Failure;
        }
    }

/* -------------------------------------------------------------------- */
/*      Do we have a palette?  If so, create a TIFF compatible version. */
/* -------------------------------------------------------------------- */
    unsigned short *panRed = nullptr;
    unsigned short *panGreen = nullptr;
    unsigned short *panBlue = nullptr;

    if( nPhotometric == PHOTOMETRIC_PALETTE )
    {
        GDALColorTable *poCT = papoBandList[0]->GetColorTable();
        int nColorCount = 65536;

        if( nBitsPerPixel <= 8 )
            nColorCount = 256;

        panRed = static_cast<unsigned short *>(
            CPLCalloc(nColorCount, sizeof(unsigned short)) );
        panGreen = static_cast<unsigned short *>(
            CPLCalloc(nColorCount, sizeof(unsigned short)) );
        panBlue = static_cast<unsigned short *>(
            CPLCalloc(nColorCount, sizeof(unsigned short)) );

        for( int iColor = 0; iColor < nColorCount; iColor++ )
        {
          GDALColorEntry sRGB = { 0, 0, 0, 0 };

            if( poCT->GetColorEntryAsRGB( iColor, &sRGB ) )
            {
                // TODO(schwehr): Check for underflow.
                // Going from signed short to unsigned short.
                panRed[iColor] = static_cast<unsigned short>(257 * sRGB.c1);
                panGreen[iColor] = static_cast<unsigned short>(257 * sRGB.c2);
                panBlue[iColor] = static_cast<unsigned short>(257 * sRGB.c3);
            }
        }
    }

/* -------------------------------------------------------------------- */
/*      Do we need some metadata for the overviews?                     */
/* -------------------------------------------------------------------- */
    CPLString osMetadata;
    GDALDataset *poBaseDS = papoBandList[0]->GetDataset();

    GTIFFBuildOverviewMetadata( pszResampling, poBaseDS, osMetadata );

/* -------------------------------------------------------------------- */
/*      Loop, creating overviews.                                       */
/* -------------------------------------------------------------------- */
    int nOvrBlockXSize = 0;
    int nOvrBlockYSize = 0;
    GTIFFGetOverviewBlockSize(&nOvrBlockXSize, &nOvrBlockYSize);

    CPLString osNoData; // don't move this in inner scope
    const char* pszNoData = nullptr;
    int bNoDataSet = FALSE;
    const double dfNoDataValue = papoBandList[0]->GetNoDataValue(&bNoDataSet);
    if( bNoDataSet )
    {
        osNoData = GTiffFormatGDALNoDataTagValue(dfNoDataValue);
        pszNoData = osNoData.c_str();
    }

    std::vector<uint16> anExtraSamples;
    for( int i = GTIFFGetMaxColorChannels(nPhotometric)+1; i <= nBands; i++ )
    {
        if( papoBandList[i-1]->GetColorInterpretation() == GCI_AlphaBand )
        {
            anExtraSamples.push_back(
                GTiffGetAlphaValue(CPLGetConfigOption("GTIFF_ALPHA", nullptr),
                                   DEFAULT_ALPHA_TYPE));
        }
        else
        {
            anExtraSamples.push_back(EXTRASAMPLE_UNSPECIFIED);
        }
    }

    for( iOverview = 0; iOverview < nOverviews; iOverview++ )
    {
        const int nOXSize = (nXSize + panOverviewList[iOverview] - 1)
            / panOverviewList[iOverview];
        const int nOYSize = (nYSize + panOverviewList[iOverview] - 1)
            / panOverviewList[iOverview];

        GTIFFWriteDirectory( hOTIFF, FILETYPE_REDUCEDIMAGE,
                             nOXSize, nOYSize, nBitsPerPixel,
                             nPlanarConfig, nBands,
                             nOvrBlockXSize, nOvrBlockYSize, TRUE, nCompression,
                             nPhotometric, nSampleFormat, nPredictor,
                             panRed, panGreen, panBlue,
                             static_cast<int>(anExtraSamples.size()),
                             anExtraSamples.empty() ? nullptr : anExtraSamples.data(),
                             osMetadata,
                             CPLGetConfigOption( "JPEG_QUALITY_OVERVIEW", nullptr ),
                             CPLGetConfigOption( "JPEG_TABLESMODE_OVERVIEW", nullptr ),
                             pszNoData,
                             nullptr
                           );
    }

    if( panRed )
    {
        CPLFree(panRed);
        CPLFree(panGreen);
        CPLFree(panBlue);
        panRed = nullptr;
        panGreen = nullptr;
        panBlue = nullptr;
    }

    XTIFFClose( hOTIFF );
    if( VSIFCloseL(fpL) != 0 )
        return CE_Failure;
    fpL = nullptr;

/* -------------------------------------------------------------------- */
/*      Open the overview dataset so that we can get at the overview    */
/*      bands.                                                          */
/* -------------------------------------------------------------------- */
    GDALDataset *hODS = GDALDataset::Open( pszFilename,
                                           GDAL_OF_RASTER | GDAL_OF_UPDATE );
    if( hODS == nullptr )
        return CE_Failure;

/* -------------------------------------------------------------------- */
/*      Do we need to set the jpeg quality?                             */
/* -------------------------------------------------------------------- */
    TIFF *hTIFF = static_cast<TIFF *>( hODS->GetInternalHandle(nullptr) );

    if( nCompression == COMPRESSION_JPEG
        && CPLGetConfigOption( "JPEG_QUALITY_OVERVIEW", nullptr ) != nullptr )
    {
        const int nJpegQuality =
            atoi(CPLGetConfigOption("JPEG_QUALITY_OVERVIEW","75"));
        TIFFSetField( hTIFF, TIFFTAG_JPEGQUALITY,
                      nJpegQuality );
        GTIFFSetJpegQuality(GDALDataset::ToHandle(hODS), nJpegQuality);
    }

    if( nCompression == COMPRESSION_JPEG
        && CPLGetConfigOption( "JPEG_TABLESMODE_OVERVIEW", nullptr ) != nullptr )
    {
        const int nJpegTablesMode =
            atoi(CPLGetConfigOption("JPEG_TABLESMODE_OVERVIEW",
                            CPLSPrintf("%d", knGTIFFJpegTablesModeDefault)));
        TIFFSetField( hTIFF, TIFFTAG_JPEGTABLESMODE,
                      nJpegTablesMode );
        GTIFFSetJpegTablesMode(GDALDataset::ToHandle(hODS), nJpegTablesMode);
    }

/* -------------------------------------------------------------------- */
/*      Loop writing overview data.                                     */
/* -------------------------------------------------------------------- */

    int *panOverviewListSorted =
        static_cast<int*>(CPLMalloc(sizeof(int) * nOverviews));
    memcpy( panOverviewListSorted, panOverviewList, sizeof(int) * nOverviews);
    std::sort(panOverviewListSorted, panOverviewListSorted + nOverviews);

    GTIFFSetInExternalOvr(true);

    CPLErr eErr = CE_None;

    if(  ((bSourceIsPixelInterleaved && bSourceIsJPEG2000) ||
          (nCompression != COMPRESSION_NONE)) &&
         nPlanarConfig == PLANARCONFIG_CONTIG &&
         !GDALDataTypeIsComplex(papoBandList[0]->GetRasterDataType()) &&
         papoBandList[0]->GetColorTable() == nullptr &&
         (STARTS_WITH_CI(pszResampling, "NEAR") ||
          EQUAL(pszResampling, "AVERAGE") ||
          EQUAL(pszResampling, "GAUSS") ||
          EQUAL(pszResampling, "CUBIC") ||
          EQUAL(pszResampling, "CUBICSPLINE") ||
          EQUAL(pszResampling, "LANCZOS") ||
          EQUAL(pszResampling, "BILINEAR")) )
    {
        // In the case of pixel interleaved compressed overviews, we want to
        // generate the overviews for all the bands block by block, and not
        // band after band, in order to write the block once and not loose
        // space in the TIFF file.
        GDALRasterBand ***papapoOverviewBands =
            static_cast<GDALRasterBand ***>(
                CPLCalloc(sizeof(void *), nBands) );
        for( int iBand = 0; iBand < nBands && eErr == CE_None; iBand++ )
        {
            GDALRasterBand *poSrcBand = papoBandList[iBand];
            GDALRasterBand *poDstBand = hODS->GetRasterBand( iBand + 1 );
            papapoOverviewBands[iBand] =
                static_cast<GDALRasterBand **>(
                    CPLCalloc(sizeof(void *), nOverviews) );

            int bHasNoData = FALSE;
            const double noDataValue = poSrcBand->GetNoDataValue(&bHasNoData);
            if( bHasNoData )
                poDstBand->SetNoDataValue(noDataValue);

            for( int i = 0; i < nOverviews && eErr == CE_None; i++ )
            {
                for( int j = -1; j < poDstBand->GetOverviewCount() &&
                                 eErr == CE_None; j++ )
                {
                    GDALRasterBand * poOverview =
                            (j < 0 ) ? poDstBand : poDstBand->GetOverview( j );
                    if( poOverview == nullptr )
                    {
                        eErr = CE_Failure;
                        continue;
                    }

                    const int nOvFactor =
                        GDALComputeOvFactor(poOverview->GetXSize(),
                                            poSrcBand->GetXSize(),
                                            poOverview->GetYSize(),
                                            poSrcBand->GetYSize());

                    if( nOvFactor == panOverviewListSorted[i]
                        || nOvFactor == GDALOvLevelAdjust2(
                                            panOverviewListSorted[i],
                                            poSrcBand->GetXSize(),
                                            poSrcBand->GetYSize() ) )
                    {
                        papapoOverviewBands[iBand][i] = poOverview;
                        if( bHasNoData )
                            poOverview->SetNoDataValue(noDataValue);
                        break;
                    }
                }
                CPLAssert( papapoOverviewBands[iBand][i] != nullptr );
            }
        }

        if( eErr == CE_None )
            eErr =
                GDALRegenerateOverviewsMultiBand(
                    nBands, papoBandList,
                    nOverviews, papapoOverviewBands,
                    pszResampling, pfnProgress, pProgressData );

        for( int iBand = 0; iBand < nBands; iBand++ )
        {
            CPLFree(papapoOverviewBands[iBand]);
        }
        CPLFree(papapoOverviewBands);
    }
    else
    {
        GDALRasterBand **papoOverviews =
            static_cast<GDALRasterBand **>(
                CPLCalloc( sizeof(void*), knMaxOverviews ) );

        for( int iBand = 0; iBand < nBands && eErr == CE_None; iBand++ )
        {
            GDALRasterBand *hSrcBand = papoBandList[iBand];
            GDALRasterBand *hDstBand = hODS->GetRasterBand( iBand + 1 );

            int bHasNoData = FALSE;
            const double noDataValue = hSrcBand->GetNoDataValue(&bHasNoData);
            if( bHasNoData )
                hDstBand->SetNoDataValue(noDataValue);

            // FIXME: this logic regenerates all overview bands, not only the
            // ones requested.

            papoOverviews[0] = hDstBand;
            int nDstOverviews = hDstBand->GetOverviewCount() + 1;
            CPLAssert( nDstOverviews < knMaxOverviews );
            nDstOverviews = std::min(knMaxOverviews, nDstOverviews);

            // TODO(schwehr): Convert to starting with i = 1 and remove +1.
            for( int i = 0; i < nDstOverviews - 1 && eErr == CE_None; i++ )
            {
                papoOverviews[i+1] = hDstBand->GetOverview(i);
                if( papoOverviews[i+1] == nullptr )
                {
                    eErr = CE_Failure;
                }
                else
                {
                    if( bHasNoData )
                        papoOverviews[i+1]->SetNoDataValue(noDataValue);
                }
            }

            void *pScaledProgressData =
                GDALCreateScaledProgress(
                    iBand / static_cast<double>( nBands ),
                    (iBand + 1) / static_cast<double>( nBands ),
                    pfnProgress, pProgressData );

            if( eErr == CE_None )
                eErr =
                    GDALRegenerateOverviews(
                        hSrcBand,
                        nDstOverviews,
                        reinterpret_cast<GDALRasterBandH *>( papoOverviews ),
                        pszResampling,
                        GDALScaledProgress,
                        pScaledProgressData );

            GDALDestroyScaledProgress( pScaledProgressData );
        }

        CPLFree( papoOverviews );
    }

/* -------------------------------------------------------------------- */
/*      Cleanup                                                         */
/* -------------------------------------------------------------------- */
    if( eErr == CE_None )
        hODS->FlushCache();
    delete hODS;

    GTIFFSetInExternalOvr(false);

    CPLFree(panOverviewListSorted);

    pfnProgress( 1.0, nullptr, pProgressData );

    return eErr;
}
Exemplo n.º 4
0
IRaster* ingestGDALRaster()
{
    GDALDataset* ds = gdalDataset;
    cout << "Reading raster metadata...";

    GDALRasterBand* band = ds->GetRasterBand(bandNum);
    int xSize = band->GetXSize();
    int ySize = band->GetYSize();
    int hasNoDataValue;
    double noDataValue = band->GetNoDataValue(&hasNoDataValue);
    if (hasNoDataValue != 0)
        noDataValue = NULL_DOUBLE_;
    double xForm[6];
    ds->GetGeoTransform(xForm);
    double minX = xForm[0];
    double cellSizeX = xForm[1];
    double skewX = xForm[2];
    double minY = xForm[3];
    double skewY = xForm[4];
    double cellSizeY = xForm[5];
    string* spatialRef = new string(ds->GetProjectionRef());

    if( ds->GetMetadataItem("NC_GLOBAL#IOAPI_VERSION", "") != NULL) {
        // Get georeference from IOAPI metadata
        // See: http://www.baronams.com/products/ioapi/GRIDS.html#horiz

        // Build the affine transform from metadata
        minX = atof(ds->GetMetadataItem("NC_GLOBAL#XORIG", ""));
        minY = atof(ds->GetMetadataItem("NC_GLOBAL#YORIG", ""));
        cellSizeX = atof(ds->GetMetadataItem("NC_GLOBAL#XCELL", ""));
        cellSizeY = atof(ds->GetMetadataItem("NC_GLOBAL#YCELL", ""));
        skewX = 0;
        skewY = 0;

        // Build the SpatialReference
        double xcent, ycent, p_alp, p_bet, p_gam;
        char *gdnam;
        OGRSpatialReference* sref = new OGRSpatialReference("");
        // Assume datum is WGS84 (may not be, but IO/API files don't (can't?) say...)
        sref->SetWellKnownGeogCS("WGS84");

        int gdtyp = atoi(ds->GetMetadataItem("NC_GLOBAL#GDTYP", ""));
        switch(gdtyp) {
            case 0:
                // Unknown projection (we assume lat-lon)
                break;

            case 1:
                // LATGRD3 -- Latitude/longitude
                break;

            case 2:
                // LAMGRD3 -- Lambert Conformal Conic (two standard parallels)
                xcent = atof(ds->GetMetadataItem("NC_GLOBAL#XCENT", ""));
                ycent = atof(ds->GetMetadataItem("NC_GLOBAL#YCENT", ""));
                p_alp = atof(ds->GetMetadataItem("NC_GLOBAL#P_ALP", ""));
                p_bet = atof(ds->GetMetadataItem("NC_GLOBAL#P_BET", ""));
                sref->SetLCC(p_alp, p_bet, ycent, xcent, 0, 0);
                gdnam = (char *)ds->GetMetadataItem("NC_GLOBAL#GDNAM", "");
                sref->SetProjCS(gdnam);
                break;
                
            case 9:
                // ALBGRD3 -- Albers Equal-Area Conic
                xcent = atof(ds->GetMetadataItem("NC_GLOBAL#XCENT", ""));
                ycent = atof(ds->GetMetadataItem("NC_GLOBAL#YCENT", ""));
                p_alp = atof(ds->GetMetadataItem("NC_GLOBAL#P_ALP", ""));
                p_bet = atof(ds->GetMetadataItem("NC_GLOBAL#P_BET", ""));
                sref->SetACEA(p_alp, p_bet, ycent, xcent, 0, 0);
                gdnam = (char *)ds->GetMetadataItem("NC_GLOBAL#GDNAM", "");
                sref->SetProjCS(gdnam);
                break;
                
            case 10:
                // LEQGRID3 -- Lambert Azimuthal Equal-Area
                p_alp = atof(ds->GetMetadataItem("NC_GLOBAL#P_ALP", ""));
                // Correct for bad metadata on some files
                if(p_alp == 0.0) {
                    xcent = atof(ds->GetMetadataItem("NC_GLOBAL#XCENT", ""));
                    ycent = atof(ds->GetMetadataItem("NC_GLOBAL#YCENT", ""));
                    p_alp = ycent;
                    p_gam = xcent;
                } else {
                    p_gam = atof(ds->GetMetadataItem("NC_GLOBAL#P_GAM", ""));
                }
                sref->SetLAEA(p_alp, p_gam, 0, 0);
                gdnam = (char *)ds->GetMetadataItem("NC_GLOBAL#GDNAM", "");
                sref->SetProjCS(gdnam);
                break;

            default:
                throw new runtime_error("ERROR: Unable to parse IO/API GDTYP variable");
        }

        char* wktSrStr = new char[spatialRef->length()];
        strcpy((char *)spatialRef->c_str(), wktSrStr);
        sref->exportToWkt(&wktSrStr);
        //CPLFree(sref);
        spatialRef->assign(wktSrStr);
    }

    cout << "...Done.\nReading raster band " << bandNum << "...";

    IRaster* result = NULL;
    CPLErr retval;

    switch (band->GetRasterDataType()) {

        //retval = band->RasterIO(GF_Read, 0, 0, band->XSize, band->YSize, floatArray, band->XSize, band->YSize, 0, 0);


        case GDT_Float32: {
            float* floatArray = new float[xSize * ySize];
            retval = band->RasterIO(GF_Read, 0, 0, xSize, ySize, floatArray, xSize, ySize, band->GetRasterDataType(), 0, 0);
            if (retval != CE_None)
                throw new runtime_error("GDALRasterBand::ReadBlock() returned error");
            result = new Raster<float>(floatArray, xSize, ySize, cellSizeX, cellSizeY, minX, minY, skewX, skewY, spatialRef, noDataValue);
            cout << " -- Pixel type: Float32 -- ...Done\n";
        } break;

        case GDT_Float64: {
            double* doubleArray = new double[xSize * ySize];
            retval = band->RasterIO(GF_Read, 0, 0, xSize, ySize, doubleArray, xSize, ySize, band->GetRasterDataType(), 0, 0);
            if (retval != CE_None)
                throw new runtime_error("GDALRasterBand::ReadBlock() returned error");
            result = new Raster<double>(doubleArray, xSize, ySize, cellSizeX, cellSizeY, minX, minY, skewX, skewY, spatialRef, noDataValue);
            cout << " -- Pixel type: Float64 -- ...Done\n";
        } break;

        case GDT_Int32: {
            int* intArray = new int[xSize * ySize];
            retval = band->RasterIO(GF_Read, 0, 0, xSize, ySize, intArray, xSize, ySize, band->GetRasterDataType(), 0, 0);
            if (retval != CE_None)
                throw new runtime_error("GDALRasterBand::ReadBlock() returned error");
            result = new Raster<int>(intArray, xSize, ySize, cellSizeX, cellSizeY, minX, minY, skewX, skewY, spatialRef, noDataValue);
            cout << " -- Pixel type: Int32 -- ...Done\n";
        } break;

        case GDT_Int16: {
            short* shortArray = new short[xSize * ySize];
            retval = band->RasterIO(GF_Read, 0, 0, xSize, ySize, shortArray, xSize, ySize, band->GetRasterDataType(), 0, 0);
            if (retval != CE_None)
                throw new runtime_error("GDALRasterBand::ReadBlock() returned error");
            result = new Raster<short>(shortArray, xSize, ySize, cellSizeX, cellSizeY, minX, minY, skewX, skewY, spatialRef, noDataValue);
            cout << " -- Pixel type: Int32 -- ...Done\n";
        } break;

        case GDT_Byte: {
            char* byteArray = new char[xSize * ySize];
            retval = band->RasterIO(GF_Read, 0, 0, xSize, ySize, byteArray, xSize, ySize, band->GetRasterDataType(), 0, 0);
            if (retval != CE_None)
                throw new runtime_error("GDALRasterBand::ReadBlock() returned error");
            result = new Raster<char>(byteArray, xSize, ySize, cellSizeX, cellSizeY, minX, minY, skewX, skewY, spatialRef, noDataValue);
            cout << " -- Pixel type: Byte -- ...Done\n";
        } break;

        default:
            throw new runtime_error("Unsupported pixel type");
    }

    return result;
}