Exemplo n.º 1
0
void 
GiST::Delete(const GiSTpredicate& pred)
{
	GiSTcursor *c=Search(pred);
	int condensed;
	GiSTentry *e;

	do {
		if(c==NULL) return;
		e=c->Next();

		GiSTpath path=c->Path();
		delete c;
		if(e==NULL) return;

		// Read in the node that this belongs to
		GiSTnode *node=ReadNode(path);

		node->DeleteEntry(e->Position());
		WriteNode(node);
		condensed=CondenseTree(node);
		delete node;
		if(condensed) {
			ShortenTree();
			// because the tree changed, we need to search all over again!
			// XXX - this is inefficient!  users may want to avoid condensing.
			c=Search(pred);
		}
	} while(e!=NULL);
}
Exemplo n.º 2
0
void 
GiSTnode::Unpack(const char *page)
{
    const GiSTheader *h = (const GiSTheader *) page;

    Reset();

    SetLevel(h->level);
    SetSibling(h->sibling);

    if (!packedNode)
	packedNode = new char[tree->Store()->PageSize()];
    memcpy(packedNode, page, tree->Store()->PageSize());

    Expand(h->numEntries);
    SetNumEntries(h->numEntries);

    for (int i=0; i<h->numEntries; i++) {
        GiSTcompressedEntry tmpentry = Entry(i);
	GiSTentry *e = CreateEntry();
	e->SetLevel(Level());
	e->SetPosition(i);
	e->SetNode(this);
	e->Decompress(tmpentry);
	// be tidy
	if (tmpentry.key)
	  delete tmpentry.key;

	// Append the body with the entry
	entries[i] = e;
    }
}
Exemplo n.º 3
0
void
MT::CollectStats ()
{
	GiSTpath path;
	path.MakeRoot ();
	GiSTnode *node = ReadNode (path);
	if (!node->IsLeaf()) {
		int maxLevel = node->Level();
		double *radii = new double[maxLevel];
		int *pages = new int[maxLevel];
		for (int i=0; i<maxLevel; i++) {
			pages[i] = 0;
			radii[i] = 0;
		}
		TruePredicate truePredicate;
		GiSTlist<GiSTentry*> list = node->Search(truePredicate);  // retrieve all the entries in this node
		
		double overlap = ((MTnode *)node)->Overlap();
		double totalOverlap = overlap;
		
		delete node;
		while (!list.IsEmpty()) {
			GiSTentry *entry = list.RemoveFront ();
			path.MakeChild (entry->Ptr());
			node = ReadNode (path);

			overlap = ((MTnode *)node)->Overlap();
			totalOverlap += overlap;

			pages[node->Level()]++;
			radii[node->Level()] += ((MTkey *) entry->Key())->MaxRadius();
			GiSTlist<GiSTentry*> newlist;
			if (!node->IsLeaf()) {
				newlist = node->Search(truePredicate);  // recurse to next level
			}
			while (!newlist.IsEmpty()) {
				list.Append (newlist.RemoveFront ());
			}
			path.MakeParent ();
			delete entry;
			delete node;
		}
		// output the results
		cout << "Level:\tPages:\tAverage_Radius:"<<endl;
		int totalPages = 1;  // for the root
		for (int i=maxLevel-1; i>=0; i--) {
			totalPages += pages[i];
			cout << i << ":\t" << pages[i] << "\t" << radii[i]/pages[i] << endl;
		}
		cout << "TotalPages:\t" << totalPages << endl;
		cout << "LeafPages:\t" << pages[0] << endl;
		cout << "TotalOverlap:\t" << (float)totalOverlap << endl;
		delete []radii;
		delete []pages;
	} else {
		delete node;
	}
}
Exemplo n.º 4
0
GiSTentry* 
GiSTnode::SearchPtr(GiSTpage ptr) const
{
    for (int i=0; i<numEntries; i++) {
	GiSTentry *e = (*this)[i];
	if (e->Ptr() == ptr)
	    return (GiSTentry*) e->Copy();
    }
    return NULL;
}
Exemplo n.º 5
0
GiSTlist<GiSTentry*> 
GiSTnode::Search(const GiSTpredicate &query) const
{
    GiSTlist<GiSTentry*> list;

    for (int i=0; i<numEntries; i++) {
	GiSTentry *e = (*this)[i];
	if (query.Consistent(*e))
	    list.Append((GiSTentry*)e->Copy());
    }
    return list;
}
Exemplo n.º 6
0
void 
GiST::AdjustKeys (GiSTnode *node, GiSTnode **parent)
{
	if (node->Path().IsRoot()) {
		return;
	}

	GiSTnode *P;
	// Read in node's parent
	if (parent == NULL) {
		GiSTpath parent_path = node->Path();
		parent_path.MakeParent ();
		P = ReadNode (parent_path);
		parent = &P;
	} else {
		P = *parent;
	}

	// Get the old entry pointing to node
	GiSTentry *entry = P->SearchPtr(node->Path().Page());

	assert (entry != NULL);

	// Get union of node
	GiSTentry *actual = node->Union();
	WriteNode(node);  // added by myself for the splitted = false;
	actual->SetPtr(node->Path().Page());
	if (!entry->IsEqual(*actual)) {
		int pos = entry->Position();
		P->DeleteEntry(pos);
		P->InsertBefore(*actual, pos);
		// A split may be necessary.
		// XXX: should we do Forced Reinsert here too?
		if (P->IsOverFull(*store)) {
			Split (parent, *actual);

			GiSTpage page = node->Path().Page();
			node->Path() = P->Path();
			node->Path().MakeChild(page);
		} else {
		    WriteNode (P);
			AdjustKeys (P, NULL);
		}
	}
	if (parent == &P) {
		delete P;
	}
	delete actual;
	delete entry;
}
Exemplo n.º 7
0
void
MTnode::InsertBefore(const GiSTentry& entry, int index)
{
	int n=NumEntries();
	BOOL ordered=TRUE;

	if(index>0) ordered=((*this)[index-1]->Compare(entry)<=0);
	if(index<n) ordered=ordered&&((*this)[index]->Compare(entry)>=0);
	if(ordered) {	// yes, the position is right for this entry
		assert(index<=n);
		GiSTentry *e=(GiSTentry *)entry.Copy();

		e->SetLevel(Level());
		e->SetPosition(index);
		e->SetNode(this);
		// Move everything else over
		for(int i=n; i>index; i--) {
			GiSTentry *e=(*this)[i-1];

			e->SetPosition(i);
			(*this)[i]=e;
		}
		// Stick the entry in
		(*this)[index]=e;
		// Bump up the count
		SetNumEntries(n+1);
	}
	else Insert(entry);	// find the right place
}
Exemplo n.º 8
0
void 
BTnode::InsertBefore(const GiSTentry& entry, int index)
{
    // Only BTentry's can be inserted into BTnodes.
    assert(entry.IsA() == BTENTRY_CLASS);

    BTentry e((const BTentry&) entry);

    // If this is an internal node, adjust the lower/upper bounds
    if (!IsLeaf()) {
	// If not leftmost entry...
	if (index != 0) {
	    // -inf changes to the upper bound of previous item
	    BTentry *prev = (BTentry*) (*this)[index-1].Ptr();
	    if (e.LowerBound() == NegInf)
		e.SetLowerBound(prev->UpperBound());
	}
	// If not rightmost entry...
	if (index != NumEntries()) {
	    // +inf changes to the lower bound of next item
	    BTentry *next = (BTentry*) (*this)[index].Ptr();
	    if (e.UpperBound() == PosInf)
		e.SetUpperBound(next->LowerBound());
	}
    }

    // Insert it into the node
    GiSTnode::InsertBefore(e, index);
}
Exemplo n.º 9
0
void 
GiST::InsertHelper(const GiSTentry &entry, 
		   int level, // level of tree at which to insert
		   int *splitvec) // a vector to trigger Split instead of forced reinsert
{
	GiSTnode *leaf;
	int overflow=0;

	leaf=ChooseSubtree(GiSTRootPage, entry, level);
	leaf->Insert(entry);
	if (leaf->IsOverFull(*store)) {
		if(ForcedReinsert()&&!leaf->Path().IsRoot()&&(!splitvec||!splitvec[level])) {
			int split[GIST_MAX_LEVELS];

			// R*-tree-style forced reinsert
			for(int i=0; i<GIST_MAX_LEVELS; i++) split[i]=0;
			OverflowTreatment(leaf, entry, split);
			overflow=1;
		}
		else Split(&leaf, entry);
		if(leaf->IsOverFull(*store)) {
			// we only should get here if we reinserted, and the node re-filled
			assert(overflow);
			leaf->DeleteEntry(entry.Position());
			Split(&leaf, entry);
		}
	}
	else WriteNode(leaf);
	if(!overflow) AdjustKeys(leaf, NULL);
	delete leaf;
}
Exemplo n.º 10
0
// insert before the original number according to the sequence instead of index
void
MTnode::InsertBefore (const GiSTentry& newEntry, int index)
{
	int n = NumEntries ();
	assert (index>=0 && index<=n);

	BOOL bOrder = TRUE;
	if (index > 0) {
		bOrder = (*this)[index-1]->Compare(newEntry) <= 0;
	}
	if (index < n) {
		bOrder = bOrder && (*this)[index]->Compare(newEntry) >= 0;
	}

	if (bOrder) {  // yes, the position is right for this entry
		GiSTentry *entry = (GiSTentry *) newEntry.Copy ();
		entry->SetLevel(Level());
		entry->SetPosition(index);
		entry->SetNode(this);
		// Move everything else over
		for (int i=n; i>index; i--) {
			GiSTentry *e = (*this)[i-1];
			e->SetPosition(i);
			(*this)[i] = e;
		}
		// Stick the entry in
		(*this)[index] = entry;
		// Bump up the count
		SetNumEntries (n+1);
	} else {
		Insert (newEntry);  // find the right place
	}
}
Exemplo n.º 11
0
// adjust the keys of node, which is used during the final phase of the BulkLoad algorithm
void
MT::AdjKeys (GiSTnode *node)
{
	if (node->Path().IsRoot()) {
		return;
	}

	GiSTpath parentPath = node->Path();
	parentPath.MakeParent ();
	GiSTnode *parentNode = ReadNode (parentPath);
	GiSTentry *parentEntry = parentNode->SearchPtr(node->Path().Page());  // parent entry
	assert (parentEntry != NULL);
	GiSTentry *unionEntry = node->Union();
	unionEntry->SetPtr(node->Path().Page());
	((MTkey *) unionEntry->Key())->distance = ((MTkey *) parentEntry->Key())->distance;  // necessary to keep track of the distance from the parent
	if (!parentEntry->IsEqual(*unionEntry)) {  // replace this entry
		parentNode->DeleteEntry(parentEntry->Position());
		parentNode->Insert(*unionEntry);
		WriteNode (parentNode);
		AdjKeys (parentNode);
	}
	delete unionEntry;
	delete parentEntry;
	delete parentNode;
}
Exemplo n.º 12
0
GiSTentry* 
GiSTcursor::Next()
{
    GiSTpage page;

    while (first || !stack.IsEmpty()) {
	if (first) {
	    page = GiSTRootPage;
	    first = 0;
	} else {
	    assert(lastlevel >= 0);
	    GiSTentry *entry = stack.RemoveFront();
	    if (entry->IsLeaf())
		return entry;

	    // Pop off the stack
	    for (int i=0; i < entry->Level() - lastlevel; i++)
		path.MakeParent();

	    page = entry->Ptr();
	    
	    delete entry;
	}

	// Entry was a pointer to another node
	path.MakeChild(page);

	GiSTnode *node = gist.ReadNode(path);
	lastlevel = node->Level();

	GiSTlist<GiSTentry*> list = node->Search(*query);

	while (!list.IsEmpty()) {
	    GiSTentry *entry = list.RemoveRear();
	    stack.Prepend(entry);
	}

	delete node;
    }

    // The search is over...
    return NULL;
}
Exemplo n.º 13
0
void 
GiST::DumpNode (ostream& os, GiSTpath path) const
{
	GiSTnode *node = ReadNode(path);
	node->Print(os);

	if (!node->IsLeaf()) {
		TruePredicate truePredicate;
		GiSTlist<GiSTentry*> list = node->Search(truePredicate);

		while (!list.IsEmpty()) {
			GiSTentry *e = list.RemoveFront();
			path.MakeChild(e->Ptr());
			DumpNode (os, path);
			path.MakeParent();
			delete e;
		}
	}
	delete node;
}
Exemplo n.º 14
0
void 
BTnode::Insert(const GiSTentry &entry)
{
    // Only BTentry's can be inserted into BTnode's.
    assert(entry.IsA() == BTENTRY_CLASS);

    // This doesn't work for internal nodes.  For internal nodes,
    // the caller must know exactly where to insert.
    assert(IsLeaf());
   
    GiSTnode::Insert(entry);
}
Exemplo n.º 15
0
// SearchMinPenalty returns where a new entry should be inserted.
GiSTpage 
GiSTnode::SearchMinPenalty(const GiSTentry &newEntry) const
{
    GiSTentry *minEntry = NULL;
    GiSTpenalty *minPenalty = NULL;

    for (int i=0; i<numEntries; i++) {
	GiSTentry *e = (*this)[i];
	assert(e->Node() == this);
	GiSTpenalty *penalty = e->Penalty(newEntry);
	if (minEntry == NULL || (*penalty) < (*minPenalty)) {
	    minEntry = e;
	    if (minPenalty) delete minPenalty;
	    minPenalty = penalty;
	}
	else 
	  delete penalty;
    }
    delete minPenalty;
    return minEntry->Ptr();
}
Exemplo n.º 16
0
void CommandSelect(const char *table,
		   const GiSTpredicate& pred)
{
    int i;

    i = GetTable(table);
    if (i == NOT_FOUND) {
	cerr << "Table is not open!\n";
	return;
    }

    GiST *gist = tables[i].gist;

    GiSTcursor *c = gist->Search(pred);
    GiSTentry *e;
    while ((e = c->Next()) != NULL) {
	Record* rec = (Record*)e->Ptr();
	cout << rec->value << "\n";
	delete e;
    }
    delete c;
}
Exemplo n.º 17
0
int 
RTpredicate::Consistent(const GiSTentry& entry) const
{
  RTentry &rtentry = (RTentry &)entry;

  if (entry.IsLeaf()) {
    switch (oper) {
    case RToverlap:
      return(rtentry.Key().overlap((RTkey)value));
      break;
    case RTcontains:
      return(rtentry.Key().contain((RTkey)value));
      break;
    case RTcontained:
      return(rtentry.Key().contained((RTkey)value));
      break;
    case RTEqual:
      return(rtentry.Key() == ((RTkey)value));
      break;
	case RTNotDisjoint:
      return(!rtentry.Key().disjoint((RTkey)value));
	  break;

    default:
      assert(0);
      return (0);
      break;
    }
  }
  else {
    switch (oper) {
    case RToverlap:
    case RTcontained:
      return(rtentry.Key().overlap((RTkey)value));
      break;
    case RTcontains:
    case RTEqual:
      return(rtentry.Key().contain(((RTkey)value)));
      break;
	case RTNotDisjoint:
      return(!rtentry.Key().disjoint((RTkey)value));
	  break;
    default:
      assert(0);
      return (0);
      break;
    }
  }
}
Exemplo n.º 18
0
void 
GiSTnode::InsertBefore (const GiSTentry& entry, int index)
{
	assert (index <= NumEntries());
	GiSTentry *e = (GiSTentry*)entry.Copy();

	e->SetLevel (Level());
	e->SetPosition (index);
	e->SetNode (this);
	// Move everything else over
	for (int i=NumEntries(); i>index; i--) {
		GiSTentry *e = (*this)[i-1];
		e->SetPosition (i);
		(*this)[i] = e;
	}
	// Stick the entry in
	(*this)[index] = e;
	// Bump up the count
	numEntries++;
}
Exemplo n.º 19
0
// handle underfull leaf nodes
int
GiST::CondenseTree (GiSTnode *leaf)
{
	GiSTlist<GiSTentry*> Q;
	int deleted = 0;

	// Must be condensing a leaf
	assert (leaf->IsLeaf());
	while (!leaf->Path().IsRoot()) {
		GiSTpath parent_path = leaf->Path();
		parent_path.MakeParent ();
		GiSTnode *P = ReadNode (parent_path);
		GiSTentry *En = P->SearchPtr(leaf->Path().Page());

		assert (En != NULL);
		// Handle under-full node
		if (leaf->IsUnderFull(*store)) {
		    if (!IsOrdered()) {
				TruePredicate truePredicate;
				GiSTlist<GiSTentry*> list = leaf->Search(truePredicate);

				while (!list.IsEmpty()) {
					GiSTentry *e = list.RemoveFront();
					Q.Append (e);
				}
				P->DeleteEntry(En->Position());
				WriteNode (P);
				deleted = 1;
				AdjustKeys (P, NULL);
			} else {
				// Try to borrow entries, else coalesce with a neighbor
				GiSTpage neighbor_page = P->SearchNeighbors(leaf->Path().Page());  // right and then left
				if (neighbor_page != 0) {
					GiSTpath neighbor_path = leaf->Path();
					neighbor_path.MakeSibling (neighbor_page);

					GiSTnode *neighbor;
					if (leaf->Sibling() == neighbor_page) {  // RIGHT sibling...
						neighbor = ReadNode (neighbor_path);
					} else {  // LEFT sibling
						neighbor = leaf;
						leaf = ReadNode (neighbor_path);
					}

					leaf->Coalesce(*neighbor);
					// If not overfull, coalesce, kill right node
					if (!leaf->IsOverFull(*store)) {
						leaf->SetSibling(neighbor->Sibling());
						WriteNode (leaf);

						// Delete the neighbor from parent
						GiSTentry *e = P->SearchPtr(neighbor->Path().Page());
						P->DeleteEntry(e->Position());
						WriteNode (P);
						delete e;
						store->Deallocate(neighbor->Path().Page());
						deleted = 1;
					} else {  // If overfull, split (same as borrowing)
						GiSTnode *node2 = leaf->PickSplit();
						node2->Path() = neighbor->Path();
						node2->SetSibling(neighbor->Sibling());
						WriteNode (leaf);
						WriteNode (node2);
						AdjustKeys (node2, &P);
						delete node2;
						deleted = 1;
					}
					delete neighbor;
				}
			}
		}
		// Adjust covering predicate
		if (!deleted) {
			AdjustKeys (leaf, &P);
		}
		parent_path = leaf->Path();
		parent_path.MakeParent ();
		delete leaf;
		// Propagate deletes
		if (!deleted) {
			break;
		}
		leaf = P;
	}
	// Re-insert orphaned entries
	while (!Q.IsEmpty()) {
		GiSTentry *e = Q.RemoveFront ();
		InsertHelper (*e, e->Level());
		delete e;
	}
	return (deleted);
}
Exemplo n.º 20
0
void 
GiST::Split(GiSTnode **node, const GiSTentry& entry)
{
	int went_left=0, new_root=0;

	if((*node)->Path().IsRoot()) {
		new_root=1;
		(*node)->Path().MakeChild(store->Allocate());
	}

	GiSTnode *node2=(*node)->PickSplit();
	node2->Path().MakeSibling(store->Allocate());
	GiSTentry *e=(*node)->SearchPtr(entry.Ptr());

	if(e!=NULL) {
		went_left=1;
		delete e;
	}
	node2->SetSibling((*node)->Sibling());
	(*node)->SetSibling(node2->Path().Page());
	WriteNode(*node);
	WriteNode(node2);

	GiSTentry *e1=(*node)->Union();
	GiSTentry *e2=node2->Union();

	e1->SetPtr((*node)->Path().Page());
	e2->SetPtr(node2->Path().Page());
	// Create new root if root is being split
	if (new_root) {
		GiSTnode *root=NewNode(this);

		root->SetLevel((*node)->Level()+1);
		root->InsertBefore(*e1, 0);
		root->InsertBefore(*e2, 1);
		root->Path().MakeRoot();
		WriteNode(root);
		delete root;
	}
	else {
		// Insert entry for N' in parent
		GiSTpath parent_path=(*node)->Path();
		parent_path.MakeParent();
		GiSTnode *parent=ReadNode(parent_path);
		// Find the entry for N in parent
		GiSTentry *e=parent->SearchPtr((*node)->Path().Page());
		assert(e!=NULL);
		// Insert the new entry right after it
		int pos=e->Position();

		parent->DeleteEntry(pos);
		parent->InsertBefore(*e1, pos);
		parent->InsertBefore(*e2, pos+1);
		delete e;
		if(!parent->IsOverFull(*store)) WriteNode(parent);
		else {
			Split(&parent, went_left? *e1: *e2);
			GiSTpage page=(*node)->Path().Page();

			(*node)->Path()=parent->Path();
			(*node)->Path().MakeChild(page);
			page=node2->Path().Page();
			node2->Path()=(*node)->Path();
			node2->Path().MakeSibling(page);
		}
		delete parent;
	}
	if(!went_left) {
		delete *node;
		*node=node2;
	}
	else delete node2;
	delete e1;
	delete e2;
}
Exemplo n.º 21
0
void MXTree::Split(GiSTnode **node, const GiSTentry& entry)
{
	double radii[2], dist, *dists = new double[(*node)->NumEntries()*2];
	int pageNums[2], cands[2];
	vector<vector<int>> vec(2);
	((MXTnode *)(*node))->TestPromotion(radii, &dist, pageNums, cands, dists, vec);
	if (Trade((*node)->Path().IsRoot(), radii, dist, pageNums, ((MXTnode *)(*node))->GetPageNum()+1, (*node)->NumEntries())) {
		// don't split now
		delete[] dists;
		GiSTpath oldPath = (*node)->Path();

		int startPage = ((*node)->Path().IsRoot() ? rootPage : (*node)->Path().Page());
		int pageNum = ((MXTnode *)(*node))->GetPageNum();
		((MXTfile *)store)->Deallocate(startPage, pageNum);
		startPage = ((MXTfile *)store)->Allocate(++pageNum);
		(*node)->Path().MakeSibling(startPage);
		rootPage = ((*node)->Path().IsRoot() ? startPage : rootPage);
		((MXTnode *)(*node))->SetPageNum(pageNum);
		WriteNode(*node);

		if (!(*node)->Path().IsRoot() && startPage != oldPath.Page()) {
			GiSTpath parentPath = oldPath;
			parentPath.MakeParent();
			GiSTnode *parentNode = ReadNode(parentPath);
			GiSTentry *e = parentNode->SearchPtr(oldPath.Page());
			assert(e != NULL);
			int pos = e->Position();
			e->SetPtr(startPage);
			parentNode->DeleteEntry(pos);
			parentNode->InsertBefore(*e, pos);
			WriteNode(parentNode);
			delete parentNode;
			delete e;
		}
	} else {
		// split now
		bool bLeft = false, bNewRoot = false;

		if ((*node)->Path().IsRoot()) {
			bNewRoot = true;
			(*node)->Path().MakeChild(rootPage);
			rootPage = store->Allocate();
		}

		int oldPageNum = ((MXTnode *)(*node))->GetPageNum();
		GiSTnode *node2 = ((MXTnode *)(*node))->PickSplit(cands, dists, vec);
		delete[] dists;
		int curPageNum = ((MXTnode *)(*node))->GetPageNum();
		assert(oldPageNum >= curPageNum);
		if (oldPageNum > curPageNum) {
			((MXTfile *)store)->Deallocate((*node)->Path().Page()+curPageNum, oldPageNum-curPageNum);
		}
		node2->Path().MakeSibling(((MXTfile *)store)->Allocate(((MXTnode *)node2)->GetPageNum()));

		WriteNode(*node);
		WriteNode(node2);
	
		GiSTentry *e = (*node)->SearchPtr(entry.Ptr());
		if (e != NULL) {
			bLeft = true;
			delete e;
		}
	
		GiSTentry *e1 = (*node)->Union();
		GiSTentry *e2 = node2->Union();
	
		e1->SetPtr((*node)->Path().Page());
		e2->SetPtr(node2->Path().Page());
		// Create new root if root is being split
		if (bNewRoot) {
			GiSTnode *root = NewNode(this);
			root->SetLevel((*node)->Level() + 1);
			root->InsertBefore(*e1, 0);
			root->InsertBefore(*e2, 1);
			root->Path().MakeRoot();
			WriteNode(root);
			delete root;
		} else {
			// Insert entry for N' in parent
			GiSTpath parentPath = (*node)->Path();
			parentPath.MakeParent();
			GiSTnode *parent = ReadNode(parentPath);
			// Find the entry for N in parent
			GiSTentry *e = parent->SearchPtr((*node)->Path().Page());
			assert(e != NULL);
			// Insert the new entry right after it
			int pos = e->Position();
			parent->DeleteEntry(pos);
			parent->InsertBefore(*e1, pos);
			parent->InsertBefore(*e2, pos+1);
			delete e;
			if (!parent->IsOverFull(*store)) {
				WriteNode(parent);
			} else {
				Split(&parent, bLeft? *e1: *e2);  // parent is the node which contains the entry inserted
				GiSTpage page = (*node)->Path().Page();
				(*node)->Path() = parent->Path();  // parent's path may change
				(*node)->Path().MakeChild(page);
				page = node2->Path().Page();
				node2->Path() = (*node)->Path();
				node2->Path().MakeSibling(page);
			}
			delete parent;
		}
		if (!bLeft) {
			delete *node;
			*node = node2;  // return it
		} else {
			delete node2;
		}
		delete e1;
		delete e2;
	}
}
Exemplo n.º 22
0
int PtrPredicate::Consistent (const GiSTentry& entry) const
{
	return !entry.IsLeaf() || entry.Ptr()==page;
}