Exemplo n.º 1
0
void cv::gpu::PyrLKOpticalFlow::sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, GpuMat& status, GpuMat* err)
{
    if (prevPts.empty())
    {
        nextPts.release();
        status.release();
        if (err) err->release();
        return;
    }

    dim3 block, patch;
    calcPatchSize(winSize, block, patch);

    CV_Assert(prevImg.channels() == 1 || prevImg.channels() == 3 || prevImg.channels() == 4);
    CV_Assert(prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type());
    CV_Assert(maxLevel >= 0);
    CV_Assert(winSize.width > 2 && winSize.height > 2);
    CV_Assert(patch.x > 0 && patch.x < 6 && patch.y > 0 && patch.y < 6);
    CV_Assert(prevPts.rows == 1 && prevPts.type() == CV_32FC2);

    if (useInitialFlow)
        CV_Assert(nextPts.size() == prevPts.size() && nextPts.type() == CV_32FC2);
    else
        ensureSizeIsEnough(1, prevPts.cols, prevPts.type(), nextPts);

    GpuMat temp1 = (useInitialFlow ? nextPts : prevPts).reshape(1);
    GpuMat temp2 = nextPts.reshape(1);
    multiply(temp1, Scalar::all(1.0 / (1 << maxLevel) / 2.0), temp2);

    ensureSizeIsEnough(1, prevPts.cols, CV_8UC1, status);
    status.setTo(Scalar::all(1));

    if (err)
        ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err);

    // build the image pyramids.

    prevPyr_.resize(maxLevel + 1);
    nextPyr_.resize(maxLevel + 1);

    int cn = prevImg.channels();

    if (cn == 1 || cn == 4)
    {
        prevImg.convertTo(prevPyr_[0], CV_32F);
        nextImg.convertTo(nextPyr_[0], CV_32F);
    }
    else
    {
        buf_.resize(1);

        cvtColor(prevImg, buf_[0], COLOR_BGR2BGRA);
        buf_[0].convertTo(prevPyr_[0], CV_32F);

        cvtColor(nextImg, buf_[0], COLOR_BGR2BGRA);
        buf_[0].convertTo(nextPyr_[0], CV_32F);
    }

    for (int level = 1; level <= maxLevel; ++level)
    {
        pyrDown(prevPyr_[level - 1], prevPyr_[level]);
        pyrDown(nextPyr_[level - 1], nextPyr_[level]);
    }

    pyrlk::loadConstants(make_int2(winSize.width, winSize.height), iters);

    for (int level = maxLevel; level >= 0; level--)
    {
        if (cn == 1)
        {
            pyrlk::sparse1(prevPyr_[level], nextPyr_[level],
                prevPts.ptr<float2>(), nextPts.ptr<float2>(), status.ptr(), level == 0 && err ? err->ptr<float>() : 0, prevPts.cols,
                level, block, patch);
        }
        else
        {
            pyrlk::sparse4(prevPyr_[level], nextPyr_[level],
                prevPts.ptr<float2>(), nextPts.ptr<float2>(), status.ptr(), level == 0 && err ? err->ptr<float>() : 0, prevPts.cols,
                level, block, patch);
        }
    }
}
Exemplo n.º 2
0
void cv::gpu::reduce(const GpuMat& src, GpuMat& dst, int dim, int reduceOp, int dtype, Stream& stream)
{
    using namespace ::cv::gpu::device::matrix_reductions;

    CV_Assert(src.depth() <= CV_32F && src.channels() <= 4 && dtype <= CV_32F);
    CV_Assert(dim == 0 || dim == 1);
    CV_Assert(reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG || reduceOp == CV_REDUCE_MAX || reduceOp == CV_REDUCE_MIN);

    if (dtype < 0)
        dtype = src.depth();

    dst.create(1, dim == 0 ? src.cols : src.rows, CV_MAKETYPE(dtype, src.channels()));

    if (dim == 0)
    {
        typedef void (*caller_t)(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);

        static const caller_t callers[6][6] =
        {
            {
                reduceRows_gpu<unsigned char, int, unsigned char>,
                0/*reduceRows_gpu<unsigned char, int, signed char>*/,
                0/*reduceRows_gpu<unsigned char, int, unsigned short>*/,
                0/*reduceRows_gpu<unsigned char, int, short>*/,
                reduceRows_gpu<unsigned char, int, int>,
                reduceRows_gpu<unsigned char, int, float>
            },
            {
                0/*reduceRows_gpu<signed char, int, unsigned char>*/,
                0/*reduceRows_gpu<signed char, int, signed char>*/,
                0/*reduceRows_gpu<signed char, int, unsigned short>*/,
                0/*reduceRows_gpu<signed char, int, short>*/,
                0/*reduceRows_gpu<signed char, int, int>*/,
                0/*reduceRows_gpu<signed char, int, float>*/
            },
            {
                0/*reduceRows_gpu<unsigned short, int, unsigned char>*/,
                0/*reduceRows_gpu<unsigned short, int, signed char>*/,
                reduceRows_gpu<unsigned short, int, unsigned short>,
                0/*reduceRows_gpu<unsigned short, int, short>*/,
                reduceRows_gpu<unsigned short, int, int>,
                reduceRows_gpu<unsigned short, int, float>
            },
            {
                0/*reduceRows_gpu<short, int, unsigned char>*/,
                0/*reduceRows_gpu<short, int, signed char>*/,
                0/*reduceRows_gpu<short, int, unsigned short>*/,
                reduceRows_gpu<short, int, short>,
                reduceRows_gpu<short, int, int>,
                reduceRows_gpu<short, int, float>
            },
            {
                0/*reduceRows_gpu<int, int, unsigned char>*/,
                0/*reduceRows_gpu<int, int, signed char>*/,
                0/*reduceRows_gpu<int, int, unsigned short>*/,
                0/*reduceRows_gpu<int, int, short>*/,
                reduceRows_gpu<int, int, int>,
                reduceRows_gpu<int, int, float>
            },
            {
                0/*reduceRows_gpu<float, float, unsigned char>*/,
                0/*reduceRows_gpu<float, float, signed char>*/,
                0/*reduceRows_gpu<float, float, unsigned short>*/,
                0/*reduceRows_gpu<float, float, short>*/,
                0/*reduceRows_gpu<float, float, int>*/,
                reduceRows_gpu<float, float, float>
            }
        };

        const caller_t func = callers[src.depth()][dst.depth()];

        if (!func)
            CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of input and output array formats");

        func(src.reshape(1), dst.reshape(1), reduceOp, StreamAccessor::getStream(stream));
    }
    else
    {
        typedef void (*caller_t)(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);

        static const caller_t callers[6][6] =
        {
            {
                reduceCols_gpu<unsigned char, int, unsigned char>,
                0/*reduceCols_gpu<unsigned char, int, signed char>*/,
                0/*reduceCols_gpu<unsigned char, int, unsigned short>*/,
                0/*reduceCols_gpu<unsigned char, int, short>*/,
                reduceCols_gpu<unsigned char, int, int>,
                reduceCols_gpu<unsigned char, int, float>
            },
            {
                0/*reduceCols_gpu<signed char, int, unsigned char>*/,
                0/*reduceCols_gpu<signed char, int, signed char>*/,
                0/*reduceCols_gpu<signed char, int, unsigned short>*/,
                0/*reduceCols_gpu<signed char, int, short>*/,
                0/*reduceCols_gpu<signed char, int, int>*/,
                0/*reduceCols_gpu<signed char, int, float>*/
            },
            {
                0/*reduceCols_gpu<unsigned short, int, unsigned char>*/,
                0/*reduceCols_gpu<unsigned short, int, signed char>*/,
                reduceCols_gpu<unsigned short, int, unsigned short>,
                0/*reduceCols_gpu<unsigned short, int, short>*/,
                reduceCols_gpu<unsigned short, int, int>,
                reduceCols_gpu<unsigned short, int, float>
            },
            {
                0/*reduceCols_gpu<short, int, unsigned char>*/,
                0/*reduceCols_gpu<short, int, signed char>*/,
                0/*reduceCols_gpu<short, int, unsigned short>*/,
                reduceCols_gpu<short, int, short>,
                reduceCols_gpu<short, int, int>,
                reduceCols_gpu<short, int, float>
            },
            {
                0/*reduceCols_gpu<int, int, unsigned char>*/,
                0/*reduceCols_gpu<int, int, signed char>*/,
                0/*reduceCols_gpu<int, int, unsigned short>*/,
                0/*reduceCols_gpu<int, int, short>*/,
                reduceCols_gpu<int, int, int>,
                reduceCols_gpu<int, int, float>
            },
            {
                0/*reduceCols_gpu<float, unsigned char>*/,
                0/*reduceCols_gpu<float, signed char>*/,
                0/*reduceCols_gpu<float, unsigned short>*/,
                0/*reduceCols_gpu<float, short>*/,
                0/*reduceCols_gpu<float, int>*/,
                reduceCols_gpu<float, float, float>
            }
        };

        const caller_t func = callers[src.depth()][dst.depth()];

        if (!func)
            CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of input and output array formats");

        func(src, src.channels(), dst, reduceOp, StreamAccessor::getStream(stream));
    }
}
void cv::gpu::split(const GpuMat& src, vector<GpuMat>& dst, Stream& stream) 
{
    dst.resize(src.channels());
    if(src.channels() > 0)
        split_merge::split(src, &dst[0], StreamAccessor::getStream(stream));
}
Exemplo n.º 4
0
void cv::gpu::warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags, int borderMode, Scalar borderValue, Stream& s)
{
    CV_Assert(M.rows == 3 && M.cols == 3);

    int interpolation = flags & INTER_MAX;

    CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
    CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);
    CV_Assert(borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP);

    Size wholeSize;
    Point ofs;
    src.locateROI(wholeSize, ofs);

    static const bool useNppTab[6][4][3] =
    {
        {
            {false, false, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        }
    };

    bool useNpp = borderMode == BORDER_CONSTANT;
    useNpp = useNpp && useNppTab[src.depth()][src.channels() - 1][interpolation];
    #ifdef linux
        // NPP bug on float data
        useNpp = useNpp && src.depth() != CV_32F;
    #endif

    if (useNpp)
    {
        typedef void (*func_t)(const cv::gpu::GpuMat& src, cv::Size wholeSize, cv::Point ofs, cv::gpu::GpuMat& dst, double coeffs[][3], cv::Size dsize, int flags, cudaStream_t stream);

        static const func_t funcs[2][6][4] =
        {
            {
                {NppWarp<CV_8U, nppiWarpPerspective_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspective_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspective_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpPerspective_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspective_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspective_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpPerspective_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspective_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspective_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpPerspective_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspective_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspective_32f_C4R>::call}
            },
            {
                {NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C4R>::call}
            }
        };

        double coeffs[3][3];
        Mat coeffsMat(3, 3, CV_64F, (void*)coeffs);
        M.convertTo(coeffsMat, coeffsMat.type());

        const func_t func = funcs[(flags & WARP_INVERSE_MAP) != 0][src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        func(src, wholeSize, ofs, dst, coeffs, dsize, interpolation, StreamAccessor::getStream(s));
    }
    else
    {
        using namespace cv::gpu::device::imgproc;

        typedef void (*func_t)(DevMem2Db src, DevMem2Db srcWhole, int xoff, int yoff, float coeffs[2 * 3], DevMem2Db dst, int interpolation,
            int borderMode, const float* borderValue, cudaStream_t stream, int cc);

        static const func_t funcs[6][4] =
        {
            {warpPerspective_gpu<uchar>      , 0 /*warpPerspective_gpu<uchar2>*/ , warpPerspective_gpu<uchar3>     , warpPerspective_gpu<uchar4>     },
            {0 /*warpPerspective_gpu<schar>*/, 0 /*warpPerspective_gpu<char2>*/  , 0 /*warpPerspective_gpu<char3>*/, 0 /*warpPerspective_gpu<char4>*/},
            {warpPerspective_gpu<ushort>     , 0 /*warpPerspective_gpu<ushort2>*/, warpPerspective_gpu<ushort3>    , warpPerspective_gpu<ushort4>    },
            {warpPerspective_gpu<short>      , 0 /*warpPerspective_gpu<short2>*/ , warpPerspective_gpu<short3>     , warpPerspective_gpu<short4>     },
            {0 /*warpPerspective_gpu<int>*/  , 0 /*warpPerspective_gpu<int2>*/   , 0 /*warpPerspective_gpu<int3>*/ , 0 /*warpPerspective_gpu<int4>*/ },
            {warpPerspective_gpu<float>      , 0 /*warpPerspective_gpu<float2>*/ , warpPerspective_gpu<float3>     , warpPerspective_gpu<float4>     }
        };

        const func_t func = funcs[src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        int gpuBorderType;
        CV_Assert(tryConvertToGpuBorderType(borderMode, gpuBorderType));

        dst.create(dsize, src.type());

        float coeffs[3 * 3];
        Mat coeffsMat(3, 3, CV_32F, (void*)coeffs);

        if (flags & WARP_INVERSE_MAP)
            M.convertTo(coeffsMat, coeffsMat.type());
        else
        {
            cv::Mat iM;
            invert(M, iM);
            iM.convertTo(coeffsMat, coeffsMat.type());
        }

        Scalar_<float> borderValueFloat;
        borderValueFloat = borderValue;

        DeviceInfo info;
        int cc = info.majorVersion() * 10 + info.minorVersion();

        func(src, DevMem2Db(wholeSize.height, wholeSize.width, src.datastart, src.step), ofs.x, ofs.y, coeffs,
            dst, interpolation, gpuBorderType, borderValueFloat.val, StreamAccessor::getStream(s), cc);
    }
}
Exemplo n.º 5
0
void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc,
                        const GpuMat& mask, GpuMat& valBuf, GpuMat& locBuf)
{
    using namespace ::cv::gpu::device::matrix_reductions::minmaxloc;

    typedef void (*Caller)(const DevMem2Db, double*, double*, int[2], int[2], PtrStepb, PtrStepb);
    typedef void (*MaskedCaller)(const DevMem2Db, const PtrStepb, double*, double*, int[2], int[2], PtrStepb, PtrStepb);

    static Caller multipass_callers[] =
    {
        minMaxLocMultipassCaller<unsigned char>, minMaxLocMultipassCaller<char>,
        minMaxLocMultipassCaller<unsigned short>, minMaxLocMultipassCaller<short>,
        minMaxLocMultipassCaller<int>, minMaxLocMultipassCaller<float>, 0
    };

    static Caller singlepass_callers[] =
    {
        minMaxLocCaller<unsigned char>, minMaxLocCaller<char>,
        minMaxLocCaller<unsigned short>, minMaxLocCaller<short>,
        minMaxLocCaller<int>, minMaxLocCaller<float>, minMaxLocCaller<double>
    };

    static MaskedCaller masked_multipass_callers[] =
    {
        minMaxLocMaskMultipassCaller<unsigned char>, minMaxLocMaskMultipassCaller<char>,
        minMaxLocMaskMultipassCaller<unsigned short>, minMaxLocMaskMultipassCaller<short>,
        minMaxLocMaskMultipassCaller<int>, minMaxLocMaskMultipassCaller<float>, 0
    };

    static MaskedCaller masked_singlepass_callers[] =
    {
        minMaxLocMaskCaller<unsigned char>, minMaxLocMaskCaller<char>,
        minMaxLocMaskCaller<unsigned short>, minMaxLocMaskCaller<short>,
        minMaxLocMaskCaller<int>, minMaxLocMaskCaller<float>, minMaxLocMaskCaller<double>
    };

    CV_Assert(src.depth() <= CV_64F);
    CV_Assert(src.channels() == 1);
    CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size()));

    if (src.depth() == CV_64F)
    {
        if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
            CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
    }

    double minVal_;
    if (!minVal) minVal = &minVal_;
    double maxVal_;
    if (!maxVal) maxVal = &maxVal_;
    int minLoc_[2];
    int maxLoc_[2];

    Size valbuf_size, locbuf_size;
    getBufSizeRequired(src.cols, src.rows, static_cast<int>(src.elemSize()), valbuf_size.width,
                       valbuf_size.height, locbuf_size.width, locbuf_size.height);
    ensureSizeIsEnough(valbuf_size, CV_8U, valBuf);
    ensureSizeIsEnough(locbuf_size, CV_8U, locBuf);

    if (mask.empty())
    {
        Caller* callers = multipass_callers;
        if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS))
            callers = singlepass_callers;

        Caller caller = callers[src.type()];
        CV_Assert(caller != 0);
        caller(src, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf);
    }
    else
    {
        MaskedCaller* callers = masked_multipass_callers;
        if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS))
            callers = masked_singlepass_callers;

        MaskedCaller caller = callers[src.type()];
        CV_Assert(caller != 0);
        caller(src, mask, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf);
    }

    if (minLoc) {
        minLoc->x = minLoc_[0];
        minLoc->y = minLoc_[1];
    }
    if (maxLoc) {
        maxLoc->x = maxLoc_[0];
        maxLoc->y = maxLoc_[1];
    }
}
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, 
    float maxDistance, const vector<GpuMat>& masks, Stream& stream)
{
    if (query.empty() || empty())
        return;

    using namespace ::cv::gpu::device::bf_radius_match;

    typedef void (*caller_t)(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, 
                             const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, 
                             int cc, cudaStream_t stream);

    static const caller_t callers[3][6] =
    {
        {
            matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/, 
            matchL1_gpu<unsigned short>, matchL1_gpu<short>, 
            matchL1_gpu<int>, matchL1_gpu<float>
        },
        {
            0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/, 
            0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/, 
            0/*matchL2_gpu<int>*/, matchL2_gpu<float>
        },
        {
            matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/, 
            matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/, 
            matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
        }
    };

    DeviceInfo info;
    int cc = info.majorVersion() * 10 + info.minorVersion();

    CV_Assert(TargetArchs::builtWith(GLOBAL_ATOMICS) && info.supports(GLOBAL_ATOMICS));

    const int nQuery = query.rows;

    CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
    CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size() && trainIdx.size() == imgIdx.size()));

    ensureSizeIsEnough(1, nQuery, CV_32SC1, nMatches);
    if (trainIdx.empty())
    {
        ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32SC1, trainIdx);
        ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32SC1, imgIdx);
        ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32FC1, distance);
    }
    
    if (stream)
        stream.enqueueMemSet(nMatches, Scalar::all(0));
    else
        nMatches.setTo(Scalar::all(0));

    caller_t func = callers[distType][query.depth()];
    CV_Assert(func != 0);

    vector<DevMem2Db> trains_(trainDescCollection.begin(), trainDescCollection.end());
    vector<DevMem2Db> masks_(masks.begin(), masks.end());

    func(query, &trains_[0], static_cast<int>(trains_.size()), maxDistance, masks_.size() == 0 ? 0 : &masks_[0], 
        trainIdx, imgIdx, distance, nMatches, cc, StreamAccessor::getStream(stream));
}
Exemplo n.º 7
0
void cv::gpu::Stream::enqueueMemSet(const GpuMat& src, Scalar val, const GpuMat& mask)
{
    matrix_operations::set_to_with_mask(src, src.depth(), val.val, mask, src.channels(), impl->stream);
}
Exemplo n.º 8
0
void cv::gpu::BFMatcher_GPU::radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches,
    float maxDistance, const vector<GpuMat>& masks, Stream& stream)
{
    if (query.empty() || empty())
        return;

    using namespace cv::gpu::device::bf_radius_match;

    typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb* trains, int n, float maxDistance, const PtrStepSzb* masks,
                             const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, const PtrStepSz<unsigned int>& nMatches,
                             int cc, cudaStream_t stream);

    static const caller_t callersL1[] =
    {
        matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/,
        matchL1_gpu<unsigned short>, matchL1_gpu<short>,
        matchL1_gpu<int>, matchL1_gpu<float>
    };
    static const caller_t callersL2[] =
    {
        0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/,
        0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/,
        0/*matchL2_gpu<int>*/, matchL2_gpu<float>
    };
    static const caller_t callersHamming[] =
    {
        matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/,
        matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/,
        matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
    };

    DeviceInfo info;
    int cc = info.majorVersion() * 10 + info.minorVersion();

    if (!TargetArchs::builtWith(GLOBAL_ATOMICS) || !DeviceInfo().supports(GLOBAL_ATOMICS))
        CV_Error(CV_StsNotImplemented, "The device doesn't support global atomics");

    const int nQuery = query.rows;

    CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
    CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size() && trainIdx.size() == imgIdx.size()));
    CV_Assert(norm == NORM_L1 || norm == NORM_L2 || norm == NORM_HAMMING);

    const caller_t* callers = norm == NORM_L1 ? callersL1 : norm == NORM_L2 ? callersL2 : callersHamming;

    ensureSizeIsEnough(1, nQuery, CV_32SC1, nMatches);
    if (trainIdx.empty())
    {
        ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32SC1, trainIdx);
        ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32SC1, imgIdx);
        ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32FC1, distance);
    }

    if (stream)
        stream.enqueueMemSet(nMatches, Scalar::all(0));
    else
        nMatches.setTo(Scalar::all(0));

    caller_t func = callers[query.depth()];
    CV_Assert(func != 0);

    vector<PtrStepSzb> trains_(trainDescCollection.begin(), trainDescCollection.end());
    vector<PtrStepSzb> masks_(masks.begin(), masks.end());

    func(query, &trains_[0], static_cast<int>(trains_.size()), maxDistance, masks_.size() == 0 ? 0 : &masks_[0],
        trainIdx, imgIdx, distance, nMatches, cc, StreamAccessor::getStream(stream));
}
Exemplo n.º 9
0
void cv::cuda::dft(InputArray _src, OutputArray _dst, Size dft_size, int flags, Stream& stream)
{
#ifndef HAVE_CUFFT
    (void) _src;
    (void) _dst;
    (void) dft_size;
    (void) flags;
    (void) stream;
    throw_no_cuda();
#else
    GpuMat src = _src.getGpuMat();

    CV_Assert( src.type() == CV_32FC1 || src.type() == CV_32FC2 );

    // We don't support unpacked output (in the case of real input)
    CV_Assert( !(flags & DFT_COMPLEX_OUTPUT) );

    const bool is_1d_input       = (dft_size.height == 1) || (dft_size.width == 1);
    const bool is_row_dft        = (flags & DFT_ROWS) != 0;
    const bool is_scaled_dft     = (flags & DFT_SCALE) != 0;
    const bool is_inverse        = (flags & DFT_INVERSE) != 0;
    const bool is_complex_input  = src.channels() == 2;
    const bool is_complex_output = !(flags & DFT_REAL_OUTPUT);

    // We don't support real-to-real transform
    CV_Assert( is_complex_input || is_complex_output );

    GpuMat src_cont = src;

    // Make sure here we work with the continuous input,
    // as CUFFT can't handle gaps
    createContinuous(src.rows, src.cols, src.type(), src_cont);
    if (src_cont.data != src.data)
        src.copyTo(src_cont, stream);

    Size dft_size_opt = dft_size;
    if (is_1d_input && !is_row_dft)
    {
        // If the source matrix is single column handle it as single row
        dft_size_opt.width = std::max(dft_size.width, dft_size.height);
        dft_size_opt.height = std::min(dft_size.width, dft_size.height);
    }

    CV_Assert( dft_size_opt.width > 1 );

    cufftType dft_type = CUFFT_R2C;
    if (is_complex_input)
        dft_type = is_complex_output ? CUFFT_C2C : CUFFT_C2R;

    cufftHandle plan;
    if (is_1d_input || is_row_dft)
        cufftSafeCall( cufftPlan1d(&plan, dft_size_opt.width, dft_type, dft_size_opt.height) );
    else
        cufftSafeCall( cufftPlan2d(&plan, dft_size_opt.height, dft_size_opt.width, dft_type) );

    cufftSafeCall( cufftSetStream(plan, StreamAccessor::getStream(stream)) );

    if (is_complex_input)
    {
        if (is_complex_output)
        {
            createContinuous(dft_size, CV_32FC2, _dst);
            GpuMat dst = _dst.getGpuMat();

            cufftSafeCall(cufftExecC2C(
                              plan, src_cont.ptr<cufftComplex>(), dst.ptr<cufftComplex>(),
                              is_inverse ? CUFFT_INVERSE : CUFFT_FORWARD));
        }
        else
        {
            createContinuous(dft_size, CV_32F, _dst);
            GpuMat dst = _dst.getGpuMat();

            cufftSafeCall(cufftExecC2R(
                              plan, src_cont.ptr<cufftComplex>(), dst.ptr<cufftReal>()));
        }
    }
    else
    {
        // We could swap dft_size for efficiency. Here we must reflect it
        if (dft_size == dft_size_opt)
            createContinuous(Size(dft_size.width / 2 + 1, dft_size.height), CV_32FC2, _dst);
        else
            createContinuous(Size(dft_size.width, dft_size.height / 2 + 1), CV_32FC2, _dst);

        GpuMat dst = _dst.getGpuMat();

        cufftSafeCall(cufftExecR2C(
                          plan, src_cont.ptr<cufftReal>(), dst.ptr<cufftComplex>()));
    }

    cufftSafeCall( cufftDestroy(plan) );

    if (is_scaled_dft)
        cuda::multiply(_dst, Scalar::all(1. / dft_size.area()), _dst, 1, -1, stream);

#endif
}
Exemplo n.º 10
0
void cv::gpu::FarnebackOpticalFlow::operator ()(
        const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s)
{
    CV_Assert(frame0.channels() == 1 && frame1.channels() == 1);
    CV_Assert(frame0.size() == frame1.size());
    CV_Assert(polyN == 5 || polyN == 7);
    CV_Assert(!fastPyramids || std::abs(pyrScale - 0.5) < 1e-6);

    Stream streams[5];
    if (S(s))
        streams[0] = s;

    Size size = frame0.size();
    GpuMat prevFlowX, prevFlowY, curFlowX, curFlowY;

    flowx.create(size, CV_32F);
    flowy.create(size, CV_32F);
    GpuMat flowx0 = flowx;
    GpuMat flowy0 = flowy;

    // Crop unnecessary levels
    double scale = 1;
    int numLevelsCropped = 0;
    for (; numLevelsCropped < numLevels; numLevelsCropped++)
    {
        scale *= pyrScale;
        if (size.width*scale < MIN_SIZE || size.height*scale < MIN_SIZE)
            break;
    }

    streams[0].enqueueConvert(frame0, frames_[0], CV_32F);
    streams[1].enqueueConvert(frame1, frames_[1], CV_32F);

    if (fastPyramids)
    {
        // Build Gaussian pyramids using pyrDown()
        pyramid0_.resize(numLevelsCropped + 1);
        pyramid1_.resize(numLevelsCropped + 1);
        pyramid0_[0] = frames_[0];
        pyramid1_[0] = frames_[1];
        for (int i = 1; i <= numLevelsCropped; ++i)
        {
            pyrDown(pyramid0_[i - 1], pyramid0_[i], streams[0]);
            pyrDown(pyramid1_[i - 1], pyramid1_[i], streams[1]);
        }
    }

    setPolynomialExpansionConsts(polyN, polySigma);
    device::optflow_farneback::setUpdateMatricesConsts();

    for (int k = numLevelsCropped; k >= 0; k--)
    {
        streams[0].waitForCompletion();

        scale = 1;
        for (int i = 0; i < k; i++)
            scale *= pyrScale;

        double sigma = (1./scale - 1) * 0.5;
        int smoothSize = cvRound(sigma*5) | 1;
        smoothSize = std::max(smoothSize, 3);

        int width = cvRound(size.width*scale);
        int height = cvRound(size.height*scale);

        if (fastPyramids)
        {
            width = pyramid0_[k].cols;
            height = pyramid0_[k].rows;
        }

        if (k > 0)
        {
            curFlowX.create(height, width, CV_32F);
            curFlowY.create(height, width, CV_32F);
        }
        else
        {
            curFlowX = flowx0;
            curFlowY = flowy0;
        }

        if (!prevFlowX.data)
        {
            if (flags & OPTFLOW_USE_INITIAL_FLOW)
            {
#if ENABLE_GPU_RESIZE
                resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
                resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
                streams[0].enqueueConvert(curFlowX, curFlowX, curFlowX.depth(), scale);
                streams[1].enqueueConvert(curFlowY, curFlowY, curFlowY.depth(), scale);
#else
                Mat tmp1, tmp2;
                flowx0.download(tmp1);
                resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_AREA);
                tmp2 *= scale;
                curFlowX.upload(tmp2);
                flowy0.download(tmp1);
                resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_AREA);
                tmp2 *= scale;
                curFlowY.upload(tmp2);
#endif
            }
            else
            {
                streams[0].enqueueMemSet(curFlowX, 0);
                streams[1].enqueueMemSet(curFlowY, 0);
            }
        }
        else
        {
#if ENABLE_GPU_RESIZE
            resize(prevFlowX, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
            resize(prevFlowY, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
            streams[0].enqueueConvert(curFlowX, curFlowX, curFlowX.depth(), 1./pyrScale);
            streams[1].enqueueConvert(curFlowY, curFlowY, curFlowY.depth(), 1./pyrScale);
#else
            Mat tmp1, tmp2;
            prevFlowX.download(tmp1);
            resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_LINEAR);
            tmp2 *= 1./pyrScale;
            curFlowX.upload(tmp2);
            prevFlowY.download(tmp1);
            resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_LINEAR);
            tmp2 *= 1./pyrScale;
            curFlowY.upload(tmp2);
#endif
        }

        GpuMat M = allocMatFromBuf(5*height, width, CV_32F, M_);
        GpuMat bufM = allocMatFromBuf(5*height, width, CV_32F, bufM_);
        GpuMat R[2] =
        {
            allocMatFromBuf(5*height, width, CV_32F, R_[0]),
            allocMatFromBuf(5*height, width, CV_32F, R_[1])
        };

        if (fastPyramids)
        {
            device::optflow_farneback::polynomialExpansionGpu(pyramid0_[k], polyN, R[0], S(streams[0]));
            device::optflow_farneback::polynomialExpansionGpu(pyramid1_[k], polyN, R[1], S(streams[1]));
        }
        else
        {
            GpuMat blurredFrame[2] =
            {
                allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[0]),
                allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[1])
            };
            GpuMat pyrLevel[2] =
            {
                allocMatFromBuf(height, width, CV_32F, pyrLevel_[0]),
                allocMatFromBuf(height, width, CV_32F, pyrLevel_[1])
            };

            Mat g = getGaussianKernel(smoothSize, sigma, CV_32F);
            device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(smoothSize/2), smoothSize/2);

            for (int i = 0; i < 2; i++)
            {
                device::optflow_farneback::gaussianBlurGpu(
                        frames_[i], smoothSize/2, blurredFrame[i], BORDER_REFLECT101_GPU, S(streams[i]));
#if ENABLE_GPU_RESIZE
                resize(blurredFrame[i], pyrLevel[i], Size(width, height), INTER_LINEAR, streams[i]);
#else
                Mat tmp1, tmp2;
                tmp[i].download(tmp1);
                resize(tmp1, tmp2, Size(width, height), INTER_LINEAR);
                I[i].upload(tmp2);
#endif
                device::optflow_farneback::polynomialExpansionGpu(pyrLevel[i], polyN, R[i], S(streams[i]));
            }
        }

        streams[1].waitForCompletion();
        device::optflow_farneback::updateMatricesGpu(curFlowX, curFlowY, R[0], R[1], M, S(streams[0]));

        if (flags & OPTFLOW_FARNEBACK_GAUSSIAN)
        {
            Mat g = getGaussianKernel(winSize, winSize/2*0.3f, CV_32F);
            device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(winSize/2), winSize/2);
        }
        for (int i = 0; i < numIters; i++)
        {
            if (flags & OPTFLOW_FARNEBACK_GAUSSIAN)
                updateFlow_gaussianBlur(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams);
            else
                updateFlow_boxFilter(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams);
        }

        prevFlowX = curFlowX;
        prevFlowY = curFlowY;
    }

    flowx = curFlowX;
    flowy = curFlowY;

    if (!S(s))
        streams[0].waitForCompletion();
}
Exemplo n.º 11
0
static void csbp_operator(StereoConstantSpaceBP& rthis, GpuMat& mbuf, GpuMat& temp, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
{
    CV_DbgAssert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels && 0 < rthis.nr_plane
        && left.rows == right.rows && left.cols == right.cols && left.type() == right.type());

    CV_Assert(rthis.levels <= 8 && (left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4));

    const Scalar zero = Scalar::all(0);

    cudaStream_t cudaStream = StreamAccessor::getStream(stream);

    ////////////////////////////////////////////////////////////////////////////////////////////
    // Init

    int rows = left.rows;
    int cols = left.cols;

    rthis.levels = std::min(rthis.levels, int(log((double)rthis.ndisp) / log(2.0)));
    int levels = rthis.levels;

    // compute sizes
    AutoBuffer<int> buf(levels * 3);
    int* cols_pyr = buf;
    int* rows_pyr = cols_pyr + levels;
    int* nr_plane_pyr = rows_pyr + levels;

    cols_pyr[0]     = cols;
    rows_pyr[0]     = rows;
    nr_plane_pyr[0] = rthis.nr_plane;

    for (int i = 1; i < levels; i++)
    {
        cols_pyr[i]     = cols_pyr[i-1] / 2;
        rows_pyr[i]     = rows_pyr[i-1] / 2;
        nr_plane_pyr[i] = nr_plane_pyr[i-1] * 2;
    }


    GpuMat u[2], d[2], l[2], r[2], disp_selected_pyr[2], data_cost, data_cost_selected;


    //allocate buffers
    int buffers_count = 10; // (up + down + left + right + disp_selected_pyr) * 2
    buffers_count += 2; //  data_cost has twice more rows than other buffers, what's why +2, not +1;
    buffers_count += 1; //  data_cost_selected
    mbuf.create(rows * rthis.nr_plane * buffers_count, cols, DataType<T>::type);

    data_cost          = mbuf.rowRange(0, rows * rthis.nr_plane * 2);
    data_cost_selected = mbuf.rowRange(data_cost.rows, data_cost.rows + rows * rthis.nr_plane);

    for(int k = 0; k < 2; ++k) // in/out
    {
        GpuMat sub1 = mbuf.rowRange(data_cost.rows + data_cost_selected.rows, mbuf.rows);
        GpuMat sub2 = sub1.rowRange((k+0)*sub1.rows/2, (k+1)*sub1.rows/2);

        GpuMat *buf_ptrs[] = { &u[k], &d[k], &l[k], &r[k], &disp_selected_pyr[k] };
        for(int _r = 0; _r < 5; ++_r)
        {
            *buf_ptrs[_r] = sub2.rowRange(_r * sub2.rows/5, (_r+1) * sub2.rows/5);
            CV_DbgAssert(buf_ptrs[_r]->cols == cols && buf_ptrs[_r]->rows == rows * rthis.nr_plane);
        }
    };

    size_t elem_step = mbuf.step / sizeof(T);

    Size temp_size = data_cost.size();
    if ((size_t)temp_size.area() < elem_step * rows_pyr[levels - 1] * rthis.ndisp)
        temp_size = Size(static_cast<int>(elem_step), rows_pyr[levels - 1] * rthis.ndisp);

    temp.create(temp_size, DataType<T>::type);

    ////////////////////////////////////////////////////////////////////////////
    // Compute

    load_constants(rthis.ndisp, rthis.max_data_term, rthis.data_weight, rthis.max_disc_term, rthis.disc_single_jump, rthis.min_disp_th, left, right, temp);

    if (stream)
    {
        stream.enqueueMemSet(l[0], zero);
        stream.enqueueMemSet(d[0], zero);
        stream.enqueueMemSet(r[0], zero);
        stream.enqueueMemSet(u[0], zero);

        stream.enqueueMemSet(l[1], zero);
        stream.enqueueMemSet(d[1], zero);
        stream.enqueueMemSet(r[1], zero);
        stream.enqueueMemSet(u[1], zero);

        stream.enqueueMemSet(data_cost, zero);
        stream.enqueueMemSet(data_cost_selected, zero);
    }
    else
    {
        l[0].setTo(zero);
        d[0].setTo(zero);
        r[0].setTo(zero);
        u[0].setTo(zero);

        l[1].setTo(zero);
        d[1].setTo(zero);
        r[1].setTo(zero);
        u[1].setTo(zero);

        data_cost.setTo(zero);
        data_cost_selected.setTo(zero);
    }

    int cur_idx = 0;

    for (int i = levels - 1; i >= 0; i--)
    {
        if (i == levels - 1)
        {
            init_data_cost(left.rows, left.cols, disp_selected_pyr[cur_idx].ptr<T>(), data_cost_selected.ptr<T>(),
                elem_step, rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], rthis.ndisp, left.channels(), rthis.use_local_init_data_cost, cudaStream);
        }
        else
        {
            compute_data_cost(disp_selected_pyr[cur_idx].ptr<T>(), data_cost.ptr<T>(), elem_step,
                left.rows, left.cols, rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), cudaStream);

            int new_idx = (cur_idx + 1) & 1;

            init_message(u[new_idx].ptr<T>(), d[new_idx].ptr<T>(), l[new_idx].ptr<T>(), r[new_idx].ptr<T>(),
                         u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(),
                         disp_selected_pyr[new_idx].ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(),
                         data_cost_selected.ptr<T>(), data_cost.ptr<T>(), elem_step, rows_pyr[i],
                         cols_pyr[i], nr_plane_pyr[i], rows_pyr[i+1], cols_pyr[i+1], nr_plane_pyr[i+1], cudaStream);

            cur_idx = new_idx;
        }

        calc_all_iterations(u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(),
                            data_cost_selected.ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(), elem_step,
                            rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], rthis.iters, cudaStream);
    }

    if (disp.empty())
        disp.create(rows, cols, CV_16S);

    out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out));

    if (stream)
        stream.enqueueMemSet(out, zero);
    else
        out.setTo(zero);

    compute_disp(u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(),
                 data_cost_selected.ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(), elem_step, out, nr_plane_pyr[0], cudaStream);

    if (disp.type() != CV_16S)
    {
        if (stream)
            stream.enqueueConvert(out, disp, disp.type());
        else
            out.convertTo(disp, disp.type());
    }
}
Exemplo n.º 12
0
void cv::gpu::resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx, double fy, int interpolation, Stream& s)
{
    CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
    CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR
            || interpolation == INTER_CUBIC || interpolation == INTER_AREA);
    CV_Assert(!(dsize == Size()) || (fx > 0 && fy > 0));

    if (dsize == Size())
        dsize = Size(saturate_cast<int>(src.cols * fx), saturate_cast<int>(src.rows * fy));
    else
    {
        fx = static_cast<double>(dsize.width) / src.cols;
        fy = static_cast<double>(dsize.height) / src.rows;
    }
    if (dsize != dst.size())
        dst.create(dsize, src.type());

    if (dsize == src.size())
    {
        if (s)
            s.enqueueCopy(src, dst);
        else
            src.copyTo(dst);
        return;
    }

    cudaStream_t stream = StreamAccessor::getStream(s);

    Size wholeSize;
    Point ofs;
    src.locateROI(wholeSize, ofs);

    bool useNpp = (src.type() == CV_8UC1 || src.type() == CV_8UC4);
    useNpp = useNpp && (interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || (src.type() == CV_8UC4 && interpolation != INTER_AREA));

    if (useNpp)
    {
        typedef NppStatus (*func_t)(const Npp8u * pSrc, NppiSize oSrcSize, int nSrcStep, NppiRect oSrcROI, Npp8u * pDst, int nDstStep, NppiSize dstROISize,
                                    double xFactor, double yFactor, int eInterpolation);

        const func_t funcs[4] = { nppiResize_8u_C1R, 0, 0, nppiResize_8u_C4R };

        static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC, 0, NPPI_INTER_LANCZOS};

        NppiSize srcsz;
        srcsz.width  = wholeSize.width;
        srcsz.height = wholeSize.height;

        NppiRect srcrect;
        srcrect.x = ofs.x;
        srcrect.y = ofs.y;
        srcrect.width  = src.cols;
        srcrect.height = src.rows;

        NppiSize dstsz;
        dstsz.width  = dst.cols;
        dstsz.height = dst.rows;

        NppStreamHandler h(stream);

        nppSafeCall( funcs[src.channels() - 1](src.datastart, srcsz, static_cast<int>(src.step), srcrect,
                dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, fx, fy, npp_inter[interpolation]) );

        if (stream == 0)
            cudaSafeCall( cudaDeviceSynchronize() );
    }
    else
    {
        using namespace ::cv::gpu::device::imgproc;

        typedef void (*func_t)(DevMem2Db src, DevMem2Db srcWhole, int xoff, int yoff, float fx, float fy, DevMem2Db dst, int interpolation, cudaStream_t stream);

        static const func_t funcs[6][4] =
        {
            {resize_gpu<uchar>      , 0 /*resize_gpu<uchar2>*/ , resize_gpu<uchar3>     , resize_gpu<uchar4>     },
            {0 /*resize_gpu<schar>*/, 0 /*resize_gpu<char2>*/  , 0 /*resize_gpu<char3>*/, 0 /*resize_gpu<char4>*/},
            {resize_gpu<ushort>     , 0 /*resize_gpu<ushort2>*/, resize_gpu<ushort3>    , resize_gpu<ushort4>    },
            {resize_gpu<short>      , 0 /*resize_gpu<short2>*/ , resize_gpu<short3>     , resize_gpu<short4>     },
            {0 /*resize_gpu<int>*/  , 0 /*resize_gpu<int2>*/   , 0 /*resize_gpu<int3>*/ , 0 /*resize_gpu<int4>*/ },
            {resize_gpu<float>      , 0 /*resize_gpu<float2>*/ , resize_gpu<float3>     , resize_gpu<float4>     }
        };

        const func_t func = funcs[src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        func(src, DevMem2Db(wholeSize.height, wholeSize.width, src.datastart, src.step), ofs.x, ofs.y,
            static_cast<float>(1.0 / fx), static_cast<float>(1.0 / fy), dst, interpolation, stream);
    }
}
void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask, GpuMat& buf)
{
    using namespace mathfunc::minmax;

    typedef void (*Caller)(const DevMem2D, double*, double*, PtrStep);
    typedef void (*MaskedCaller)(const DevMem2D, const PtrStep, double*, double*, PtrStep);

    static Caller multipass_callers[7] = { 
            minMaxMultipassCaller<unsigned char>, minMaxMultipassCaller<char>, 
            minMaxMultipassCaller<unsigned short>, minMaxMultipassCaller<short>, 
            minMaxMultipassCaller<int>, minMaxMultipassCaller<float>, 0 };

    static Caller singlepass_callers[7] = { 
            minMaxCaller<unsigned char>, minMaxCaller<char>, 
            minMaxCaller<unsigned short>, minMaxCaller<short>, 
            minMaxCaller<int>, minMaxCaller<float>, minMaxCaller<double> };

    static MaskedCaller masked_multipass_callers[7] = { 
            minMaxMaskMultipassCaller<unsigned char>, minMaxMaskMultipassCaller<char>, 
            minMaxMaskMultipassCaller<unsigned short>, minMaxMaskMultipassCaller<short>,
            minMaxMaskMultipassCaller<int>, minMaxMaskMultipassCaller<float>, 0 };

    static MaskedCaller masked_singlepass_callers[7] = { 
            minMaxMaskCaller<unsigned char>, minMaxMaskCaller<char>, 
            minMaxMaskCaller<unsigned short>, minMaxMaskCaller<short>, 
            minMaxMaskCaller<int>, minMaxMaskCaller<float>, 
            minMaxMaskCaller<double> };

    CV_Assert(src.channels() == 1);

    CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size()));

    CV_Assert(src.type() != CV_64F || (TargetArchs::builtWith(NATIVE_DOUBLE) && 
                                       DeviceInfo().supports(NATIVE_DOUBLE)));

    double minVal_; if (!minVal) minVal = &minVal_;
    double maxVal_; if (!maxVal) maxVal = &maxVal_;
    
    Size buf_size;
    getBufSizeRequired(src.cols, src.rows, static_cast<int>(src.elemSize()), buf_size.width, buf_size.height);
    ensureSizeIsEnough(buf_size, CV_8U, buf);

    if (mask.empty())
    {
        Caller* callers = multipass_callers;
        if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS))
            callers = singlepass_callers;

        Caller caller = callers[src.type()];
        if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type");
        caller(src, minVal, maxVal, buf);
    }
    else
    {
        MaskedCaller* callers = masked_multipass_callers;
        if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS))
            callers = masked_singlepass_callers;

        MaskedCaller caller = callers[src.type()];
        if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type");
        caller(src, mask, minVal, maxVal, buf);
    }
}
Exemplo n.º 14
0
double cv::gpu::norm(const GpuMat& src, int normType, const GpuMat& mask, GpuMat& buf)
{
    CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2);
    CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == src.size() && src.channels() == 1));

    GpuMat src_single_channel = src.reshape(1);

    if (normType == NORM_L1)
        return gpu::absSum(src_single_channel, mask, buf)[0];

    if (normType == NORM_L2)
        return std::sqrt(gpu::sqrSum(src_single_channel, mask, buf)[0]);

    // NORM_INF
    double min_val, max_val;
    gpu::minMax(src_single_channel, &min_val, &max_val, mask, buf);
    return std::max(std::abs(min_val), std::abs(max_val));
}
Exemplo n.º 15
0
void cv::cuda::warpPerspective(InputArray _src, OutputArray _dst, InputArray _M, Size dsize, int flags, int borderMode, Scalar borderValue, Stream& stream)
{
    GpuMat src = _src.getGpuMat();
    Mat M = _M.getMat();

    CV_Assert( M.rows == 3 && M.cols == 3 );

    const int interpolation = flags & INTER_MAX;

    CV_Assert( src.depth() <= CV_32F && src.channels() <= 4 );
    CV_Assert( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC );
    CV_Assert( borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP) ;

    _dst.create(dsize, src.type());
    GpuMat dst = _dst.getGpuMat();

    Size wholeSize;
    Point ofs;
    src.locateROI(wholeSize, ofs);

    static const bool useNppTab[6][4][3] =
    {
        {
            {false, false, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        }
    };

    bool useNpp = borderMode == BORDER_CONSTANT && ofs.x == 0 && ofs.y == 0 && useNppTab[src.depth()][src.channels() - 1][interpolation];
    // NPP bug on float data
    useNpp = useNpp && src.depth() != CV_32F;

    if (useNpp)
    {
        typedef void (*func_t)(const cv::cuda::GpuMat& src, cv::cuda::GpuMat& dst, double coeffs[][3], int flags, cudaStream_t stream);

        static const func_t funcs[2][6][4] =
        {
            {
                {NppWarp<CV_8U, nppiWarpPerspective_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspective_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspective_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpPerspective_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspective_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspective_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpPerspective_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspective_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspective_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpPerspective_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspective_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspective_32f_C4R>::call}
            },
            {
                {NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C4R>::call}
            }
        };

        dst.setTo(borderValue, stream);

        double coeffs[3][3];
        Mat coeffsMat(3, 3, CV_64F, (void*)coeffs);
        M.convertTo(coeffsMat, coeffsMat.type());

        const func_t func = funcs[(flags & WARP_INVERSE_MAP) != 0][src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        func(src, dst, coeffs, interpolation, StreamAccessor::getStream(stream));
    }
    else
    {
        using namespace cv::cuda::device::imgproc;

        typedef void (*func_t)(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation,
            int borderMode, const float* borderValue, cudaStream_t stream, bool cc20);

        static const func_t funcs[6][4] =
        {
            {warpPerspective_gpu<uchar>      , 0 /*warpPerspective_gpu<uchar2>*/ , warpPerspective_gpu<uchar3>     , warpPerspective_gpu<uchar4>     },
            {0 /*warpPerspective_gpu<schar>*/, 0 /*warpPerspective_gpu<char2>*/  , 0 /*warpPerspective_gpu<char3>*/, 0 /*warpPerspective_gpu<char4>*/},
            {warpPerspective_gpu<ushort>     , 0 /*warpPerspective_gpu<ushort2>*/, warpPerspective_gpu<ushort3>    , warpPerspective_gpu<ushort4>    },
            {warpPerspective_gpu<short>      , 0 /*warpPerspective_gpu<short2>*/ , warpPerspective_gpu<short3>     , warpPerspective_gpu<short4>     },
            {0 /*warpPerspective_gpu<int>*/  , 0 /*warpPerspective_gpu<int2>*/   , 0 /*warpPerspective_gpu<int3>*/ , 0 /*warpPerspective_gpu<int4>*/ },
            {warpPerspective_gpu<float>      , 0 /*warpPerspective_gpu<float2>*/ , warpPerspective_gpu<float3>     , warpPerspective_gpu<float4>     }
        };

        const func_t func = funcs[src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        float coeffs[3 * 3];
        Mat coeffsMat(3, 3, CV_32F, (void*)coeffs);

        if (flags & WARP_INVERSE_MAP)
            M.convertTo(coeffsMat, coeffsMat.type());
        else
        {
            cv::Mat iM;
            invert(M, iM);
            iM.convertTo(coeffsMat, coeffsMat.type());
        }

        Scalar_<float> borderValueFloat;
        borderValueFloat = borderValue;

        func(src, PtrStepSzb(wholeSize.height, wholeSize.width, src.datastart, src.step), ofs.x, ofs.y, coeffs,
            dst, interpolation, borderMode, borderValueFloat.val, StreamAccessor::getStream(stream), deviceSupports(FEATURE_SET_COMPUTE_20));
    }
}
Exemplo n.º 16
0
void cv::gpu::LUT(const GpuMat& src, const Mat& lut, GpuMat& dst, Stream& s)
{
    class LevelsInit
    {
    public:
        Npp32s pLevels[256];
        const Npp32s* pLevels3[3];
        int nValues3[3];

#if (CUDA_VERSION > 4020)
        GpuMat d_pLevels;
#endif

        LevelsInit()
        {
            nValues3[0] = nValues3[1] = nValues3[2] = 256;
            for (int i = 0; i < 256; ++i)
                pLevels[i] = i;


#if (CUDA_VERSION <= 4020)
            pLevels3[0] = pLevels3[1] = pLevels3[2] = pLevels;
#else
            d_pLevels.upload(Mat(1, 256, CV_32S, pLevels));
            pLevels3[0] = pLevels3[1] = pLevels3[2] = d_pLevels.ptr<Npp32s>();
#endif
        }
    };
    static LevelsInit lvls;

    int cn = src.channels();

    CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC3);
    CV_Assert(lut.depth() == CV_8U && (lut.channels() == 1 || lut.channels() == cn) && lut.rows * lut.cols == 256 && lut.isContinuous());

    dst.create(src.size(), CV_MAKETYPE(lut.depth(), cn));

    NppiSize sz;
    sz.height = src.rows;
    sz.width = src.cols;

    Mat nppLut;
    lut.convertTo(nppLut, CV_32S);

    cudaStream_t stream = StreamAccessor::getStream(s);

    NppStreamHandler h(stream);

    if (src.type() == CV_8UC1)
    {
#if (CUDA_VERSION <= 4020)
        nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step),
            dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, nppLut.ptr<Npp32s>(), lvls.pLevels, 256) );
#else
        GpuMat d_nppLut(Mat(1, 256, CV_32S, nppLut.data));
        nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step),
            dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, d_nppLut.ptr<Npp32s>(), lvls.d_pLevels.ptr<Npp32s>(), 256) );
#endif
    }
    else
    {
        const Npp32s* pValues3[3];

        Mat nppLut3[3];
        if (nppLut.channels() == 1)
        {
#if (CUDA_VERSION <= 4020)
            pValues3[0] = pValues3[1] = pValues3[2] = nppLut.ptr<Npp32s>();
#else
            GpuMat d_nppLut(Mat(1, 256, CV_32S, nppLut.data));
            pValues3[0] = pValues3[1] = pValues3[2] = d_nppLut.ptr<Npp32s>();
#endif
        }
        else
        {
            cv::split(nppLut, nppLut3);

#if (CUDA_VERSION <= 4020)
            pValues3[0] = nppLut3[0].ptr<Npp32s>();
            pValues3[1] = nppLut3[1].ptr<Npp32s>();
            pValues3[2] = nppLut3[2].ptr<Npp32s>();
#else
            GpuMat d_nppLut0(Mat(1, 256, CV_32S, nppLut3[0].data));
            GpuMat d_nppLut1(Mat(1, 256, CV_32S, nppLut3[1].data));
            GpuMat d_nppLut2(Mat(1, 256, CV_32S, nppLut3[2].data));

            pValues3[0] = d_nppLut0.ptr<Npp32s>();
            pValues3[1] = d_nppLut1.ptr<Npp32s>();
            pValues3[2] = d_nppLut2.ptr<Npp32s>();
#endif
        }

        nppSafeCall( nppiLUT_Linear_8u_C3R(src.ptr<Npp8u>(), static_cast<int>(src.step),
            dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, pValues3, lvls.pLevels3, lvls.nValues3) );
    }

    if (stream == 0)
        cudaSafeCall( cudaDeviceSynchronize() );
}
Exemplo n.º 17
0
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchSingle(const GpuMat& query, const GpuMat& train,
    GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k,
    const GpuMat& mask, Stream& stream)
{
    if (query.empty() || train.empty())
        return;

    using namespace ::cv::gpu::device::bf_knnmatch;

    typedef void (*caller_t)(const DevMem2Db& query, const DevMem2Db& train, int k, const DevMem2Db& mask, 
                             const DevMem2Db& trainIdx, const DevMem2Db& distance, const DevMem2Df& allDist, 
                             int cc, cudaStream_t stream);

    static const caller_t callers[3][6] =
    {
        {
            matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/, 
            matchL1_gpu<unsigned short>, matchL1_gpu<short>, 
            matchL1_gpu<int>, matchL1_gpu<float>
        },
        {
            0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/, 
            0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/, 
            0/*matchL2_gpu<int>*/, matchL2_gpu<float>
        },
        {
            matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/, 
            matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/, 
            matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
        }
    };

    CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
    CV_Assert(train.type() == query.type() && train.cols == query.cols);

    const int nQuery = query.rows;
    const int nTrain = train.rows;

    if (k == 2)
    {
        ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx);
        ensureSizeIsEnough(1, nQuery, CV_32FC2, distance);
    }
    else
    {
        ensureSizeIsEnough(nQuery, k, CV_32S, trainIdx);
        ensureSizeIsEnough(nQuery, k, CV_32F, distance);
        ensureSizeIsEnough(nQuery, nTrain, CV_32FC1, allDist);
    }

    if (stream)
        stream.enqueueMemSet(trainIdx, Scalar::all(-1));
    else
        trainIdx.setTo(Scalar::all(-1));

    caller_t func = callers[distType][query.depth()];
    CV_Assert(func != 0);
    
    DeviceInfo info;
    int cc = info.majorVersion() * 10 + info.minorVersion();

    func(query, train, k, mask, trainIdx, distance, allDist, cc, StreamAccessor::getStream(stream));
}
Exemplo n.º 18
0
void cv::gpu::reduce(const GpuMat& src, GpuMat& dst, int dim, int reduceOp, int dtype, Stream& stream)
{
    CV_Assert( src.channels() <= 4 );
    CV_Assert( dim == 0 || dim == 1 );
    CV_Assert( reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG || reduceOp == CV_REDUCE_MAX || reduceOp == CV_REDUCE_MIN );

    if (dtype < 0)
        dtype = src.depth();

    dst.create(1, dim == 0 ? src.cols : src.rows, CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()));

    if (dim == 0)
    {
        typedef void (*func_t)(PtrStepSzb src, void* dst, int op, cudaStream_t stream);
        static const func_t funcs[7][7] =
        {
            {
                ::reduce::rows<unsigned char, int, unsigned char>,
                0/*::reduce::rows<unsigned char, int, signed char>*/,
                0/*::reduce::rows<unsigned char, int, unsigned short>*/,
                0/*::reduce::rows<unsigned char, int, short>*/,
                ::reduce::rows<unsigned char, int, int>,
                ::reduce::rows<unsigned char, float, float>,
                ::reduce::rows<unsigned char, double, double>
            },
            {
                0/*::reduce::rows<signed char, int, unsigned char>*/,
                0/*::reduce::rows<signed char, int, signed char>*/,
                0/*::reduce::rows<signed char, int, unsigned short>*/,
                0/*::reduce::rows<signed char, int, short>*/,
                0/*::reduce::rows<signed char, int, int>*/,
                0/*::reduce::rows<signed char, float, float>*/,
                0/*::reduce::rows<signed char, double, double>*/
            },
            {
                0/*::reduce::rows<unsigned short, int, unsigned char>*/,
                0/*::reduce::rows<unsigned short, int, signed char>*/,
                ::reduce::rows<unsigned short, int, unsigned short>,
                0/*::reduce::rows<unsigned short, int, short>*/,
                ::reduce::rows<unsigned short, int, int>,
                ::reduce::rows<unsigned short, float, float>,
                ::reduce::rows<unsigned short, double, double>
            },
            {
                0/*::reduce::rows<short, int, unsigned char>*/,
                0/*::reduce::rows<short, int, signed char>*/,
                0/*::reduce::rows<short, int, unsigned short>*/,
                ::reduce::rows<short, int, short>,
                ::reduce::rows<short, int, int>,
                ::reduce::rows<short, float, float>,
                ::reduce::rows<short, double, double>
            },
            {
                0/*::reduce::rows<int, int, unsigned char>*/,
                0/*::reduce::rows<int, int, signed char>*/,
                0/*::reduce::rows<int, int, unsigned short>*/,
                0/*::reduce::rows<int, int, short>*/,
                ::reduce::rows<int, int, int>,
                ::reduce::rows<int, float, float>,
                ::reduce::rows<int, double, double>
            },
            {
                0/*::reduce::rows<float, float, unsigned char>*/,
                0/*::reduce::rows<float, float, signed char>*/,
                0/*::reduce::rows<float, float, unsigned short>*/,
                0/*::reduce::rows<float, float, short>*/,
                0/*::reduce::rows<float, float, int>*/,
                ::reduce::rows<float, float, float>,
                ::reduce::rows<float, double, double>
            },
            {
                0/*::reduce::rows<double, double, unsigned char>*/,
                0/*::reduce::rows<double, double, signed char>*/,
                0/*::reduce::rows<double, double, unsigned short>*/,
                0/*::reduce::rows<double, double, short>*/,
                0/*::reduce::rows<double, double, int>*/,
                0/*::reduce::rows<double, double, float>*/,
                ::reduce::rows<double, double, double>
            }
        };

        const func_t func = funcs[src.depth()][dst.depth()];

        if (!func)
            CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of input and output array formats");

        func(src.reshape(1), dst.data, reduceOp, StreamAccessor::getStream(stream));
    }
    else
    {
        typedef void (*func_t)(PtrStepSzb src, void* dst, int cn, int op, cudaStream_t stream);
        static const func_t funcs[7][7] =
        {
            {
                ::reduce::cols<unsigned char, int, unsigned char>,
                0/*::reduce::cols<unsigned char, int, signed char>*/,
                0/*::reduce::cols<unsigned char, int, unsigned short>*/,
                0/*::reduce::cols<unsigned char, int, short>*/,
                ::reduce::cols<unsigned char, int, int>,
                ::reduce::cols<unsigned char, float, float>,
                ::reduce::cols<unsigned char, double, double>
            },
            {
                0/*::reduce::cols<signed char, int, unsigned char>*/,
                0/*::reduce::cols<signed char, int, signed char>*/,
                0/*::reduce::cols<signed char, int, unsigned short>*/,
                0/*::reduce::cols<signed char, int, short>*/,
                0/*::reduce::cols<signed char, int, int>*/,
                0/*::reduce::cols<signed char, float, float>*/,
                0/*::reduce::cols<signed char, double, double>*/
            },
            {
                0/*::reduce::cols<unsigned short, int, unsigned char>*/,
                0/*::reduce::cols<unsigned short, int, signed char>*/,
                ::reduce::cols<unsigned short, int, unsigned short>,
                0/*::reduce::cols<unsigned short, int, short>*/,
                ::reduce::cols<unsigned short, int, int>,
                ::reduce::cols<unsigned short, float, float>,
                ::reduce::cols<unsigned short, double, double>
            },
            {
                0/*::reduce::cols<short, int, unsigned char>*/,
                0/*::reduce::cols<short, int, signed char>*/,
                0/*::reduce::cols<short, int, unsigned short>*/,
                ::reduce::cols<short, int, short>,
                ::reduce::cols<short, int, int>,
                ::reduce::cols<short, float, float>,
                ::reduce::cols<short, double, double>
            },
            {
                0/*::reduce::cols<int, int, unsigned char>*/,
                0/*::reduce::cols<int, int, signed char>*/,
                0/*::reduce::cols<int, int, unsigned short>*/,
                0/*::reduce::cols<int, int, short>*/,
                ::reduce::cols<int, int, int>,
                ::reduce::cols<int, float, float>,
                ::reduce::cols<int, double, double>
            },
            {
                0/*::reduce::cols<float, float, unsigned char>*/,
                0/*::reduce::cols<float, float, signed char>*/,
                0/*::reduce::cols<float, float, unsigned short>*/,
                0/*::reduce::cols<float, float, short>*/,
                0/*::reduce::cols<float, float, int>*/,
                ::reduce::cols<float, float, float>,
                ::reduce::cols<float, double, double>
            },
            {
                0/*::reduce::cols<double, double, unsigned char>*/,
                0/*::reduce::cols<double, double, signed char>*/,
                0/*::reduce::cols<double, double, unsigned short>*/,
                0/*::reduce::cols<double, double, short>*/,
                0/*::reduce::cols<double, double, int>*/,
                0/*::reduce::cols<double, double, float>*/,
                ::reduce::cols<double, double, double>
            }
        };

        const func_t func = funcs[src.depth()][dst.depth()];

        if (!func)
            CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of input and output array formats");

        func(src, dst.data, src.channels(), reduceOp, StreamAccessor::getStream(stream));
    }
}
Exemplo n.º 19
0
void cv::gpu::copyMakeBorder(InputArray _src, OutputArray _dst, int top, int bottom, int left, int right, int borderType, Scalar value, Stream& _stream)
{
    GpuMat src = _src.getGpuMat();

    CV_Assert( src.depth() <= CV_32F && src.channels() <= 4 );
    CV_Assert( borderType == BORDER_REFLECT_101 || borderType == BORDER_REPLICATE || borderType == BORDER_CONSTANT || borderType == BORDER_REFLECT || borderType == BORDER_WRAP );

    _dst.create(src.rows + top + bottom, src.cols + left + right, src.type());
    GpuMat dst = _dst.getGpuMat();

    cudaStream_t stream = StreamAccessor::getStream(_stream);

    if (borderType == BORDER_CONSTANT && (src.type() == CV_8UC1 || src.type() == CV_8UC4 || src.type() == CV_32SC1 || src.type() == CV_32FC1))
    {
        NppiSize srcsz;
        srcsz.width  = src.cols;
        srcsz.height = src.rows;

        NppiSize dstsz;
        dstsz.width  = dst.cols;
        dstsz.height = dst.rows;

        NppStreamHandler h(stream);

        switch (src.type())
        {
        case CV_8UC1:
            {
                Npp8u nVal = saturate_cast<Npp8u>(value[0]);
                nppSafeCall( nppiCopyConstBorder_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), srcsz,
                    dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
                break;
            }
        case CV_8UC4:
            {
                Npp8u nVal[] = {saturate_cast<Npp8u>(value[0]), saturate_cast<Npp8u>(value[1]), saturate_cast<Npp8u>(value[2]), saturate_cast<Npp8u>(value[3])};
                nppSafeCall( nppiCopyConstBorder_8u_C4R(src.ptr<Npp8u>(), static_cast<int>(src.step), srcsz,
                    dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
                break;
            }
        case CV_32SC1:
            {
                Npp32s nVal = saturate_cast<Npp32s>(value[0]);
                nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), srcsz,
                    dst.ptr<Npp32s>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
                break;
            }
        case CV_32FC1:
            {
                Npp32f val = saturate_cast<Npp32f>(value[0]);
                Npp32s nVal = *(reinterpret_cast<Npp32s_a*>(&val));
                nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), srcsz,
                    dst.ptr<Npp32s>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
                break;
            }
        }

        if (stream == 0)
            cudaSafeCall( cudaDeviceSynchronize() );
    }
    else
    {
        typedef void (*caller_t)(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderType, const Scalar& value, cudaStream_t stream);
        static const caller_t callers[6][4] =
        {
            {   copyMakeBorder_caller<uchar, 1>  ,    copyMakeBorder_caller<uchar, 2>   ,    copyMakeBorder_caller<uchar, 3>  ,    copyMakeBorder_caller<uchar, 4>},
            {0/*copyMakeBorder_caller<schar, 1>*/, 0/*copyMakeBorder_caller<schar, 2>*/ , 0/*copyMakeBorder_caller<schar, 3>*/, 0/*copyMakeBorder_caller<schar, 4>*/},
            {   copyMakeBorder_caller<ushort, 1> , 0/*copyMakeBorder_caller<ushort, 2>*/,    copyMakeBorder_caller<ushort, 3> ,    copyMakeBorder_caller<ushort, 4>},
            {   copyMakeBorder_caller<short, 1>  , 0/*copyMakeBorder_caller<short, 2>*/ ,    copyMakeBorder_caller<short, 3>  ,    copyMakeBorder_caller<short, 4>},
            {0/*copyMakeBorder_caller<int,   1>*/, 0/*copyMakeBorder_caller<int,   2>*/ , 0/*copyMakeBorder_caller<int,   3>*/, 0/*copyMakeBorder_caller<int  , 4>*/},
            {   copyMakeBorder_caller<float, 1>  , 0/*copyMakeBorder_caller<float, 2>*/ ,    copyMakeBorder_caller<float, 3>  ,    copyMakeBorder_caller<float ,4>}
        };

        caller_t func = callers[src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        func(src, dst, top, left, borderType, value, stream);
    }
}
Exemplo n.º 20
0
static void csbp_operator(StereoConstantSpaceBP& rthis, GpuMat u[2], GpuMat d[2], GpuMat l[2], GpuMat r[2],
                          GpuMat disp_selected_pyr[2], GpuMat& data_cost, GpuMat& data_cost_selected,
                          GpuMat& temp, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
{
    CV_DbgAssert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels && 0 < rthis.nr_plane
        && left.rows == right.rows && left.cols == right.cols && left.type() == right.type());

    CV_Assert(rthis.levels <= 8 && (left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4));

    const Scalar zero = Scalar::all(0);

    cudaStream_t cudaStream = StreamAccessor::getStream(stream);

    ////////////////////////////////////////////////////////////////////////////////////////////
    // Init

    int rows = left.rows;
    int cols = left.cols;

    rthis.levels = min(rthis.levels, int(log((double)rthis.ndisp) / log(2.0)));
    int levels = rthis.levels;

    AutoBuffer<int> buf(levels * 4);

    int* cols_pyr = buf;
    int* rows_pyr = cols_pyr + levels;
    int* nr_plane_pyr = rows_pyr + levels;
    int* step_pyr = nr_plane_pyr + levels;

    cols_pyr[0] = cols;
    rows_pyr[0] = rows;
    nr_plane_pyr[0] = rthis.nr_plane;

    const int n = 64;
    step_pyr[0] = static_cast<int>(alignSize(cols * sizeof(T), n) / sizeof(T));
    for (int i = 1; i < levels; i++)
    {
        cols_pyr[i] = (cols_pyr[i-1] + 1) / 2;
        rows_pyr[i] = (rows_pyr[i-1] + 1) / 2;

        nr_plane_pyr[i] = nr_plane_pyr[i-1] * 2;

        step_pyr[i] = static_cast<int>(alignSize(cols_pyr[i] * sizeof(T), n) / sizeof(T));
    }

    Size msg_size(step_pyr[0], rows * nr_plane_pyr[0]);
    Size data_cost_size(step_pyr[0], rows * nr_plane_pyr[0] * 2);

    u[0].create(msg_size, DataType<T>::type);
    d[0].create(msg_size, DataType<T>::type);
    l[0].create(msg_size, DataType<T>::type);
    r[0].create(msg_size, DataType<T>::type);

    u[1].create(msg_size, DataType<T>::type);
    d[1].create(msg_size, DataType<T>::type);
    l[1].create(msg_size, DataType<T>::type);
    r[1].create(msg_size, DataType<T>::type);

    disp_selected_pyr[0].create(msg_size, DataType<T>::type);
    disp_selected_pyr[1].create(msg_size, DataType<T>::type);

    data_cost.create(data_cost_size, DataType<T>::type);
    data_cost_selected.create(msg_size, DataType<T>::type);

    step_pyr[0] = static_cast<int>(data_cost.step / sizeof(T));

    Size temp_size = data_cost_size;
    if (data_cost_size.width * data_cost_size.height < step_pyr[levels - 1] * rows_pyr[levels - 1] * rthis.ndisp)
        temp_size = Size(step_pyr[levels - 1], rows_pyr[levels - 1] * rthis.ndisp);

    temp.create(temp_size, DataType<T>::type);

    ////////////////////////////////////////////////////////////////////////////
    // Compute

    load_constants(rthis.ndisp, rthis.max_data_term, rthis.data_weight, rthis.max_disc_term, rthis.disc_single_jump, rthis.min_disp_th, left, right, temp);

    if (stream)
    {
        stream.enqueueMemSet(l[0], zero);
        stream.enqueueMemSet(d[0], zero);
        stream.enqueueMemSet(r[0], zero);
        stream.enqueueMemSet(u[0], zero);
        
        stream.enqueueMemSet(l[1], zero);
        stream.enqueueMemSet(d[1], zero);
        stream.enqueueMemSet(r[1], zero);
        stream.enqueueMemSet(u[1], zero);

        stream.enqueueMemSet(data_cost, zero);
        stream.enqueueMemSet(data_cost_selected, zero);
    }
    else
    {
        l[0].setTo(zero);
        d[0].setTo(zero);
        r[0].setTo(zero);
        u[0].setTo(zero);

        l[1].setTo(zero);
        d[1].setTo(zero);
        r[1].setTo(zero);
        u[1].setTo(zero);

        data_cost.setTo(zero);
        data_cost_selected.setTo(zero);
    }

    int cur_idx = 0;

    for (int i = levels - 1; i >= 0; i--)
    {
        if (i == levels - 1)
        {
            init_data_cost(left.rows, left.cols, disp_selected_pyr[cur_idx].ptr<T>(), data_cost_selected.ptr<T>(),
                step_pyr[i], rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], rthis.ndisp, left.channels(), rthis.use_local_init_data_cost, cudaStream);
        }
        else
        {
            compute_data_cost(disp_selected_pyr[cur_idx].ptr<T>(), data_cost.ptr<T>(), step_pyr[i], step_pyr[i+1],
                left.rows, left.cols, rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), cudaStream);

            int new_idx = (cur_idx + 1) & 1;

            init_message(u[new_idx].ptr<T>(), d[new_idx].ptr<T>(), l[new_idx].ptr<T>(), r[new_idx].ptr<T>(),
                         u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(),
                         disp_selected_pyr[new_idx].ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(),
                         data_cost_selected.ptr<T>(), data_cost.ptr<T>(), step_pyr[i], step_pyr[i+1], rows_pyr[i],
                         cols_pyr[i], nr_plane_pyr[i], rows_pyr[i+1], cols_pyr[i+1], nr_plane_pyr[i+1], cudaStream);

            cur_idx = new_idx;
        }

        calc_all_iterations(u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(),
                            data_cost_selected.ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(), step_pyr[i],
                            rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], rthis.iters, cudaStream);
    }

    if (disp.empty())
        disp.create(rows, cols, CV_16S);

    out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out));

    if (stream)
        stream.enqueueMemSet(out, zero);
    else
        out.setTo(zero);

    compute_disp(u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(),
                 data_cost_selected.ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(), step_pyr[0], out, nr_plane_pyr[0], cudaStream);

    if (disp.type() != CV_16S)
    {
        if (stream)
            stream.enqueueConvert(out, disp, disp.type());
        else
            out.convertTo(disp, disp.type());
    }
}