Exemplo n.º 1
0
GrTextContext::GrTextContext(GrContext* context, const GrPaint& paint) : fPaint(paint) {
    fContext = context;
    fStrike = NULL;

    fCurrTexture = NULL;
    fCurrVertex = 0;

    const GrClipData* clipData = context->getClip();

    GrRect devConservativeBound;
    clipData->fClipStack->getConservativeBounds(
        -clipData->fOrigin.fX,
        -clipData->fOrigin.fY,
        context->getRenderTarget()->width(),
        context->getRenderTarget()->height(),
        &devConservativeBound);

    devConservativeBound.roundOut(&fClipRect);

    fAutoMatrix.setIdentity(fContext, &fPaint);

    fDrawTarget = NULL;

    fVertices = NULL;
    fMaxVertices = 0;

    fVertexLayout =
        GrDrawTarget::kTextFormat_VertexLayoutBit |
        GrDrawTarget::StageTexCoordVertexLayoutBit(kGlyphMaskStage, 0);
}
Exemplo n.º 2
0
////////////////////////////////////////////////////////////////////////////////
// Shared preamble between gpu and SW-only AA clip mask creation paths.
// Handles caching, determination of clip mask bound & allocation (if needed)
// of the result texture
// Returns true if there is no more work to be done (i.e., we got a cache hit)
bool GrClipMaskManager::clipMaskPreamble(GrGpu* gpu,
                                         const GrClip& clipIn,
                                         GrTexture** result,
                                         GrIRect *resultBounds) {
    GrDrawState* origDrawState = gpu->drawState();
    GrAssert(origDrawState->isClipState());

    GrRenderTarget* rt = origDrawState->getRenderTarget();
    GrAssert(NULL != rt);

    GrRect rtRect;
    rtRect.setLTRB(0, 0,
                    GrIntToScalar(rt->width()), GrIntToScalar(rt->height()));

    // unlike the stencil path the alpha path is not bound to the size of the
    // render target - determine the minimum size required for the mask
    GrRect bounds;

    if (clipIn.hasConservativeBounds()) {
        bounds = clipIn.getConservativeBounds();
        if (!bounds.intersect(rtRect)) {
            // the mask will be empty in this case
            GrAssert(false);
            bounds.setEmpty();
        }
    } else {
        // still locked to the size of the render target
        bounds = rtRect;
    }

    GrIRect intBounds;
    bounds.roundOut(&intBounds);

    // need to outset a pixel since the standard bounding box computation
    // path doesn't leave any room for antialiasing (esp. w.r.t. rects)
    intBounds.outset(1, 1);

    // TODO: make sure we don't outset if bounds are still 0,0 @ min

    if (fAACache.canReuse(clipIn, 
                          intBounds.width(),
                          intBounds.height())) {
        *result = fAACache.getLastMask();
        fAACache.getLastBound(resultBounds);
        return true;
    }

    this->setupCache(clipIn, intBounds);

    *resultBounds = intBounds;
    return false;
}
Exemplo n.º 3
0
/**
 * getConservativeBounds returns the conservative bounding box of the clip
 * in device (as opposed to canvas) coordinates. If the bounding box is
 * the result of purely intersections of rects (with an initial replace)
 * isIntersectionOfRects will be set to true.
 */
void GrClipData::getConservativeBounds(const GrSurface* surface,
                                       GrIRect* devResult,
                                       bool* isIntersectionOfRects) const {
    GrRect devBounds;

    fClipStack->getConservativeBounds(-fOrigin.fX,
                                      -fOrigin.fY,
                                      surface->width(),
                                      surface->height(),
                                      &devBounds,
                                      isIntersectionOfRects);

    devBounds.roundOut(devResult);
}
Exemplo n.º 4
0
bool GrGpu::setupClipAndFlushState(GrPrimitiveType type) {
    const GrIRect* r = NULL;
    GrIRect clipRect;

    GrDrawState* drawState = this->drawState();
    const GrRenderTarget* rt = drawState->getRenderTarget();

    // GrDrawTarget should have filtered this for us
    GrAssert(NULL != rt);

    if (drawState->isClipState()) {

        GrRect bounds;
        GrRect rtRect;
        rtRect.setLTRB(0, 0,
                       GrIntToScalar(rt->width()), GrIntToScalar(rt->height()));
        if (fClip.hasConservativeBounds()) {
            bounds = fClip.getConservativeBounds();
            if (!bounds.intersect(rtRect)) {
                bounds.setEmpty();
            }
        } else {
            bounds = rtRect;
        }

        bounds.roundOut(&clipRect);
        if  (clipRect.isEmpty()) {
            clipRect.setLTRB(0,0,0,0);
        }
        r = &clipRect;

        // use the stencil clip if we can't represent the clip as a rectangle.
        fClipInStencil = !fClip.isRect() && !fClip.isEmpty() && 
                         !bounds.isEmpty();

        // TODO: dynamically attach a SB when needed.
        GrStencilBuffer* stencilBuffer = rt->getStencilBuffer();
        if (fClipInStencil && NULL == stencilBuffer) {
            return false;
        }

        if (fClipInStencil &&
            stencilBuffer->mustRenderClip(fClip, rt->width(), rt->height())) {

            stencilBuffer->setLastClip(fClip, rt->width(), rt->height());

            // we set the current clip to the bounds so that our recursive
            // draws are scissored to them. We use the copy of the complex clip
            // we just stashed on the SB to render from. We set it back after
            // we finish drawing it into the stencil.
            const GrClip& clip = stencilBuffer->getLastClip();
            fClip.setFromRect(bounds);

            AutoStateRestore asr(this);
            AutoGeometryPush agp(this);

            drawState->setViewMatrix(GrMatrix::I());
            this->flushScissor(NULL);
#if !VISUALIZE_COMPLEX_CLIP
            drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
#else
            drawState->disableState(GrDrawState::kNoColorWrites_StateBit);
#endif
            int count = clip.getElementCount();
            int clipBit = stencilBuffer->bits();
            SkASSERT((clipBit <= 16) &&
                     "Ganesh only handles 16b or smaller stencil buffers");
            clipBit = (1 << (clipBit-1));
            
            bool clearToInside;
            GrSetOp startOp = kReplace_SetOp; // suppress warning
            int start = process_initial_clip_elements(clip,
                                                      rtRect,
                                                      &clearToInside,
                                                      &startOp);

            this->clearStencilClip(clipRect, clearToInside);

            // walk through each clip element and perform its set op
            // with the existing clip.
            for (int c = start; c < count; ++c) {
                GrPathFill fill;
                bool fillInverted;
                // enabled at bottom of loop
                drawState->disableState(kModifyStencilClip_StateBit);

                bool canRenderDirectToStencil; // can the clip element be drawn
                                               // directly to the stencil buffer
                                               // with a non-inverted fill rule
                                               // without extra passes to
                                               // resolve in/out status.

                GrPathRenderer* pr = NULL;
                const GrPath* clipPath = NULL;
                GrPathRenderer::AutoClearPath arp;
                if (kRect_ClipType == clip.getElementType(c)) {
                    canRenderDirectToStencil = true;
                    fill = kEvenOdd_PathFill;
                    fillInverted = false;
                    // there is no point in intersecting a screen filling
                    // rectangle.
                    if (kIntersect_SetOp == clip.getOp(c) &&
                        clip.getRect(c).contains(rtRect)) {
                        continue;
                    }
                } else {
                    fill = clip.getPathFill(c);
                    fillInverted = GrIsFillInverted(fill);
                    fill = GrNonInvertedFill(fill);
                    clipPath = &clip.getPath(c);
                    pr = this->getClipPathRenderer(*clipPath, fill);
                    if (NULL == pr) {
                        fClipInStencil = false;
                        fClip = clip;
                        return false;
                    }
                    canRenderDirectToStencil =
                        !pr->requiresStencilPass(this, *clipPath, fill);
                    arp.set(pr, this, clipPath, fill, false, NULL);
                }

                GrSetOp op = (c == start) ? startOp : clip.getOp(c);
                int passes;
                GrStencilSettings stencilSettings[GrStencilSettings::kMaxStencilClipPasses];

                bool canDrawDirectToClip; // Given the renderer, the element,
                                          // fill rule, and set operation can
                                          // we render the element directly to
                                          // stencil bit used for clipping.
                canDrawDirectToClip =
                    GrStencilSettings::GetClipPasses(op,
                                                     canRenderDirectToStencil,
                                                     clipBit,
                                                     fillInverted,
                                                     &passes, stencilSettings);

                // draw the element to the client stencil bits if necessary
                if (!canDrawDirectToClip) {
                    GR_STATIC_CONST_SAME_STENCIL(gDrawToStencil,
                        kIncClamp_StencilOp,
                        kIncClamp_StencilOp,
                        kAlways_StencilFunc,
                        0xffff,
                        0x0000,
                        0xffff);
                    SET_RANDOM_COLOR
                    if (kRect_ClipType == clip.getElementType(c)) {
                        *drawState->stencil() = gDrawToStencil;
                        this->drawSimpleRect(clip.getRect(c), NULL, 0);
                    } else {
                        if (canRenderDirectToStencil) {
                            *drawState->stencil() = gDrawToStencil;
                            pr->drawPath(0);
                        } else {
                            pr->drawPathToStencil();
                        }
                    }
                }

                // now we modify the clip bit by rendering either the clip
                // element directly or a bounding rect of the entire clip.
                drawState->enableState(kModifyStencilClip_StateBit);
                for (int p = 0; p < passes; ++p) {
                    *drawState->stencil() = stencilSettings[p];
                    if (canDrawDirectToClip) {
                        if (kRect_ClipType == clip.getElementType(c)) {
                            SET_RANDOM_COLOR
                            this->drawSimpleRect(clip.getRect(c), NULL, 0);
                        } else {
                            SET_RANDOM_COLOR
                            pr->drawPath(0);
                        }
                    } else {
                        SET_RANDOM_COLOR
                        this->drawSimpleRect(bounds, NULL, 0);
                    }
                }
            }
Exemplo n.º 5
0
////////////////////////////////////////////////////////////////////////////////
// Create a 8-bit clip mask in alpha
GrTexture* GrClipMaskManager::createAlphaClipMask(int32_t clipStackGenID,
                                                  InitialState initialState,
                                                  const ElementList& elements,
                                                  const SkIRect& clipSpaceIBounds) {
    GrAssert(kNone_ClipMaskType == fCurrClipMaskType);

    GrTexture* result;
    if (this->getMaskTexture(clipStackGenID, clipSpaceIBounds, &result)) {
        fCurrClipMaskType = kAlpha_ClipMaskType;
        return result;
    }

    if (NULL == result) {
        fAACache.reset();
        return NULL;
    }

    GrDrawTarget::AutoGeometryAndStatePush agasp(fGpu, GrDrawTarget::kReset_ASRInit);
    GrDrawState* drawState = fGpu->drawState();

    // The top-left of the mask corresponds to the top-left corner of the bounds.
    SkVector clipToMaskOffset = {
        SkIntToScalar(-clipSpaceIBounds.fLeft),
        SkIntToScalar(-clipSpaceIBounds.fTop)
    };
    // The texture may be larger than necessary, this rect represents the part of the texture
    // we populate with a rasterization of the clip.
    SkIRect maskSpaceIBounds = SkIRect::MakeWH(clipSpaceIBounds.width(), clipSpaceIBounds.height());

    // We're drawing a coverage mask and want coverage to be run through the blend function.
    drawState->enableState(GrDrawState::kCoverageDrawing_StateBit);

    // Set the matrix so that rendered clip elements are transformed to mask space from clip space.
    drawState->viewMatrix()->setTranslate(clipToMaskOffset);

    // The scratch texture that we are drawing into can be substantially larger than the mask. Only
    // clear the part that we care about.
    fGpu->clear(&maskSpaceIBounds,
                kAllIn_InitialState == initialState ? 0xffffffff : 0x00000000,
                result->asRenderTarget());

    // When we use the stencil in the below loop it is important to have this clip installed.
    // The second pass that zeros the stencil buffer renders the rect maskSpaceIBounds so the first
    // pass must not set values outside of this bounds or stencil values outside the rect won't be
    // cleared.
    GrDrawTarget::AutoClipRestore acr(fGpu, maskSpaceIBounds);
    drawState->enableState(GrDrawState::kClip_StateBit);

    GrAutoScratchTexture temp;
    // walk through each clip element and perform its set op
    for (ElementList::Iter iter = elements.headIter(); iter.get(); iter.next()) {
        const Element* element = iter.get();
        SkRegion::Op op = element->getOp();
        bool invert = element->isInverseFilled();

        if (invert || SkRegion::kIntersect_Op == op || SkRegion::kReverseDifference_Op == op) {
            GrPathRenderer* pr = NULL;
            bool useTemp = !this->canStencilAndDrawElement(result, element, &pr);
            GrTexture* dst;
            // This is the bounds of the clip element in the space of the alpha-mask. The temporary
            // mask buffer can be substantially larger than the actually clip stack element. We
            // touch the minimum number of pixels necessary and use decal mode to combine it with
            // the accumulator.
            GrIRect maskSpaceElementIBounds;

            if (useTemp) {
                if (invert) {
                    maskSpaceElementIBounds = maskSpaceIBounds;
                } else {
                    GrRect elementBounds = element->getBounds();
                    elementBounds.offset(clipToMaskOffset);
                    elementBounds.roundOut(&maskSpaceElementIBounds);
                }

                this->getTemp(maskSpaceIBounds.fRight, maskSpaceIBounds.fBottom, &temp);
                if (NULL == temp.texture()) {
                    fAACache.reset();
                    return NULL;
                }
                dst = temp.texture();
                // clear the temp target and set blend to replace
                fGpu->clear(&maskSpaceElementIBounds,
                            invert ? 0xffffffff : 0x00000000,
                            dst->asRenderTarget());
                setup_boolean_blendcoeffs(drawState, SkRegion::kReplace_Op);

            } else {
                // draw directly into the result with the stencil set to make the pixels affected
                // by the clip shape be non-zero.
                dst = result;
                GR_STATIC_CONST_SAME_STENCIL(kStencilInElement,
                                             kReplace_StencilOp,
                                             kReplace_StencilOp,
                                             kAlways_StencilFunc,
                                             0xffff,
                                             0xffff,
                                             0xffff);
                drawState->setStencil(kStencilInElement);
                setup_boolean_blendcoeffs(drawState, op);
            }

            drawState->setAlpha(invert ? 0x00 : 0xff);

            if (!this->drawElement(dst, element, pr)) {
                fAACache.reset();
                return NULL;
            }

            if (useTemp) {
                // Now draw into the accumulator using the real operation and the temp buffer as a
                // texture
                this->mergeMask(result,
                                temp.texture(),
                                op,
                                maskSpaceIBounds,
                                maskSpaceElementIBounds);
            } else {
                // Draw to the exterior pixels (those with a zero stencil value).
                drawState->setAlpha(invert ? 0xff : 0x00);
                GR_STATIC_CONST_SAME_STENCIL(kDrawOutsideElement,
                                             kZero_StencilOp,
                                             kZero_StencilOp,
                                             kEqual_StencilFunc,
                                             0xffff,
                                             0x0000,
                                             0xffff);
                drawState->setStencil(kDrawOutsideElement);
                fGpu->drawSimpleRect(clipSpaceIBounds);
                drawState->disableStencil();
            }
        } else {
            // all the remaining ops can just be directly draw into the accumulation buffer
            drawState->setAlpha(0xff);
            setup_boolean_blendcoeffs(drawState, op);
            this->drawElement(result, element);
        }
    }

    fCurrClipMaskType = kAlpha_ClipMaskType;
    return result;
}
Exemplo n.º 6
0
////////////////////////////////////////////////////////////////////////////////
// Create a 8-bit clip mask in alpha
bool GrClipMaskManager::createAlphaClipMask(const GrClipData& clipDataIn,
                                            GrTexture** result,
                                            GrIRect *devResultBounds) {
    GrAssert(NULL != devResultBounds);
    GrAssert(kNone_ClipMaskType == fCurrClipMaskType);

    if (this->clipMaskPreamble(clipDataIn, result, devResultBounds)) {
        fCurrClipMaskType = kAlpha_ClipMaskType;
        return true;
    }

    // Note: 'resultBounds' is in device (as opposed to canvas) coordinates

    GrTexture* accum = fAACache.getLastMask();
    if (NULL == accum) {
        fAACache.reset();
        return false;
    }

    GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit);
    GrDrawState* drawState = fGpu->drawState();

    GrDrawTarget::AutoGeometryPush agp(fGpu);

    // The mask we generate is translated so that its upper-left corner is at devResultBounds
    // upper-left corner in device space.
    GrIRect maskResultBounds = GrIRect::MakeWH(devResultBounds->width(), devResultBounds->height());

    // Set the matrix so that rendered clip elements are transformed from the space of the clip
    // stack to the alpha-mask. This accounts for both translation due to the clip-origin and the
    // placement of the mask within the device.
    SkVector clipToMaskOffset = {
        SkIntToScalar(-devResultBounds->fLeft - clipDataIn.fOrigin.fX),
        SkIntToScalar(-devResultBounds->fTop - clipDataIn.fOrigin.fY)
    };
    drawState->viewMatrix()->setTranslate(clipToMaskOffset);

    bool clearToInside;
    SkRegion::Op firstOp = SkRegion::kReplace_Op; // suppress warning

    SkClipStack::Iter iter(*clipDataIn.fClipStack,
                           SkClipStack::Iter::kBottom_IterStart);
    const SkClipStack::Iter::Clip* clip = process_initial_clip_elements(&iter,
                                                              *devResultBounds,
                                                              &clearToInside,
                                                              &firstOp,
                                                              clipDataIn);
    // The scratch texture that we are drawing into can be substantially larger than the mask. Only
    // clear the part that we care about.
    fGpu->clear(&maskResultBounds,
                clearToInside ? 0xffffffff : 0x00000000,
                accum->asRenderTarget());
    bool accumClearedToZero = !clearToInside;

    GrAutoScratchTexture temp;
    bool first = true;
    // walk through each clip element and perform its set op
    for ( ; NULL != clip; clip = iter.nextCombined()) {

        SkRegion::Op op = clip->fOp;
        if (first) {
            first = false;
            op = firstOp;
        }

        if (SkRegion::kReplace_Op == op) {
            // clear the accumulator and draw the new object directly into it
            if (!accumClearedToZero) {
                fGpu->clear(&maskResultBounds, 0x00000000, accum->asRenderTarget());
            }

            setup_boolean_blendcoeffs(drawState, op);
            this->drawClipShape(accum, clip, *devResultBounds);

        } else if (SkRegion::kReverseDifference_Op == op ||
                   SkRegion::kIntersect_Op == op) {
            // there is no point in intersecting a screen filling rectangle.
            if (SkRegion::kIntersect_Op == op && NULL != clip->fRect &&
                contains(*clip->fRect, *devResultBounds, clipDataIn.fOrigin)) {
                continue;
            }

            getTemp(*devResultBounds, &temp);
            if (NULL == temp.texture()) {
                fAACache.reset();
                return false;
            }

            // this is the bounds of the clip element in the space of the alpha-mask. The temporary
            // mask buffer can be substantially larger than the actually clip stack element. We
            // touch the minimum number of pixels necessary and use decal mode to combine it with
            // the accumulator
            GrRect elementMaskBounds = clip->getBounds();
            elementMaskBounds.offset(clipToMaskOffset);
            GrIRect elementMaskIBounds;
            elementMaskBounds.roundOut(&elementMaskIBounds);

            // clear the temp target & draw into it
            fGpu->clear(&elementMaskIBounds, 0x00000000, temp.texture()->asRenderTarget());

            setup_boolean_blendcoeffs(drawState, SkRegion::kReplace_Op);
            this->drawClipShape(temp.texture(), clip, elementMaskIBounds);

            // Now draw into the accumulator using the real operation
            // and the temp buffer as a texture
            this->mergeMask(accum, temp.texture(), op, maskResultBounds, elementMaskIBounds);
        } else {
            // all the remaining ops can just be directly draw into
            // the accumulation buffer
            setup_boolean_blendcoeffs(drawState, op);
            this->drawClipShape(accum, clip, *devResultBounds);
        }
        accumClearedToZero = false;
    }

    *result = accum;
    fCurrClipMaskType = kAlpha_ClipMaskType;
    return true;
}
Exemplo n.º 7
0
////////////////////////////////////////////////////////////////////////////////
// sort out what kind of clip mask needs to be created: alpha, stencil,
// scissor, or entirely software
bool GrClipMaskManager::createClipMask(GrGpu* gpu, 
                                       const GrClip& clipIn,
                                       ScissoringSettings* scissorSettings) {

    GrAssert(scissorSettings);

    scissorSettings->fEnableScissoring = false;
    fClipMaskInStencil = false;
    fClipMaskInAlpha = false;

    GrDrawState* drawState = gpu->drawState();
    if (!drawState->isClipState()) {
        return true;
    }

    GrRenderTarget* rt = drawState->getRenderTarget();

    // GrDrawTarget should have filtered this for us
    GrAssert(NULL != rt);

#if GR_SW_CLIP
    if (create_mask_in_sw()) {
        // The clip geometry is complex enough that it will be more
        // efficient to create it entirely in software
        GrTexture* result = NULL;
        GrIRect bound;
        if (this->createSoftwareClipMask(gpu, clipIn, &result, &bound)) {
            fClipMaskInAlpha = true;

            setup_drawstate_aaclip(gpu, result, bound);
            return true;
        }
    }
#endif

#if GR_AA_CLIP
    // If MSAA is enabled use the (faster) stencil path for AA clipping
    // otherwise the alpha clip mask is our only option
    if (clipIn.requiresAA() && 0 == rt->numSamples()) {
        // Since we are going to create a destination texture of the correct
        // size for the mask (rather than being bound by the size of the
        // render target) we aren't going to use scissoring like the stencil
        // path does (see scissorSettings below)
        GrTexture* result = NULL;
        GrIRect bound;
        if (this->createAlphaClipMask(gpu, clipIn, &result, &bound)) {
            fClipMaskInAlpha = true;

            setup_drawstate_aaclip(gpu, result, bound);
            return true;
        }

        // if alpha clip mask creation fails fall through to the stencil
        // buffer method
    }
#endif // GR_AA_CLIP

    GrRect bounds;
    GrRect rtRect;
    rtRect.setLTRB(0, 0,
                    GrIntToScalar(rt->width()), GrIntToScalar(rt->height()));
    if (clipIn.hasConservativeBounds()) {
        bounds = clipIn.getConservativeBounds();
        if (!bounds.intersect(rtRect)) {
            bounds.setEmpty();
        }
    } else {
        bounds = rtRect;
    }

    bounds.roundOut(&scissorSettings->fScissorRect);
    if  (scissorSettings->fScissorRect.isEmpty()) {
        scissorSettings->fScissorRect.setLTRB(0,0,0,0);
        // TODO: I think we can do an early exit here - after refactoring try:
        //  set fEnableScissoring to true but leave fClipMaskInStencil false
        //  and return - everything is going to be scissored away anyway!
    }
    scissorSettings->fEnableScissoring = true;

    // use the stencil clip if we can't represent the clip as a rectangle.
    fClipMaskInStencil = !clipIn.isRect() && !clipIn.isEmpty() &&
                         !bounds.isEmpty();

    if (fClipMaskInStencil) {
        return this->createStencilClipMask(gpu, clipIn, bounds, scissorSettings);
    }

    return true;
}
bool GrAAHairLinePathRenderer::createGeom(GrDrawTarget::StageBitfield stages) {

    int rtHeight = fTarget->getRenderTarget()->height();

    GrIRect clip;
    if (fTarget->getClip().hasConservativeBounds()) {
        GrRect clipRect =  fTarget->getClip().getConservativeBounds();
        clipRect.roundOut(&clip);
    } else {
        clip.setLargest();
    }

    // If none of the inputs that affect generation of path geometry have
    // have changed since last previous path draw then we can reuse the
    // previous geoemtry.
    if (stages == fPreviousStages &&
        fPreviousViewMatrix == fTarget->getViewMatrix() &&
        fPreviousTranslate == fTranslate &&
        rtHeight == fPreviousRTHeight &&
        fClipRect == clip) {
        return true;
    }

    GrVertexLayout layout = GrDrawTarget::kEdge_VertexLayoutBit;
    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
        if ((1 << s) & stages) {
            layout |= GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s);
        }
    }

    GrMatrix viewM = fTarget->getViewMatrix();

    PREALLOC_PTARRAY(128) lines;
    PREALLOC_PTARRAY(128) quads;
    IntArray qSubdivs;
    fQuadCnt = generate_lines_and_quads(*fPath, viewM, fTranslate, clip,
                                        &lines, &quads, &qSubdivs);

    fLineSegmentCnt = lines.count() / 2;
    int vertCnt = kVertsPerLineSeg * fLineSegmentCnt + kVertsPerQuad * fQuadCnt;

    GrAssert(sizeof(Vertex) == GrDrawTarget::VertexSize(layout));

    Vertex* verts;
    if (!fTarget->reserveVertexSpace(layout, vertCnt, (void**)&verts)) {
        return false;
    }
    Vertex* base = verts;

    const GrMatrix* toDevice = NULL;
    const GrMatrix* toSrc = NULL;
    GrMatrix ivm;

    if (viewM.hasPerspective()) {
        if (viewM.invert(&ivm)) {
            toDevice = &viewM;
            toSrc = &ivm;
        }
    }

    for (int i = 0; i < fLineSegmentCnt; ++i) {
        add_line(&lines[2*i], rtHeight, toSrc, &verts);
    }

    int unsubdivQuadCnt = quads.count() / 3;
    for (int i = 0; i < unsubdivQuadCnt; ++i) {
        GrAssert(qSubdivs[i] >= 0);
        add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts);
    }

    fPreviousStages = stages;
    fPreviousViewMatrix = fTarget->getViewMatrix();
    fPreviousRTHeight = rtHeight;
    fClipRect = clip;
    fPreviousTranslate = fTranslate;
    return true;
}
Exemplo n.º 9
0
bool GrGpu::setupClipAndFlushState(GrPrimitiveType type) {
    const GrIRect* r = NULL;
    GrIRect clipRect;

    // we check this early because we need a valid
    // render target to setup stencil clipping
    // before even going into flushGraphicsState
    if (NULL == fCurrDrawState.fRenderTarget) {
        GrAssert(!"No render target bound.");
        return false;
    }

    if (fCurrDrawState.fFlagBits & kClip_StateBit) {
        GrRenderTarget& rt = *fCurrDrawState.fRenderTarget;

        GrRect bounds;
        GrRect rtRect;
        rtRect.setLTRB(0, 0,
                       GrIntToScalar(rt.width()), GrIntToScalar(rt.height()));
        if (fClip.hasConservativeBounds()) {
            bounds = fClip.getConservativeBounds();
            bounds.intersectWith(rtRect);
        } else {
            bounds = rtRect;
        }

        bounds.roundOut(&clipRect);
        if  (clipRect.isEmpty()) {
            clipRect.setLTRB(0,0,0,0);
        }
        r = &clipRect;

        fClipState.fClipInStencil = !fClip.isRect() &&
                                    !fClip.isEmpty() &&
                                    !bounds.isEmpty();

        if (fClipState.fClipInStencil &&
            (fClipState.fClipIsDirty ||
             fClip != rt.fLastStencilClip)) {

            rt.fLastStencilClip = fClip;
            // we set the current clip to the bounds so that our recursive
            // draws are scissored to them. We use the copy of the complex clip
            // in the rt to render
            const GrClip& clip = rt.fLastStencilClip;
            fClip.setFromRect(bounds);

            AutoStateRestore asr(this);
            AutoInternalDrawGeomRestore aidgr(this);

            this->setViewMatrix(GrMatrix::I());
            this->eraseStencilClip(clipRect);
            this->flushScissor(NULL);
#if !VISUALIZE_COMPLEX_CLIP
            this->enableState(kNoColorWrites_StateBit);
#else
            this->disableState(kNoColorWrites_StateBit);
#endif
            int count = clip.getElementCount();
            int clipBit = rt.stencilBits();
            clipBit = (1 << (clipBit-1));

            // often we'll see the first two elements of the clip are
            // the full rt size and another element intersected with it.
            // We can skip the first full-size rect and save a big rect draw.
            int firstElement = 0;
            if (clip.getElementCount() > 1 &&
                kRect_ClipType == clip.getElementType(0) &&
                kIntersect_SetOp == clip.getOp(1)&&
                clip.getRect(0).contains(bounds)) {
                firstElement = 1;
            }

            // walk through each clip element and perform its set op
            // with the existing clip.
            for (int c = firstElement; c < count; ++c) {
                GrPathFill fill;
                // enabled at bottom of loop
                this->disableState(kModifyStencilClip_StateBit);

                bool canDrawDirectToClip;
                if (kRect_ClipType == clip.getElementType(c)) {
                    canDrawDirectToClip = true;
                    fill = kEvenOdd_PathFill;
                } else {
                    fill = clip.getPathFill(c);
                    GrPathRenderer* pr = this->getPathRenderer();
                    canDrawDirectToClip = pr->requiresStencilPass(this, clip.getPath(c), fill);
                }

                GrSetOp op = firstElement == c ? kReplace_SetOp : clip.getOp(c);
                int passes;
                GrStencilSettings stencilSettings[GrStencilSettings::kMaxStencilClipPasses];

                canDrawDirectToClip = GrStencilSettings::GetClipPasses(op, canDrawDirectToClip,
                                                                       clipBit, IsFillInverted(fill),
                                                                       &passes, stencilSettings);

                // draw the element to the client stencil bits if necessary
                if (!canDrawDirectToClip) {
                    if (kRect_ClipType == clip.getElementType(c)) {
                        static const GrStencilSettings gDrawToStencil = {
                            kIncClamp_StencilOp, kIncClamp_StencilOp,
                            kIncClamp_StencilOp, kIncClamp_StencilOp,
                            kAlways_StencilFunc, kAlways_StencilFunc,
                            0xffffffff,          0xffffffff,
                            0x00000000,          0x00000000,
                            0xffffffff,          0xffffffff,
                        };
                        this->setStencil(gDrawToStencil);
                        SET_RANDOM_COLOR
                        this->drawSimpleRect(clip.getRect(c), NULL, 0);
                    } else {
                        SET_RANDOM_COLOR
                        getPathRenderer()->drawPathToStencil(this, clip.getPath(c),
                                                             NonInvertedFill(fill),
                                                             NULL);
                    }
                }

                // now we modify the clip bit by rendering either the clip
                // element directly or a bounding rect of the entire clip.
                this->enableState(kModifyStencilClip_StateBit);
                for (int p = 0; p < passes; ++p) {
                    this->setStencil(stencilSettings[p]);
                    if (canDrawDirectToClip) {
                        if (kRect_ClipType == clip.getElementType(c)) {
                            SET_RANDOM_COLOR
                            this->drawSimpleRect(clip.getRect(c), NULL, 0);
                        } else {
                            SET_RANDOM_COLOR
                            getPathRenderer()->drawPath(this, 0,
                                                        clip.getPath(c),
                                                        fill, NULL);
                        }
                    } else {
                        SET_RANDOM_COLOR
                        this->drawSimpleRect(bounds, 0, NULL);
                    }
                }
            }
            fClip = clip;
            // recusive draws would have disabled this.
            fClipState.fClipInStencil = true;
        }

        fClipState.fClipIsDirty = false;
    }

    // Must flush the scissor after graphics state
    if (!this->flushGraphicsState(type)) {
        return false;
    }
    this->flushScissor(r);
    return true;
}
Exemplo n.º 10
0
bool GrAAHairLinePathRenderer::createGeom(
            const SkPath& path,
            const GrVec* translate,
            GrDrawTarget* target,
            GrDrawState::StageMask stageMask,
            int* lineCnt,
            int* quadCnt,
            GrDrawTarget::AutoReleaseGeometry* arg) {
    const GrDrawState& drawState = target->getDrawState();
    int rtHeight = drawState.getRenderTarget()->height();

    GrIRect clip;
    if (target->getClip().hasConservativeBounds()) {
        GrRect clipRect =  target->getClip().getConservativeBounds();
        clipRect.roundOut(&clip);
    } else {
        clip.setLargest();
    }


    GrVertexLayout layout = GrDrawTarget::kEdge_VertexLayoutBit;
    GrMatrix viewM = drawState.getViewMatrix();

    PREALLOC_PTARRAY(128) lines;
    PREALLOC_PTARRAY(128) quads;
    IntArray qSubdivs;
    static const GrVec gZeroVec = {0, 0};
    if (NULL == translate) {
        translate = &gZeroVec;
    }
    *quadCnt = generate_lines_and_quads(path, viewM, *translate, clip,
                                        &lines, &quads, &qSubdivs);

    *lineCnt = lines.count() / 2;
    int vertCnt = kVertsPerLineSeg * *lineCnt + kVertsPerQuad * *quadCnt;

    GrAssert(sizeof(Vertex) == GrDrawTarget::VertexSize(layout));

    if (!arg->set(target, layout, vertCnt, 0)) {
        return false;
    }

    Vertex* verts = reinterpret_cast<Vertex*>(arg->vertices());

    const GrMatrix* toDevice = NULL;
    const GrMatrix* toSrc = NULL;
    GrMatrix ivm;

    if (viewM.hasPerspective()) {
        if (viewM.invert(&ivm)) {
            toDevice = &viewM;
            toSrc = &ivm;
        }
    }

    for (int i = 0; i < *lineCnt; ++i) {
        add_line(&lines[2*i], rtHeight, toSrc, &verts);
    }

    int unsubdivQuadCnt = quads.count() / 3;
    for (int i = 0; i < unsubdivQuadCnt; ++i) {
        GrAssert(qSubdivs[i] >= 0);
        add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts);
    }

    return true;
}
Exemplo n.º 11
0
////////////////////////////////////////////////////////////////////////////////
// sort out what kind of clip mask needs to be created: alpha, stencil,
// scissor, or entirely software
bool GrClipMaskManager::createClipMask(GrGpu* gpu, 
                                       const GrClip& clipIn,
                                       ScissoringSettings* scissorSettings) {

    GrAssert(scissorSettings);

    scissorSettings->fEnableScissoring = false;
    fClipMaskInStencil = false;
    fClipMaskInAlpha = false;

    GrDrawState* drawState = gpu->drawState();
    if (!drawState->isClipState()) {
        return true;
    }

    GrRenderTarget* rt = drawState->getRenderTarget();

    // GrDrawTarget should have filtered this for us
    GrAssert(NULL != rt);

#if GR_SW_CLIP
    // If MSAA is enabled we can do everything in the stencil buffer.
    // Otherwise check if we should just create the entire clip mask 
    // in software (this will only happen if the clip mask is anti-aliased
    // and too complex for the gpu to handle in its entirety)
    if (0 == rt->numSamples() && useSWOnlyPath(gpu, clipIn)) {
        // The clip geometry is complex enough that it will be more
        // efficient to create it entirely in software
        GrTexture* result = NULL;
        GrIRect bound;
        if (this->createSoftwareClipMask(gpu, clipIn, &result, &bound)) {
            fClipMaskInAlpha = true;

            setup_drawstate_aaclip(gpu, result, bound);
            return true;
        }

        // if SW clip mask creation fails fall through to the other
        // two possible methods (bottoming out at stencil clipping)
    }
#endif // GR_SW_CLIP

#if GR_AA_CLIP
    // If MSAA is enabled use the (faster) stencil path for AA clipping
    // otherwise the alpha clip mask is our only option
    if (0 == rt->numSamples() && clipIn.requiresAA()) {
        // Since we are going to create a destination texture of the correct
        // size for the mask (rather than being bound by the size of the
        // render target) we aren't going to use scissoring like the stencil
        // path does (see scissorSettings below)
        GrTexture* result = NULL;
        GrIRect bound;
        if (this->createAlphaClipMask(gpu, clipIn, &result, &bound)) {
            fClipMaskInAlpha = true;

            setup_drawstate_aaclip(gpu, result, bound);
            return true;
        }

        // if alpha clip mask creation fails fall through to the stencil
        // buffer method
    }
#endif // GR_AA_CLIP

    // Either a hard (stencil buffer) clip was explicitly requested or 
    // an antialiased clip couldn't be created. In either case, free up
    // the texture in the antialiased mask cache.
    // TODO: this may require more investigation. Ganesh performs a lot of
    // utility draws (e.g., clears, InOrderDrawBuffer playbacks) that hit
    // the stencil buffer path. These may be "incorrectly" clearing the 
    // AA cache.
    fAACache.reset();

    GrRect bounds;
    GrRect rtRect;
    rtRect.setLTRB(0, 0,
                   GrIntToScalar(rt->width()), GrIntToScalar(rt->height()));
    if (clipIn.hasConservativeBounds()) {
        bounds = clipIn.getConservativeBounds();
        if (!bounds.intersect(rtRect)) {
            bounds.setEmpty();
        }
    } else {
        bounds = rtRect;
    }

    bounds.roundOut(&scissorSettings->fScissorRect);
    if  (scissorSettings->fScissorRect.isEmpty()) {
        scissorSettings->fScissorRect.setLTRB(0,0,0,0);
        // TODO: I think we can do an early exit here - after refactoring try:
        //  set fEnableScissoring to true but leave fClipMaskInStencil false
        //  and return - everything is going to be scissored away anyway!
    }
    scissorSettings->fEnableScissoring = true;

    // use the stencil clip if we can't represent the clip as a rectangle.
    fClipMaskInStencil = !clipIn.isRect() && !clipIn.isEmpty() &&
                         !bounds.isEmpty();

    if (fClipMaskInStencil) {
        return this->createStencilClipMask(gpu, clipIn, bounds, scissorSettings);
    }

    return true;
}