Exemplo n.º 1
0
// version of grouped filter when contributions to ... come from several environment
DataFrame filter_grouped_multiple_env( const GroupedDataFrame& gdf, const List& args, const DataDots& dots){
    const DataFrame& data = gdf.data() ;
    CharacterVector names = data.names() ;
    SymbolSet set ;
    for( int i=0; i<names.size(); i++){
        set.insert( Rf_install( names[i] ) ) ;
    }

    int nrows = data.nrows() ;
    LogicalVector test(nrows, TRUE);

    LogicalVector g_test ;

    for( int k=0; k<args.size(); k++){
        Call call( (SEXP)args[k] ) ;
        GroupedCallProxy call_proxy( call, gdf, dots.envir(k) ) ;
        int ngroups = gdf.ngroups() ;
        GroupedDataFrame::group_iterator git = gdf.group_begin() ;
        for( int i=0; i<ngroups; i++, ++git){
            SlicingIndex indices = *git ;
            int chunk_size = indices.size() ;

            g_test  = call_proxy.get( indices );
            check_filter_result(g_test, chunk_size ) ;
            for( int j=0; j<chunk_size; j++){
                test[ indices[j] ] = test[ indices[j] ] & g_test[j] ;
            }
        }
    }
    DataFrame res = subset( data, test, names, classes_grouped() ) ;
    res.attr( "vars")   = data.attr("vars") ;

    return res ;
}
Exemplo n.º 2
0
DataFrame filter_grouped( const GroupedDataFrame& gdf, List args, Environment env){
    // a, b, c ->  a & b & c
    Language call = and_calls( args ) ;
    
    const DataFrame& data = gdf.data() ;
    int nrows = data.nrows() ;
    LogicalVector test = no_init(nrows);
    
    LogicalVector g_test ;
    GroupedCallProxy call_proxy( call, gdf, env ) ;
    
    int ngroups = gdf.ngroups() ;
    GroupedDataFrame::group_iterator git = gdf.group_begin() ;
    for( int i=0; i<ngroups; i++, ++git){
        SlicingIndex indices = *git ;
        g_test  = call_proxy.get( indices );
        
        int chunk_size = indices.size() ;
        for( int j=0; j<chunk_size; j++){
            test[ indices[j] ] = g_test[j] ;  
        }
    }
    DataFrame res = subset( data, test, data.names(), classes_grouped() ) ;
    res.attr( "vars")   = data.attr("vars") ;
            
    return res ;
}
Exemplo n.º 3
0
DataFrame filter_grouped_single_env( const GroupedDataFrame& gdf, const List& args, const Environment& env){
    const DataFrame& data = gdf.data() ;
    CharacterVector names = data.names() ;
    SymbolSet set ;
    for( int i=0; i<names.size(); i++){
        set.insert( Rf_install( names[i] ) ) ;
    }

    // a, b, c ->  a & b & c
    Call call( and_calls( args, set ) ) ;

    int nrows = data.nrows() ;
    LogicalVector test = no_init(nrows);

    LogicalVector g_test ;
    GroupedCallProxy call_proxy( call, gdf, env ) ;

    int ngroups = gdf.ngroups() ;
    GroupedDataFrame::group_iterator git = gdf.group_begin() ;
    for( int i=0; i<ngroups; i++, ++git){
        SlicingIndex indices = *git ;
        int chunk_size = indices.size() ;

        g_test  = call_proxy.get( indices );
        check_filter_result(g_test, chunk_size ) ;
        for( int j=0; j<chunk_size; j++){
            test[ indices[j] ] = g_test[j] ;
        }
    }

    DataFrame res = subset( data, test, names, classes_grouped() ) ;
    res.attr( "vars")   = data.attr("vars") ;

    return res ;
}
Exemplo n.º 4
0
// [[Rcpp::export]]
IntegerVector grouped_indices_grouped_df_impl(GroupedDataFrame gdf) {
  int n=gdf.nrows();
  IntegerVector res = no_init(n);
  int ngroups = gdf.ngroups();
  GroupedDataFrameIndexIterator it = gdf.group_begin();
  for (int i=0; i<ngroups; i++, ++it) {
    SlicingIndex index = *it;
    int n_index = index.size();
    for (int j=0; j<n_index; j++) {
      res[ index[j] ] = i + 1;
    }
  }
  return res;
}
Exemplo n.º 5
0
// version of grouped filter when contributions to ... come from several environment
DataFrame filter_grouped_multiple_env( const GroupedDataFrame& gdf, const LazyDots& dots){
    const DataFrame& data = gdf.data() ;
    CharacterVector names = data.names() ;
    SymbolSet set ;
    for( int i=0; i<names.size(); i++){
        set.insert( Rf_install( names[i] ) ) ;
    }

    int nrows = data.nrows() ;
    LogicalVector test(nrows, TRUE);

    LogicalVector g_test ;

    for( int k=0; k<dots.size(); k++){
        Rcpp::checkUserInterrupt() ;
        const Lazy& lazy = dots[k] ;
        
        Call call( lazy.expr() ) ;
        GroupedCallProxy<GroupedDataFrame> call_proxy( call, gdf, lazy.env() ) ;
        int ngroups = gdf.ngroups() ;
        GroupedDataFrame::group_iterator git = gdf.group_begin() ;
        for( int i=0; i<ngroups; i++, ++git){
            SlicingIndex indices = *git ;
            int chunk_size = indices.size() ;

            g_test  = check_filter_logical_result(call_proxy.get( indices ));
            if( g_test.size() == 1 ){
                if( g_test[0] != TRUE ){
                    for( int j=0; j<chunk_size; j++){
                        test[indices[j]] = FALSE ;    
                    }
                }
            } else {
                check_filter_result(g_test, chunk_size ) ;
                for( int j=0; j<chunk_size; j++){
                    if( g_test[j] != TRUE ){
                        test[ indices[j] ] = FALSE ;
                    }
                }
            }
        }
    }
    DataFrame res = subset( data, test, names, classes_grouped<GroupedDataFrame>() ) ;
    res.attr( "vars") = data.attr("vars") ;

    return res ;
}
Exemplo n.º 6
0
DataFrame filter_grouped_single_env( const GroupedDataFrame& gdf, const LazyDots& dots){
    typedef GroupedCallProxy<GroupedDataFrame, LazyGroupedSubsets> Proxy ; 
    Environment env = dots[0].env() ;
    
    const DataFrame& data = gdf.data() ;
    CharacterVector names = data.names() ;
    SymbolSet set ;
    for( int i=0; i<names.size(); i++){
        set.insert( Rf_install( names[i] ) ) ;
    }

    // a, b, c ->  a & b & c
    Call call( and_calls( dots, set, env ) ) ;

    int nrows = data.nrows() ;
    LogicalVector test(nrows, TRUE);

    LogicalVector g_test ;
    Proxy call_proxy( call, gdf, env ) ;

    int ngroups = gdf.ngroups() ;
    GroupedDataFrame::group_iterator git = gdf.group_begin() ;
    for( int i=0; i<ngroups; i++, ++git){
        SlicingIndex indices = *git ;
        int chunk_size = indices.size() ;
        
        g_test = check_filter_logical_result( call_proxy.get( indices ) ) ;
        if( g_test.size() == 1 ){
            int val = g_test[0] == TRUE ;
            for( int j=0; j<chunk_size; j++){
                test[ indices[j] ] = val ;
            }
        } else {
            check_filter_result(g_test, chunk_size ) ;
            for( int j=0; j<chunk_size; j++){
                if( g_test[j] != TRUE ) test[ indices[j] ] = FALSE ;
            }
        }
    }
    DataFrame res = subset( data, test, names, classes_grouped<GroupedDataFrame>() ) ;
    res.attr( "vars")   = data.attr("vars") ;

    return res ;
}
Exemplo n.º 7
0
SEXP slice_grouped(GroupedDataFrame gdf, const LazyDots& dots) {
  typedef GroupedCallProxy<GroupedDataFrame, LazyGroupedSubsets> Proxy;

  const DataFrame& data = gdf.data();
  const Lazy& lazy = dots[0];
  Environment env = lazy.env();
  SymbolVector names = data.names();

  // we already checked that we have only one expression
  Call call(lazy.expr());

  std::vector<int> indx;
  indx.reserve(1000);

  IntegerVector g_test;
  Proxy call_proxy(call, gdf, env);

  int ngroups = gdf.ngroups();
  GroupedDataFrame::group_iterator git = gdf.group_begin();
  for (int i=0; i<ngroups; i++, ++git) {
    const SlicingIndex& indices = *git;
    int nr = indices.size();
    g_test = check_filter_integer_result(call_proxy.get(indices));
    CountIndices counter(indices.size(), g_test);

    if (counter.is_positive()) {
      // positive indexing
      int ntest = g_test.size();
      for (int j=0; j<ntest; j++) {
        if (!(g_test[j] > nr || g_test[j] == NA_INTEGER)) {
          indx.push_back(indices[g_test[j]-1]);
        }
      }
    } else if (counter.get_n_negative() != 0) {
      // negative indexing
      std::set<int> drop;
      int n = g_test.size();
      for (int j=0; j<n; j++) {
        if (g_test[j] != NA_INTEGER)
          drop.insert(-g_test[j]);
      }
      int n_drop = drop.size();
      std::set<int>::const_iterator drop_it = drop.begin();

      int k = 0, j = 0;
      while (drop_it != drop.end()) {
        int next_drop = *drop_it - 1;
        while (j < next_drop) {
          indx.push_back(indices[j++]);
          k++;
        }
        j++;
        ++drop_it;
      }
      while (k < nr - n_drop) {
        indx.push_back(indices[j++]);
        k++;
      }

    }
  }
  DataFrame res = subset(data, indx, names, classes_grouped<GroupedDataFrame>());
  set_vars(res, get_vars(data));
  strip_index(res);

  return GroupedDataFrame(res).data();

}
Exemplo n.º 8
0
//[[Rcpp::export]]
DataFrame complement_impl(GroupedDataFrame gdf, DataFrame genome) {

  genome_map_t chrom_sizes = makeChromSizes(genome) ;

  DataFrame df = gdf.data() ;

  IntegerVector starts = df["start"] ;
  IntegerVector ends = df["end"] ;
  CharacterVector chroms = df["chrom"] ;

  std::vector<std::string> chroms_out ;
  std::vector<int> starts_out ;
  std::vector<int> ends_out ;

  int ngroups = gdf.ngroups() ;
  GroupedDataFrame::group_iterator git = gdf.group_begin() ;
  for (int i = 0; i < ngroups; ++i, ++git) {

    SlicingIndex indices = *git ;
    int ni = indices.size() ;

    int start, end ;
    int last_end = 1 ;

    // get chrom from first index
    auto chrom = as<std::string>(chroms[indices[0]]) ;

    for (int j = 0; j < ni; ++j) {

      start = starts[indices[j]] ;
      end = ends[indices[j]] ;

      if (j == 0) {
        if (start == 1) {
          last_end = end ;
          continue ;
        } else {
          chroms_out.push_back(chrom) ;
          starts_out.push_back(1) ;
          ends_out.push_back(start) ;
        }
      } else {
        chroms_out.push_back(chrom) ;
        starts_out.push_back(last_end) ;
        ends_out.push_back(start) ;
      }

      last_end = end;
    }

    auto chrom_size = chrom_sizes[chrom] ;

    if (last_end < chrom_size) {
      chroms_out.push_back(chrom) ;
      starts_out.push_back(last_end) ;
      ends_out.push_back(chrom_size) ;
    }
  }

  return DataFrame::create(_("chrom") = chroms_out,
                           _("start") = starts_out,
                           _("end") = ends_out,
                           _("stringsAsFactors") = false) ;
}