Exemplo n.º 1
0
		/**
		*  @brief
		*    Constructor
		*
		*  @param[in]  cOldImageBuffer
		*    Old image buffer (MUST have valid data)
		*  @param[out] cImageBuffer
		*    Image buffer (MUST have valid data)
		*  @param[in]  nNewWidth
		*    New width
		*  @param[in]  nNewHeight
		*    New height
		*  @param[in]  nOldWidth
		*    Old height
		*  @param[in]  nOldHeight
		*    Old height
		*  @param[in]  mFilter
		*    Filter matrix
		*/
		ScaleDownData(const ImageBuffer &cOldImageBuffer, ImageBuffer &cImageBuffer, uint32 nNewWidth, uint32 nNewHeight, uint32 nOldWidth, uint32 nOldHeight, const Matrix3x3 &mFilter)
		{
			// [TODO] Resize images in linear space instead of gamma space! Maybe we should add image space information to a image so we now in which space the image data is stored? (linear, gamma...)

			// Scale factors
			const float fToOriginalWidthFactor  = static_cast<float>(nOldWidth) /nNewWidth;
			const float fToOriginalHeightFactor = static_cast<float>(nOldHeight)/nNewHeight;

			// Get the number of components
			const uint32 nNumOfComponents = cOldImageBuffer.GetComponentsPerPixel();

			// Loop through all components
				  DataType *pNewData = reinterpret_cast<DataType*>(cImageBuffer.GetData());
			const DataType *pOldData = reinterpret_cast<const DataType*>(cOldImageBuffer.GetData());
			for (uint32 nComponent=0; nComponent<nNumOfComponents; nComponent++) {
				// Loop through x
				for (uint32 nX=0; nX<nNewWidth; nX++) {
					// Loop through y
					for (uint32 nY=0; nY<nNewHeight; nY++) {
						// Get the original byte
						const uint32 nOriginalX = static_cast<uint32>(nX*fToOriginalWidthFactor);
						const uint32 nOriginalY = static_cast<uint32>(nY*fToOriginalHeightFactor);

						// Sum up
						double fSum      = 0.0f;
						double fTotalSum = 0.0f;
						for (uint32 nFilterX=0; nFilterX<3; nFilterX++) {
							for (uint32 nFilterY=0; nFilterY<3; nFilterY++) {
								// Get the current position on the original image
								const int nCurrentX = (nOriginalX-1) + nFilterX;
								const int nCurrentY = (nOriginalY-1) + nFilterY;

								// Is this current position inside the original image?
								if (nCurrentX >= 0 && nCurrentY >= 0 &&
									nCurrentX < static_cast<int>(nOldWidth) && nCurrentY < static_cast<int>(nOldHeight)) {
									// Jap, get the factor to use this component with
									const float fFactor = mFilter.fM33[nFilterX][nFilterY];

									// Now we've got one more component within our sum
									fTotalSum += fFactor;

									// Get the component value of the original image
									const DataType nOriginalByte = pOldData[(nCurrentY*nOldWidth + nCurrentX)*nNumOfComponents + nComponent];

									// Add component value of the original image with the given factor
									fSum += nOriginalByte*fFactor;
								}
							}
						}

						// Set new byte
						pNewData[(nY*nNewWidth + nX)*nNumOfComponents + nComponent] = DataType(fSum/fTotalSum);
					}
				}
			}
		}
Exemplo n.º 2
0
//[-------------------------------------------------------]
//[ Private virtual TextureCreator functions              ]
//[-------------------------------------------------------]
Texture *TextureCreatorSpot2D::Create(TextureManager &cTextureManager, Texture *pTexture) const
{
	// Create the texture
	pTexture = CreateTexture(cTextureManager, pTexture);

	// Create the image
	Image cImage = Image::CreateImage(DataByte, ColorGrayscale, Vector3i(Width, Height, 1));
	ImageBuffer *pImageBuffer = cImage.GetBuffer();

	// Create the texture data
	const float fWidthHalf  = static_cast<float>(Width/2)-0.5f;
	const float fHeightHalf = static_cast<float>(Height/2)-0.5f;
	uint8 *pData = pImageBuffer->GetData();
	for (uint32 j=0; j<Width; j++) {
		for (uint32 i=0; i<Height; i++) {
			const float x = (i - fWidthHalf)/fWidthHalf;
			const float y = (j - fHeightHalf)/fHeightHalf;

			const float ls = Math::Max(1 - (x*x + y*y), 0.0f);
			pData[j*Width+i] = static_cast<uint8>(Brightness*ls);
		}
	}

	// Create the 2D texture buffer
	pTexture->SetTextureBuffer(reinterpret_cast<TextureBuffer*>(cTextureManager.GetRendererContext().GetRenderer().CreateTextureBuffer2D(cImage)));

	// Return the created texture
	return pTexture;
}
Exemplo n.º 3
0
bool ImageLoaderJPG::LoadParams(Image &cImage, File &cFile, bool bBlockSmoothing, bool bFancyUpsampling)
{
    jpeg_decompress_struct sInfo;
    jpeg_error_mgr sError;

    sInfo.err = jpeg_std_error(&sError);
    sInfo.err->error_exit = ExitErrorHandle;

    jpeg_create_decompress(&sInfo);

    // Set the user given parameters
    sInfo.do_block_smoothing  = bBlockSmoothing;
    sInfo.do_fancy_upsampling = bFancyUpsampling;

    jpeg_read_init(&sInfo, &cFile);

    jpeg_read_header(&sInfo, TRUE);
    jpeg_start_decompress(&sInfo);

    // Get the color format
    EColorFormat nColorFormat;
    switch (sInfo.num_components) {
    case 1:
        nColorFormat = ColorGrayscale;
        break;

    case 3:
        nColorFormat = ColorRGB;
        break;

    case 4:
        nColorFormat = ColorRGBA;
        break;

    default:
        // Error: Unsupported color format
        return false;
    }

    // Create image buffer
    ImageBuffer *pImageBuffer = cImage.CreatePart()->CreateMipmap();
    pImageBuffer->CreateImage(DataByte, nColorFormat, Vector3i(sInfo.output_width, sInfo.output_height, 1));

    // Read in the data
    uint8 *pCurrentData = pImageBuffer->GetData();
    while (sInfo.output_scanline < sInfo.output_height) {
        jpeg_read_scanlines(&sInfo, &pCurrentData, 1);
        pCurrentData += pImageBuffer->GetBytesPerRow();
    }

    // Cleanup
    jpeg_finish_decompress(&sInfo);
    jpeg_destroy_decompress(&sInfo);

    // Done
    return true;
}
//[-------------------------------------------------------]
//[ Public RTTI methods                                   ]
//[-------------------------------------------------------]
bool TransferFunctionLoaderTABLE::Load(TransferFunction &cTransferFunction, File &cFile)
{
	// Get the image holding the transfer function
	Image &cImage = cTransferFunction.GetImage();

	// A "table"-file (simple ASCII) looks like this
	/*
		1 1 1 1
		baseOpacity: 0.698039
		NoTags
		0 0 0 0
		. . . .
		. . . .
		. . . .
	*/

	// Use the tokenizer in order to gather all required information, ignore the rest
	// Startup the tokenizer
	Tokenizer cTokenizer;
	cTokenizer.Start(cFile.GetContentAsString());

	// Ignore the first line ("1 1 1 1")
	cTokenizer.GetNextToken();
	cTokenizer.GetNextToken();
	cTokenizer.GetNextToken();
	cTokenizer.GetNextToken();

	// Ignore base opacity ("baseOpacity: 0.698039")
	cTokenizer.GetNextToken();
	cTokenizer.GetNextToken();

	// Ignore tags to keep this loader simple ("NoTags")
	cTokenizer.GetNextToken();

	// Create image buffer
	ImageBuffer *pImageBuffer = cImage.CreatePart()->CreateMipmap();
	pImageBuffer->CreateImage(DataByte, ColorRGBA, Vector3i(256, 1, 1));

	// Read in the palette
	uint8 *pImageData = pImageBuffer->GetData();
	for (uint32 i=0; i<256; i++) {
		// Read RGBA entry
		*pImageData = cTokenizer.GetNextToken().GetUInt8();
		pImageData++;
		*pImageData = cTokenizer.GetNextToken().GetUInt8();
		pImageData++;
		*pImageData = cTokenizer.GetNextToken().GetUInt8();
		pImageData++;
		*pImageData = cTokenizer.GetNextToken().GetUInt8();
		pImageData++;
	}

	// Done
	return true;
}
Exemplo n.º 5
0
//[-------------------------------------------------------]
//[ Global functions                                      ]
//[-------------------------------------------------------]
// [TODO] This is just an experimental half image scale function without any filter - better as nothing for now!
void ScaleDownHalfData(const ImageBuffer &cOldImageBuffer, ImageBuffer &cImageBuffer, uint32 nNewWidth, uint32 nNewHeight, uint32 nOldWidth, uint32 nOldHeight, const Matrix3x3 &mFilter)
{
	// Scale factors
	const float fToOriginalWidthFactor  = static_cast<float>(nOldWidth) /nNewWidth;
	const float fToOriginalHeightFactor = static_cast<float>(nOldHeight)/nNewHeight;

	// Get the number of components
	const uint32 nNumOfComponents = cOldImageBuffer.GetComponentsPerPixel();

	// Loop through all components
		  short *pNewData = reinterpret_cast<short*>(cImageBuffer.GetData());
	const short *pOldData = reinterpret_cast<const short*>(cOldImageBuffer.GetData());
	for (uint32 nComponent=0; nComponent<nNumOfComponents; nComponent++) {
		// Loop through x
		for (uint32 nX=0; nX<nNewWidth; nX++) {
			// Loop through y
			for (uint32 nY=0; nY<nNewHeight; nY++) {
				// Get the original byte
				const uint32 nOriginalX = static_cast<uint32>(nX*fToOriginalWidthFactor);
				const uint32 nOriginalY = static_cast<uint32>(nY*fToOriginalHeightFactor);

				// Get data
				short nOriginalByte = 0;
				{
					// Get the current position on the original image
					const int nCurrentX = (nOriginalX-1) + 1;
					const int nCurrentY = (nOriginalY-1) + 1;

					// Is this current position inside the original image?
					if (nCurrentX >= 0 && nCurrentY >= 0 &&
						nCurrentX < static_cast<int>(nOldWidth) && nCurrentY < static_cast<int>(nOldHeight)) {
						// Get the component value of the original image
						nOriginalByte = pOldData[(nCurrentY*nOldWidth + nCurrentX)*nNumOfComponents + nComponent];
					}
				}

				// Set new byte
				pNewData[(nY*nNewWidth + nX)*nNumOfComponents + nComponent] = nOriginalByte;
			}
		}
	}
}
Exemplo n.º 6
0
bool ImageLoaderPVM::Save(const Image &cImage, File &cFile)
{
	// Get image buffer, we only support the data type "byte" and "word"
	ImageBuffer *pImageBuffer = cImage.GetBuffer();
	if (pImageBuffer && (pImageBuffer->GetDataFormat() == DataByte || pImageBuffer->GetDataFormat() == DataWord)) {
		// Save the data
		const Vector3i &vSize = pImageBuffer->GetSize();
		writePVMvolume(cFile.GetUrl().GetNativePath().GetASCII(), pImageBuffer->GetData(), vSize.x, vSize.y, vSize.z, (pImageBuffer->GetDataFormat() == DataByte) ? 1 : 2);

		// Done
		return true;
	}

	// Error!
	return false;
}
Exemplo n.º 7
0
bool VolumeLoaderDAT::Save(const Volume &cVolume, File &cFile)
{
	// Get the image holding the volumetric data
	const Image &cImage = cVolume.GetVolumeImage();

	// Get image buffer, we only support the data type "byte" and "word"
	ImageBuffer *pImageBuffer = cImage.GetBuffer();
	if (pImageBuffer && (pImageBuffer->GetDataFormat() == DataByte || pImageBuffer->GetDataFormat() == DataWord)) {
		const Vector3i &vSize = pImageBuffer->GetSize();

		// Construct the object filename
		const String sObjectFilename = cFile.GetUrl().GetTitle() + ".raw";

		// A "dat"-file has simple ASCII content
		cFile.PutS("ObjectFileName: " + sObjectFilename + '\n');	// Example:	"ObjectFileName: Teddybear.raw"
		cFile.PutS("TaggedFileName: ---\n");						// Example:	"TaggedFileName: ---"
		cFile.PutS("Resolution:     " + vSize.ToString() + '\n');	// Example:	"Resolution:     128 128 62"
		cFile.PutS("SliceThickness: 1 1 1\n");						// Example:	"SliceThickness: 2.8 2.8 5"
		if (pImageBuffer->GetDataFormat() == DataByte)				// Example:	"Format:         UCHAR"
			cFile.PutS("Format:         UCHAR\n");
		else
			cFile.PutS("Format:         USHORT\n");
		cFile.PutS("NbrTags:        0\n");							// Example:	"NbrTags:        0"
		cFile.PutS("ObjectType:     TEXTURE_VOLUME_OBJECT\n");		// Example:	"ObjectType:     TEXTURE_VOLUME_OBJECT"
		cFile.PutS("ObjectModel:    RGBA\n");						// Example:	"ObjectModel:    RGBA"
		cFile.PutS("GridType:       EQUIDISTANT\n");				// Example:	"GridType:       EQUIDISTANT"

		{ // Raw data...
			// Get the absolute filename of the raw file
			const String sFilename = cFile.GetUrl().CutFilename() + sObjectFilename;

			// Open the raw file
			File cRawFile(sFilename);
			if (cRawFile.Open(File::FileCreate | File::FileWrite)) {
				// Save the data
				cRawFile.Write(pImageBuffer->GetData(), 1, pImageBuffer->GetDataSize());

				// Done
				return true;
			}
		}
	}

	// Error!
	return false;
}
//[-------------------------------------------------------]
//[ Private virtual TextureCreator functions              ]
//[-------------------------------------------------------]
Texture *TextureCreatorTurbulence3D::Create(TextureManager &cTextureManager, Texture *pTexture) const
{
	// Create the texture
	pTexture = CreateTexture(cTextureManager, pTexture);

	// Get scale
	const Vector3 &vScale = Scale.Get();

	// Create the image
	Image cImage = Image::CreateImage(DataByte, ColorGrayscale, Vector3i(XSize, YSize, ZSize));
	ImageBuffer *pImageBuffer = cImage.GetBuffer();

	// Create the buffer
	uint8 *pTurbBuffer = pImageBuffer->GetData();
	uint8 *pDest = pTurbBuffer;
	uint32 nMin = 255, nMax = 0;
	for (uint32 nZ=0; nZ<ZSize; nZ++) {
		for (uint32 nY=0; nY<YSize; nY++) {
			for (uint32 nX=0; nX<XSize; nX++) {
				const uint8 nT = static_cast<uint8>(127.5f*(1 + PerlinNoiseTurbulence::TileableTurbulence3(vScale.x*nX, vScale.y*nY, vScale.z*nZ, XSize*vScale.x, YSize*vScale.y, ZSize*vScale.z, 16)));
				if (nT > nMax)
					nMax = nT;
				if (nT < nMin)
					nMin = nT;
				*pDest++ = nT;
			}
		}
	}
	const uint32 nNumOfPixels = XSize*YSize*ZSize;
	pDest = pTurbBuffer;
	for (uint32 i=0; i<nNumOfPixels; i++, pDest++)
		*pDest = static_cast<uint8>((255*(*pDest - nMin))/(nMax - nMin));

	// Create the 3D texture buffer
	pTexture->SetTextureBuffer(reinterpret_cast<TextureBuffer*>(cTextureManager.GetRendererContext().GetRenderer().CreateTextureBuffer3D(cImage)));

	// Return the created texture
	return pTexture;
}
Exemplo n.º 9
0
//[-------------------------------------------------------]
//[ Private virtual PLScene::SceneNode functions          ]
//[-------------------------------------------------------]
void PGImage::InitFunction()
{
	// Call base implementation
	SNParticleGroup::InitFunction();

	// Load image
	Image cImage;
	if (cImage.LoadByFilename(ImageFilename.Get())) {
		// Get the image buffer
		ImageBuffer *pImageBuffer = cImage.GetBuffer();
		if (pImageBuffer) {
			const uint32  nWidth		   = pImageBuffer->GetSize().x;
			const uint32  nHeight		   = pImageBuffer->GetSize().y;
			const uint32  nPixels		   = nWidth*nHeight;
			const uint8  *pData			   = pImageBuffer->GetData();
			const uint32  nColorComponents = pImageBuffer->GetComponentsPerPixel();
			if (nColorComponents == 3 || nColorComponents == 4) {
				// Get total number of required particles
				uint32 nParticles = 0;
				for (uint32 i=0; i<nPixels; i++) {
					// Place particle at this image position?
					uint8 nDifR = static_cast<uint8>(Math::Abs(pData[0]-RedColorKey));
					uint8 nDifG = static_cast<uint8>(Math::Abs(pData[1]-GreenColorKey));
					uint8 nDifB = static_cast<uint8>(Math::Abs(pData[2]-BlueColorKey));
					if (!(nDifR <= ColorKeyTolerance && nDifG <= ColorKeyTolerance && nDifB <= ColorKeyTolerance))
						nParticles++; // A particle here, please
					pData += nColorComponents;
				}
				pData = pImageBuffer->GetData();

				// Create the particles
				InitParticles(nParticles);

				// Setup the particles
				for (int nY=nHeight-1; nY>=0; nY--) {
					for (uint32 nX=0; nX<nWidth; nX++) {
						// Place particle at this image position?
						uint8 nDifR = static_cast<uint8>(Math::Abs(pData[0]-RedColorKey));
						uint8 nDifG = static_cast<uint8>(Math::Abs(pData[1]-GreenColorKey));
						uint8 nDifB = static_cast<uint8>(Math::Abs(pData[2]-BlueColorKey));
						if (nDifR <= ColorKeyTolerance && nDifG <= ColorKeyTolerance && nDifB <= ColorKeyTolerance) {
							// No particle here, please
							pData += nColorComponents;
						} else {
							// Setup particle
							Particle *pParticle = AddParticle();
							if (pParticle) {
								pParticle->vColor.r = pData[0]/255.0f;
								pParticle->vColor.g = pData[1]/255.0f;
								pParticle->vColor.b = pData[2]/255.0f;
								pParticle->vColor.a = nColorComponents == 4 ? pData[3]/255.0f : 1.0f;
								pData += nColorComponents;
								pParticle->fEnergy  = 1.0f;
								pParticle->fCustom2 = 0.5f+Math::GetRandFloat()*2.0f;
								if (Math::GetRandFloat() > 0.5f)
									pParticle->fCustom2 = -pParticle->fCustom2;
								pParticle->fSize = (1.0f+(static_cast<float>(Math::GetRand() % 1000)/500))*ImageScale;
								pParticle->vPos.x = pParticle->vFixPos.x = pParticle->vDistortion.x = static_cast<float>(nX*ImageScale);
								pParticle->vPos.y = pParticle->vFixPos.y = pParticle->vDistortion.y = static_cast<float>(nY*ImageScale);
								pParticle->vPos.z = pParticle->vFixPos.z = pParticle->vDistortion.z = 0.0f;
								pParticle->fCustom1 = pParticle->fSize;
								pParticle->fCustom2 *= 2;
							} else {
								// Error!
								nY = nHeight;
								nX = nWidth;
							}
						}
					}
				}
			}
		}
	}
}
Exemplo n.º 10
0
bool ImageLoaderJPG::SaveParams(const Image &cImage, File &cFile, uint32 nQuality)
{
    // Get the image buffer
    ImageBuffer *pImageBuffer = cImage.GetBuffer();
    if (pImageBuffer && pImageBuffer->GetBytesPerRow()) {
        // We only support 1 or 3 byte per pixel component
        if (pImageBuffer->GetBytesPerPixelComponent() == 1 || pImageBuffer->GetBytesPerPixelComponent() == 3) {
            jpeg_compress_struct sInfo;
            jpeg_error_mgr sError;

            sInfo.err = jpeg_std_error(&sError);
            sInfo.err->error_exit = ExitErrorHandle;
            jpeg_create_compress(&sInfo);

            const int nComponents = pImageBuffer->GetComponentsPerPixel();

            sInfo.in_color_space = (nComponents == 1)? JCS_GRAYSCALE : JCS_RGB;
            jpeg_set_defaults(&sInfo);

            sInfo.input_components	= nComponents;
            sInfo.num_components	= (nComponents == 1) ? 1 : 3;
            sInfo.image_width		= pImageBuffer->GetSize().x;
            sInfo.image_height		= pImageBuffer->GetSize().y;
            sInfo.data_precision	= 8;
            sInfo.input_gamma		= 1.0;

            // Set the user given parameter
            jpeg_set_quality(&sInfo, nQuality, FALSE);

            jpeg_write_init(&sInfo, &cFile);
            jpeg_start_compress(&sInfo, TRUE);

            // Is the input image RGBA? If so, we really need to throw away the alpha channel...
            if (nComponents == 4) {
                // Allocate memory for an converted output row
                uint8 *pOutputRow = new uint8[sInfo.image_width*sInfo.num_components];

                // Write the data
                const uint8 *pCurrentImageData = pImageBuffer->GetData();
                for (uint32 y=0; y<sInfo.image_height; y++) {
                    // Convert the current row
                    for (uint32 x=0; x<sInfo.image_width; x++) {
                        const uint8 *pnPixelIn = &pCurrentImageData[x*4];
                        uint8 *pnPixelOut = &pOutputRow[x*3];
                        pnPixelOut[0] = pnPixelIn[0];
                        pnPixelOut[1] = pnPixelIn[1];
                        pnPixelOut[2] = pnPixelIn[2];
                    }

                    // Write out the current row
                    jpeg_write_scanlines(&sInfo, &pOutputRow, 1);

                    // Next, please
                    pCurrentImageData += pImageBuffer->GetBytesPerRow();
                }

                // Free the allocated output row memory
                delete [] pOutputRow;
            } else {
                // Write the data
                uint8 *pCurrentImageData = pImageBuffer->GetData();
                for (uint32 y=0; y<sInfo.image_height; y++) {
                    jpeg_write_scanlines(&sInfo, &pCurrentImageData, 1);
                    pCurrentImageData += pImageBuffer->GetBytesPerRow();
                }
            }

            // Cleanup
            jpeg_finish_compress(&sInfo);
            jpeg_destroy_compress(&sInfo);

            // Done
            return true;
        } else {
            // Error: Unsupported number of bytes per pixel component
        }
    } else {
        // Error: Failed to get image buffer
    }

    // Error!
    return false;
}
Exemplo n.º 11
0
//[-------------------------------------------------------]
//[ Public RTTI methods                                   ]
//[-------------------------------------------------------]
bool VolumeLoaderDAT::Load(Volume &cVolume, File &cFile)
{
	Url cObjectFilename;
	Vector3i vResolution;
	EDataFormat nFormat = DataByte;

	// Get the image holding the volumetric data
	Image &cImage = cVolume.GetVolumeImage();

	{ // Use the tokenizer in order to gather all required information, ignore the rest
		// A "dat"-file (simple ASCII) looks like this
		/*
			ObjectFileName: Teddybear.raw
			TaggedFileName: ---
			Resolution:     128 128 62
			SliceThickness: 2.8 2.8 5
			Format:         UCHAR
			NbrTags:        0
			ObjectType:     TEXTURE_VOLUME_OBJECT
			ObjectModel:    RGBA
			GridType:       EQUIDISTANT
		*/

		// Startup the tokenizer
		Tokenizer cTokenizer;
		cTokenizer.Start(cFile.GetContentAsString());

		// Loop through all tokens
		String sToken = cTokenizer.GetNextToken();
		while (sToken.GetLength()) {
			// ObjectFileName
			if (sToken == "ObjectFileName:") {
				// The file format specification says:
				//	"The object file name refers to the name of the data file, which contains the raw voxel data.
				//	 This can be either an absolute path or a relative path with respect to the storage position of the dat file."

				// Get the value
				cObjectFilename = cTokenizer.GetNextToken();

			// Resolution
			} else if (sToken == "Resolution:") {
				// The file format specification says:
				//	"The volume data set consists of a large array of voxel values. The resolution of the data set is given
				//	 by the number of voxels in x-, y- and z- direction."

				// Get the values
				vResolution.x = cTokenizer.GetNextToken().GetInt();
				vResolution.y = cTokenizer.GetNextToken().GetInt();
				vResolution.z = cTokenizer.GetNextToken().GetInt();

			// SliceThickness
			} else if (sToken == "SliceThickness:") {
				// The file format specification says:
				//	"The size of one voxel in x-, y- and z- direction (usually in millimeters)."

				//						  mm to cm    cm to m
				static const float Scale = 0.1f    *   0.01f;

				// Get the values
				Vector3 vSliceThickness;
				vSliceThickness.x = cTokenizer.GetNextToken().GetFloat()*Scale;
				vSliceThickness.y = cTokenizer.GetNextToken().GetFloat()*Scale;
				vSliceThickness.z = cTokenizer.GetNextToken().GetFloat()*Scale;

				// Set the size of one voxel (without metric, but usually one unit is equal to one meter)
				cVolume.SetVoxelSize(vSliceThickness);

			// Format
			} else if (sToken == "Format:") {
				// The file format specification says:
				//	"The data format of one voxel. Can be either UCHAR (8 bit) or USHORT (16 bit)."

				// Get the value
				const String sFormat = cTokenizer.GetNextToken();
				if (sFormat == "UCHAR")
					nFormat = DataByte;	// Byte (8 bit)
				else if (sFormat == "USHORT")
					nFormat = DataWord;	// Word (16 bit)
			}

			// Next token, please
			sToken = cTokenizer.GetNextToken();
		}
	}

	// Valid settings? If so, open and read in the raw data...
	if (!cObjectFilename.IsEmpty() && vResolution.x > 0 && vResolution.y > 0 && vResolution.z > 0) {
		// The file format specification says:
		//	"The data file simply contains the raw voxel data as a large binary array which is indexed as
		//	 voxel(x,y,z) = array[z * YDIM * XDIM + y * XDIM + x],
		//	 with XDIM, YDIM and ZDIM referring to the resolution of the data set, as specified in line 3
		//	 of the header file. For 16 bit data, the data may be stored either in big endian or little endian format."
		//	-> We expect "Little Endian First"

		// Get the filename of the raw file
		const String sRawFilename = cObjectFilename.IsAbsolute() ? cObjectFilename.GetUrl() : (cFile.GetUrl().CutFilename() + cObjectFilename.GetUrl());

		// Open the raw file
		File cRawFile(sRawFilename);
		if (cRawFile.Open(File::FileRead)) {
			// Create image buffer
			ImageBuffer *pImageBuffer = cImage.CreatePart()->CreateMipmap();
			pImageBuffer->CreateImage(nFormat, ColorGrayscale, vResolution);

			// Read the data
			cRawFile.Read(pImageBuffer->GetData(), 1, pImageBuffer->GetDataSize());

			// Load the transfer function by using "<filename>.table", or at least try it
			cVolume.GetTransferFunction().LoadByFilename(cFile.GetUrl().CutExtension() + ".table");

			// Done
			return true;
		}
	}

	// Error!
	return false;
}