Exemplo n.º 1
0
bool ASMs2DLag::integrate (Integrand& integrand, int lIndex,
			   GlobalIntegral& glInt,
			   const TimeDomain& time)
{
  if (this->empty()) return true; // silently ignore empty patches

  // Get Gaussian quadrature points and weights
  int nG1 = this->getNoGaussPt(lIndex%10 < 3 ? p1 : p2, true);
  int nGP = integrand.getBouIntegrationPoints(nG1);
  const double* xg = GaussQuadrature::getCoord(nGP);
  const double* wg = GaussQuadrature::getWeight(nGP);
  if (!xg || !wg) return false;

  // Find the parametric direction of the edge normal {-2,-1, 1, 2}
  const int edgeDir = (lIndex%10+1)/((lIndex%2) ? -2 : 2);

  const int t1 = abs(edgeDir); // tangent direction normal to the patch edge
  const int t2 = 3-t1;         // tangent direction along the patch edge

  // Number of elements in each direction
  const int nelx = (nx-1)/(p1-1);
  const int nely = (ny-1)/(p2-1);

  // Get parametric coordinates of the elements
  FiniteElement fe(p1*p2);
  RealArray upar, vpar;
  if (t1 == 1)
  {
    fe.u = edgeDir < 0 ? surf->startparam_u() : surf->endparam_u();
    this->getGridParameters(vpar,1,1);
  }
  else if (t1 == 2)
  {
    this->getGridParameters(upar,0,1);
    fe.v = edgeDir < 0 ? surf->startparam_v() : surf->endparam_v();
  }

  // Extract the Neumann order flag (1 or higher) for the integrand
  integrand.setNeumannOrder(1 + lIndex/10);

  // Integrate the extraordinary elements?
  size_t doXelms = 0;
  if (integrand.getIntegrandType() & Integrand::XO_ELEMENTS)
    if ((doXelms = nelx*nely)*2 > MNPC.size())
    {
      std::cerr <<" *** ASMs2DLag::integrate: Too few XO-elements "
                << MNPC.size() - doXelms << std::endl;
      return false;
    }

  std::map<char,size_t>::const_iterator iit = firstBp.find(lIndex%10);
  size_t firstp = iit == firstBp.end() ? 0 : iit->second;

  Matrix dNdu, Xnod, Jac;
  Vec4   X;
  Vec3   normal;
  double xi[2];


  // === Assembly loop over all elements on the patch edge =====================

  int iel = 1;
  for (int i2 = 0; i2 < nely; i2++)
    for (int i1 = 0; i1 < nelx; i1++, iel++)
    {
      // Skip elements that are not on current boundary edge
      bool skipMe = false;
      switch (edgeDir)
	{
	case -1: if (i1 > 0)      skipMe = true; break;
	case  1: if (i1 < nelx-1) skipMe = true; break;
	case -2: if (i2 > 0)      skipMe = true; break;
	case  2: if (i2 < nely-1) skipMe = true; break;
	}
      if (skipMe) continue;

      // Set up nodal point coordinates for current element
      if (!this->getElementCoordinates(Xnod,iel)) return false;

      // Initialize element quantities
      fe.iel = abs(MLGE[doXelms+iel-1]);
      LocalIntegral* A = integrand.getLocalIntegral(fe.N.size(),fe.iel,true);
      bool ok = integrand.initElementBou(MNPC[doXelms+iel-1],*A);


      // --- Integration loop over all Gauss points along the edge -------------

      int jp = (t1 == 1 ? i2 : i1)*nGP;
      fe.iGP = firstp + jp; // Global integration point counter

      for (int i = 0; i < nGP && ok; i++, fe.iGP++)
      {
	// Local element coordinates of current integration point
	xi[t1-1] = edgeDir < 0 ? -1.0 : 1.0;
	xi[t2-1] = xg[i];
	fe.xi  = xi[0];
	fe.eta = xi[1];

	// Parameter values of current integration point
	if (upar.size() > 1)
	  fe.u = 0.5*(upar[i1]*(1.0-xg[i]) + upar[i1+1]*(1.0+xg[i]));
	if (vpar.size() > 1)
	  fe.v = 0.5*(vpar[i2]*(1.0-xg[i]) + vpar[i2+1]*(1.0+xg[i]));

	// Compute the basis functions and their derivatives, using
	// tensor product of one-dimensional Lagrange polynomials
	if (!Lagrange::computeBasis(fe.N,dNdu,p1,xi[0],p2,xi[1]))
	  ok = false;

	// Compute basis function derivatives and the edge normal
	fe.detJxW = utl::Jacobian(Jac,normal,fe.dNdX,Xnod,dNdu,t1,t2);
	if (fe.detJxW == 0.0) continue; // skip singular points

	if (edgeDir < 0) normal *= -1.0;

	// Cartesian coordinates of current integration point
	X = Xnod * fe.N;
	X.t = time.t;

	// Evaluate the integrand and accumulate element contributions
	fe.detJxW *= wg[i];
        if (ok && !integrand.evalBou(*A,fe,time,X,normal))
	  ok = false;
      }

      // Finalize the element quantities
      if (ok && !integrand.finalizeElementBou(*A,fe,time))
        ok = false;

      // Assembly of global system integral
      if (ok && !glInt.assemble(A->ref(),fe.iel))
	ok = false;

      A->destruct();

      if (!ok) return false;
    }

  return true;
}
Exemplo n.º 2
0
bool ASMs2DmxLag::integrate (Integrand& integrand, int lIndex,
			     GlobalIntegral& glInt,
			     const TimeDomain& time)
{
  if (this->empty()) return true; // silently ignore empty patches

  // Get Gaussian quadrature points and weights
  const double* xg = GaussQuadrature::getCoord(nGauss);
  const double* wg = GaussQuadrature::getWeight(nGauss);
  if (!xg || !wg) return false;

  // Find the parametric direction of the edge normal {-2,-1, 1, 2}
  const int edgeDir = (lIndex%10+1)/((lIndex%2) ? -2 : 2);

  const int t1 = abs(edgeDir); // tangent direction normal to the patch edge
  const int t2 = 3-t1;         // tangent direction along the patch edge

  // Extract the Neumann order flag (1 or higher) for the integrand
  integrand.setNeumannOrder(1 + lIndex/10);


  // Number of elements in each direction
  const int nelx = (nxx[geoBasis-1]-1)/(elem_sizes[geoBasis-1][0]-1);
  const int nely = (nyx[geoBasis-1]-1)/(elem_sizes[geoBasis-1][1]-1);

  std::map<char,size_t>::const_iterator iit = firstBp.find(lIndex%10);
  size_t firstp = iit == firstBp.end() ? 0 : iit->second;

  MxFiniteElement fe(elem_size);
  Matrices dNxdu(nxx.size());
  Matrix Xnod, Jac;
  Vec4   X;
  Vec3   normal;
  double xi[2];

  // === Assembly loop over all elements on the patch edge =====================

  int iel = 1;
  for (int i2 = 0; i2 < nely; i2++)
    for (int i1 = 0; i1 < nelx; i1++, iel++)
    {
      // Skip elements that are not on current boundary edge
      bool skipMe = false;
      switch (edgeDir)
	{
	case -1: if (i1 > 0)      skipMe = true; break;
	case  1: if (i1 < nelx-1) skipMe = true; break;
	case -2: if (i2 > 0)      skipMe = true; break;
	case  2: if (i2 < nely-1) skipMe = true; break;
	}
      if (skipMe) continue;

      // Set up control point coordinates for current element
      if (!this->getElementCoordinates(Xnod,iel)) return false;

      // Initialize element quantities
      fe.iel = MLGE[iel-1];
      LocalIntegral* A = integrand.getLocalIntegral(elem_size,fe.iel,true);
      bool ok = integrand.initElementBou(MNPC[iel-1],elem_size,nb,*A);

      // --- Integration loop over all Gauss points along the edge -------------

      int jp = (t1 == 1 ? i2 : i1)*nGauss;
      fe.iGP = firstp + jp; // Global integration point counter

      for (int i = 0; i < nGauss && ok; i++, fe.iGP++)
      {
	// Gauss point coordinates along the edge
	xi[t1-1] = edgeDir < 0 ? -1.0 : 1.0;
	xi[t2-1] = xg[i];

	// Compute the basis functions and their derivatives, using
	// tensor product of one-dimensional Lagrange polynomials
        for (size_t b = 0; b < nxx.size(); ++b)
          if (!Lagrange::computeBasis(fe.basis(b+1),dNxdu[b],elem_sizes[b][0],xi[0],
                                      elem_sizes[b][1],xi[1]))
            ok = false;

	// Compute basis function derivatives and the edge normal
	fe.detJxW = utl::Jacobian(Jac,normal,fe.grad(geoBasis),Xnod,dNxdu[geoBasis-1],t1,t2);
	if (fe.detJxW == 0.0) continue; // skip singular points
        for (size_t b = 0; b < nxx.size(); ++b)
          if (b != (size_t)geoBasis-1)
            fe.grad(b+1).multiply(dNxdu[b],Jac);

	if (edgeDir < 0) normal *= -1.0;

	// Cartesian coordinates of current integration point
	X = Xnod * fe.basis(geoBasis);
	X.t = time.t;

	// Evaluate the integrand and accumulate element contributions
	fe.detJxW *= wg[i];
	if (ok && !integrand.evalBouMx(*A,fe,time,X,normal))
	  ok = false;
      }

      // Finalize the element quantities
      if (ok && !integrand.finalizeElementBou(*A,fe,time))
        ok = false;

      // Assembly of global system integral
      if (ok && !glInt.assemble(A->ref(),fe.iel))
	ok = false;

      A->destruct();

      if (!ok) return false;
    }

  return true;
}