Exemplo n.º 1
0
void Fragment::set_residue_indexes(kernel::Model *m, kernel::ParticleIndex pi,
                                   Ints o) {
  if (o.empty()) {
    set_residue_indexes(m, pi, IntPairs());
    return;
  }
  std::sort(o.begin(), o.end());
  o.erase(std::unique(o.begin(), o.end()), o.end());
  IntPairs pairs;
  int begin = 0;
  for (unsigned int i = 1; i < o.size(); ++i) {
    if (o[i] != o[i - 1] + 1) {
      pairs.push_back(IntPair(o[begin], o[i - 1] + 1));
      begin = i;
    }
  }
  pairs.push_back(IntPair(o[begin], o.back() + 1));
  set_residue_indexes(m, pi, pairs);
  using IMP::operator<<;
  IMP_IF_CHECK(USAGE) {
    for (unsigned int i = 0; i < o.size(); ++i) {
      IMP_INTERNAL_CHECK(Fragment(m, pi).get_contains_residue(o[i]),
                         "Residue index not found after addition: "
                             << o << " became " << pairs);
    }
  }
}
Exemplo n.º 2
0
bool PymolWriter::handle_polygon(PolygonGeometry *g, Color color,
                                 std::string name) {
  setup(name, TRIANGLES);
  if (!open_type_) {
    get_stream() << "BEGIN, TRIANGLES, ";
    open_type_ = TRIANGLES;
  }
  Ints tris = internal::get_triangles(g);
  algebra::Vector3Ds normals = internal::get_normals(tris, g->get_geometry());
  for (unsigned int i = 0; i < tris.size() / 3; ++i) {
    write_triangle(tris.begin() + 3 * i, tris.begin() + 3 * i + 3,
                   g->get_geometry(), normals, color, get_stream());
  }
  return true;
}
Exemplo n.º 3
0
Arquivo: knn.cpp Projeto: drussel/imp
void KNNData::fill_nearest_neighbors_v(const algebra::VectorKD &g,
                                       unsigned int k,
                                       double eps,
                                       Ints &ret) const {
  VectorWithIndex d(std::numeric_limits<int>::max(), g);
  RealRCTree::
    K_neighbor_search search(dynamic_cast<RealRCTree*>(tree_.get())
                             ->tree,
                             d, k, eps);
  IMP_IF_CHECK(base::USAGE_AND_INTERNAL) {
    int nump=std::distance(dynamic_cast<RealRCTree*>(tree_.get())
                           ->tree.begin(),
                           dynamic_cast<RealRCTree*>(tree_.get())
                           ->tree.end());
    int realk=std::min<int>(nump, k);
    IMP_CHECK_VARIABLE(realk);
    IMP_INTERNAL_CHECK(std::distance(search.begin(), search.end())
                       == static_cast<int>(realk),
                       "Got the wrong number of points out from CGAL neighbor"
                       << " search. Expected " << realk
                       << " got "
                       << std::distance(search.begin(), search.end()));
  }
  Ints::iterator rit = ret.begin();
  for ( RealRCTree::K_neighbor_search::iterator it = search.begin();
        it != search.end(); ++it) {
    *rit= it->first;
    ++rit;
  }
}
Exemplo n.º 4
0
void KMCentersNode::compute_close_centers(const Ints &candidate_centers_inds,
        Ints *close_centers_inds) {
    const KMPoint *l, *h;
    l = bnd_box_.get_point(0);
    h = bnd_box_.get_point(1);
    // first we calculate the center that is closest to the middle of the
    // bounding box
    int mid_center_ind = mid_center(candidate_centers_inds);
    KMPoint *mid_cen = (*centers_)[mid_center_ind];
    double box_dot = 0.;  // holds (p-c').(c-c')
    double cc_dot = 0.;   // holds (c-c').(c-c')
    for (Ints::const_iterator it = candidate_centers_inds.begin();
            it != candidate_centers_inds.end(); it++) {
        if (*it == mid_center_ind) {
            close_centers_inds->push_back(*it);
        } else {
            KMPoint *cand_cen = (*centers_)[*it];
            KMPoint closest_vertex = bnd_box_.find_closest_vertex(*cand_cen);
            box_dot = 0.;
            cc_dot = 0.;
            for (int d = 0; d < bnd_box_.get_dim(); d++) {
                double cc_comp = (*cand_cen)[d] - (*mid_cen)[d];
                cc_dot += cc_comp * cc_comp;  // increment dot product
                if (cc_comp > 0) {
                    box_dot += cc_comp * ((*h)[d] - (*mid_cen)[d]);
                } else {
                    box_dot += cc_comp * ((*l)[d] - (*mid_cen)[d]);
                }
            }
            if (cc_dot < 2 * box_dot) {
                close_centers_inds->push_back(*it);
            }
        }
    }
}
Exemplo n.º 5
0
bool PymolWriter::handle_surface(SurfaceMeshGeometry *g, Color color,
                                 std::string name) {
  setup(name, TRIANGLES);
  if (!open_type_) {
    get_stream() << "BEGIN, TRIANGLES, ";
    open_type_ = TRIANGLES;
  }
  Ints triangles = internal::get_triangles(g);
  algebra::Vector3Ds normals =
      internal::get_normals(triangles, g->get_vertexes());
  IMP_INTERNAL_CHECK(triangles.size() % 3 == 0,
                     "The returned triangles aren't triangles");
  for (unsigned int i = 0; i < triangles.size() / 3; ++i) {
    write_triangle(triangles.begin() + 3 * i, triangles.begin() + 3 * i + 3,
                   g->get_vertexes(), normals, color, get_stream());
  }
  return true;
}
Exemplo n.º 6
0
algebra::Vector3Ds get_normals(const Ints &faces,
                               const algebra::Vector3Ds &vertices) {
  IMP_INTERNAL_CHECK(faces.size() % 3 == 0, "Not triangles");
  IMP_INTERNAL_CHECK(faces.size() > 0, "No faces");
  Ints count(vertices.size());
  algebra::Vector3Ds sum(vertices.size(), algebra::get_zero_vector_d<3>());
  for (unsigned int i = 0; i < faces.size() / 3; ++i) {
    algebra::Vector3D n =
        get_normal(faces.begin() + 3 * i, faces.begin() + 3 * i + 3, vertices);
    IMP_INTERNAL_CHECK(!IMP::isnan(n[0]), "Nan found");
    for (unsigned int j = 0; j < 3; ++j) {
      int v = faces[3 * i + j];
      sum[v] += n;
      count[v] += 1;
    }
  }
  for (unsigned int i = 0; i < count.size(); ++i) {
    sum[i] /= count[i];
    IMP_INTERNAL_CHECK(!IMP::isnan(sum[i][0]),
                       "Nan found at end:" << count[i] << " on " << i);
  }
  return sum;
}
Exemplo n.º 7
0
Ints get_triangles(SurfaceMeshGeometry *sg) {
  Ints ret;
  Ints::const_iterator it = sg->get_faces().begin();
  while (it != sg->get_faces().end()) {
    Ints::const_iterator eit = std::find(
        it, static_cast<Ints::const_iterator>(sg->get_faces().end()), -1);
    IMP_INTERNAL_CHECK(eit != sg->get_faces().end(), "No trailing -1");
    Ints cur(it, eit);
    Ints tris = get_triangulation_of_face(cur, sg->get_vertexes());
    ret.insert(ret.end(), tris.begin(), tris.end());
    it = eit;
    ++it;
  }
  return ret;
}
Exemplo n.º 8
0
void RestraintCache::save_cache(const kernel::ParticlesTemp &particle_ordering,
                                const kernel::RestraintsTemp &restraints,
                                RMF::HDF5::Group group,
                                unsigned int max_entries) {
  RMF::HDF5::FloatDataSet1Ds scores;
  RMF::HDF5::IntDataSet2Ds assignments;
  base::map<kernel::Restraint *, int> restraint_index;
  ParticleIndex particle_index = get_particle_index(particle_ordering);
  Orders orders = get_orders(known_restraints_, restraints, particle_ordering);
  // create data sets for restraints
  for (unsigned int i = 0; i < restraints.size(); ++i) {
    kernel::Restraint *r = restraints[i];
    RestraintID rid =
        get_restraint_id(particle_index, known_restraints_.find(r)->second,
                         restraint_index_.find(r)->second);
    RMF::HDF5::Group g = group.add_child_group(r->get_name());
    g.set_attribute<RMF::HDF5::IndexTraits>(
        "restraint", RMF::HDF5::Indexes(1, rid.get_restraint_index()));
    g.set_attribute<RMF::HDF5::IndexTraits>(
        "particles", RMF::HDF5::Indexes(rid.get_particle_indexes().begin(),
                                        rid.get_particle_indexes().end()));
    scores.push_back(g.add_child_data_set<RMF::HDF5::FloatTraits, 1>("scores"));
    assignments.push_back(
        g.add_child_data_set<RMF::HDF5::IntTraits, 2>("assignments"));
    restraint_index[r] = i;
  }
  // finally start saving them
  unsigned int count = 0;
  for (Cache::ContentIterator it = cache_.contents_begin();
       it != cache_.contents_end(); ++it) {
    int ri = restraint_index.find(it->key.get_restraint())->second;
    Ints ord = orders[ri].get_list_ordered(it->key.get_assignment());
    double score = it->value;
    RMF::HDF5::DataSetIndexD<2> asz = assignments[ri].get_size();
    RMF::HDF5::DataSetIndexD<1> row(asz[0]);
    asz[1] = ord.size();
    ++asz[0];
    assignments[ri].set_size(asz);
    assignments[ri].set_row(row, RMF::HDF5::Ints(ord.begin(), ord.end()));
    RMF::HDF5::DataSetIndexD<1> ssz = scores[ri].get_size();
    RMF::HDF5::DataSetIndexD<1> nsz = ssz;
    ++nsz[0];
    scores[ri].set_size(nsz);
    scores[ri].set_value(ssz, score);
    ++count;
    if (count > max_entries) break;
  }
}
PartitionalClustering *
RecursivePartitionalClusteringMetric::create_full_clustering(
    PartitionalClustering *center_cluster) {
  IMP::base::Vector<Ints> clusters(center_cluster->get_number_of_clusters());
  Ints reps(clusters.size());
  for (unsigned int i = 0; i < clusters.size(); ++i) {
    Ints outer = center_cluster->get_cluster(i);
    reps[i] = clustering_->get_cluster_representative(
        center_cluster->get_cluster_representative(i));
    for (unsigned int j = 0; j < outer.size(); ++j) {
      Ints inner = clustering_->get_cluster(outer[j]);
      clusters[i].insert(clusters[i].end(), inner.begin(), inner.end());
    }
  }
  IMP_NEW(internal::TrivialPartitionalClustering, ret, (clusters, reps));
  validate_partitional_clustering(ret, metric_->get_number_of_items());
  return ret.release();
}
Exemplo n.º 10
0
double
get_slack_estimate(const ParticlesTemp& ps,
                   double upper_bound,
                   double step,
                   const RestraintsTemp &restraints,
                   bool derivatives,
                   Optimizer *opt,
                   ClosePairContainer *cpc) {
  std::vector<Data> datas;
  for (double slack=0; slack< upper_bound; slack+= step) {
    IMP_LOG(VERBOSE, "Computing for " << slack << std::endl);
    datas.push_back(Data());
    datas.back().slack=slack;
    {
      boost::timer imp_timer;
      int count=0;
      base::SetLogState sl(opt->get_model(), SILENT);
      do {
        cpc->set_slack(slack);
        cpc->update();
        ++count;
      } while (imp_timer.elapsed()==0);
      datas.back().ccost= imp_timer.elapsed()/count;
      IMP_LOG(VERBOSE, "Close pair finding cost "
              << datas.back().ccost << std::endl);
    }
    {
      boost::timer imp_timer;
      double score=0;
      int count=0;
      int iters=1;
      base::SetLogState sl(opt->get_model(), SILENT);
      do {
        for ( int j=0; j< iters; ++j) {
          for (unsigned int i=0; i< restraints.size(); ++i) {
            score+=restraints[i]->evaluate(derivatives);
            // should restore
          }
        }
        count += iters;
        iters*=2;
      } while (imp_timer.elapsed()==0);
      datas.back().rcost= imp_timer.elapsed()/count;
      IMP_LOG(VERBOSE, "Restraint evaluation cost "
              << datas.back().rcost << std::endl);
    }
  }
  int ns=100;
  int last_ns=1;
  int opt_i=-1;
  std::vector<Floats > dists(1, Floats(1,0.0));
  std::vector< std::vector<algebra::Vector3D> >
    pos(1, std::vector<algebra::Vector3D>(ps.size()));
  for (unsigned int j=0; j< ps.size(); ++j) {
    pos[0][j]=core::XYZ(ps[j]).get_coordinates();
  }
  do {
    IMP_LOG(VERBOSE, "Stepping from " << last_ns << " to " << ns << std::endl);
    dists.resize(ns, Floats(ns, 0.0));
    for ( int i=0; i< last_ns; ++i) {
      dists[i].resize(ns, 0.0);
    }
    pos.resize(ns,  std::vector<algebra::Vector3D>(ps.size()));
    base::SetLogState sl(opt->get_model(), SILENT);
    for ( int i=last_ns; i< ns; ++i) {
      opt->optimize(1);
      for (unsigned int j=0; j< ps.size(); ++j) {
        pos[i][j]=core::XYZ(ps[j]).get_coordinates();
      }
    }
    for ( int i=last_ns; i< ns; ++i) {
      for ( int j=0; j< i; ++j) {
        double md=0;
        for (unsigned int k=0; k< ps.size(); ++k) {
          md= std::max(md, algebra::get_distance(pos[i][k], pos[j][k]));
        }
        dists[i][j]=md;
        dists[j][i]=md;
      }
    }
    // estimate lifetimes from slack
    for (unsigned int i=0; i< datas.size(); ++i) {
      Ints deaths;
      for ( int j=0; j< ns; ++j) {
        for ( int k=j+1; k < ns; ++k) {
          if (dists[j][k]> datas[i].slack) {
            deaths.push_back(k-j);
            break;
          }
        }
      }
      std::sort(deaths.begin(), deaths.end());
      // kaplan meier estimator
      double ml=0;
      if (deaths.empty()) {
        ml= ns;
      } else {
        //double l=1;
        IMP_INTERNAL_CHECK(deaths.size() < static_cast<unsigned int>(ns),
                           "Too much death");
        double S=1;
        for (unsigned int j=0; j< deaths.size(); ++j) {
          double n= ns-j;
          double t=(n-1.0)/n;
          ml+=(S-t*S)*deaths[j];
          S*=t;
        }
      }
      datas[i].lifetime=ml;
      IMP_LOG(VERBOSE, "Expected life of " << datas[i].slack
              << " is " << datas[i].lifetime << std::endl);
    }

    /**
       C(s) is cost to compute
       R(s) is const to eval restraints
       L(s) is lifetime of slack
       minimize C(s)/L(s)+R(s)
    */
    // smooth
    for (unsigned int i=1; i< datas.size()-1; ++i) {
      datas[i].rcost=(datas[i].rcost+ datas[i-1].rcost+datas[i+1].rcost)/3.0;
      datas[i].ccost=(datas[i].ccost+ datas[i-1].ccost+datas[i+1].ccost)/3.0;
      datas[i].lifetime=(datas[i].lifetime
                      + datas[i-1].lifetime+datas[i+1].lifetime)/3.0;
    }
    double min= std::numeric_limits<double>::max();
    for (unsigned int i=0; i< datas.size(); ++i) {
      double v= datas[i].rcost+ datas[i].ccost/datas[i].lifetime;
      IMP_LOG(VERBOSE, "Cost of " << datas[i].slack << " is " << v
              << " from " << datas[i].rcost
              << " " << datas[i].ccost << " " << datas[i].lifetime
              << std::endl);
      if (v < min) {
        min=v;
        opt_i=i;
      }
    }
    last_ns=ns;
    ns*=2;
    IMP_LOG(VERBOSE, "Opt is " << datas[opt_i].slack << std::endl);
    // 2 for the value, 2 for the doubling
    // if it more than 1000, just decide that is enough
  } while (datas[opt_i].lifetime > ns/4.0 && ns <1000);
  return datas[opt_i].slack;
}
Exemplo n.º 11
0
static void eraseElements(Ints& vect, int val) {
    Ints::iterator begin = vect.begin();
    Ints::iterator end = vect.end();
    vect.erase(std::remove(begin, end, val), end);
}