void PhysSequence::transformOlapFunctions(CollHeap *wHeap)
{

 
  for(ValueId valId = sequenceFunctions().init();
      sequenceFunctions().next(valId);
      sequenceFunctions().advance(valId)) 
  {
    
    ItemExpr * itmExpr = valId.getItemExpr();

    //NAType *itmType = itmExpr->getValueId().getType().newCopy(wHeap);

    if (itmExpr->isOlapFunction())
    {
      NAType *itmType = itmExpr->getValueId().getType().newCopy(wHeap);

      itmExpr = ((ItmSeqOlapFunction*)itmExpr)->transformOlapFunction(wHeap);

      CMPASSERT(itmExpr);
      if(itmExpr->getValueId() != valId)
      {
	itmExpr = new (wHeap) Cast(itmExpr, itmType);
	itmExpr->synthTypeAndValueId(TRUE);
	valId.replaceItemExpr(itmExpr);
	itmExpr->getValueId().changeType(itmType);//????
      }
    }
      itmExpr->transformOlapFunctions(wHeap);
  }
}
ItemExpr *
addConvNode(ItemExpr *childExpr,
            ValueIdMap *mapping,
            CollHeap *wHeap)

{
  if(childExpr->getOperatorType() != ITM_CONVERT &&
     !childExpr->isASequenceFunction()) {

    ValueId topValue;
    mapping->mapValueIdUp(topValue,
                          childExpr->getValueId());
    if(topValue == childExpr->getValueId()) {

      // add the convert node
      ItemExpr *newChild = new(wHeap) Convert (childExpr);
      newChild->synthTypeAndValueId(TRUE);
      mapping->addMapEntry(newChild->getValueId(),
                           childExpr->getValueId());
      return newChild;
    } else {
      return topValue.getItemExpr();
    }
  }
  return childExpr;
}
// A transformation method for protecting sequence functions from not
// being evaluated due to short-circuit evaluation. 
//
void BiLogic::protectiveSequenceFunctionTransformation(Generator *generator)
{
  // Recurse on the children
  //
  ItemExpr::protectiveSequenceFunctionTransformation(generator);

  // Remove the original value id from the node being transformed and
  // assign it a new value id.
  //
  ValueId id = getValueId();
  setValueId(NULL_VALUE_ID);
  synthTypeAndValueId(TRUE);

  // Construct the new subtree.
  //
  // AND/OR -- force right child evaluation
  //
  // LOGIC(LEFT_CHILD, RIGHT_CHILD) ==>
  //   BLOCK(RIGHT_CHILD, LOGIC(LEFT_CHILD, RIGHT_CHILD))
  //
  ItemExpr *block = new(generator->wHeap()) ItmBlockFunction(child(1), this);

  // Replace the old expression with the new expression for the 
  // orginal value id
  //
  id.replaceItemExpr(block);

  // Run the new expression through type and value id synthesis
  //
  block->synthTypeAndValueId(TRUE);
}
// ItmSeqNotTHISFunction::preCodeGen
//
// Transforms the NOT THIS sequence function into an offset of its child
// that uses the saved ROWS SINCE offset in the ExpGenerator. This allows
// the entire part of the expression which changes with each history row to be 
// calculated inside a single offset expression. All other parts of the 
// expression are below THIS, i.e., in the current row.
//
// Note: NOT THIS expressions occur only within a ROWS SINCE.
//
// EXAMPLE:
//   select runningsum(this(a)), 
//          rows since (this (b) > a * (c+5))  
//          from iTab2 sort by a;
//
//          rows since      ----->  becomes:     rows since
//                |                                    |
//                >                                    >
//               /  \                                 /  \
//           this   not this                      this      OFFSET                     
//             /          \                         /        /  \                      
//            b            *                       b        *   <not THIS Loop counter>
//                        / \                              / \                         
//                       a   +                            a   +                        
//                          / \                              / \    
//                         c   5                            c   5
//                                                  
//
ItemExpr *ItmSeqNotTHISFunction::preCodeGen(Generator *generator)
{
  if (nodeIsPreCodeGenned())
    return this;
  markAsPreCodeGenned();

  // Get some local handles...
  //
  CollHeap *wHeap = generator->wHeap();
  ItemExpr *itmChild = child(0)->castToItemExpr();
  ItemExpr *savedRowsSinceCounter =
                 generator->getExpGenerator()->getRowsSinceCounter();

  GenAssert(savedRowsSinceCounter, "ItmSeqNotTHIS::preCodeGen -- ROWS SINCE counter is NULL.");

  // Generate the new OFFSET expression
  //
  ItemExpr *offExpr = new(wHeap) ItmSeqOffset(itmChild, savedRowsSinceCounter);
  ((ItmSeqOffset *)offExpr)->setIsOLAP(isOLAP());
  // Get value Ids and types for all of the items. Must do this typing before
  // replacing this value Id's item expression -- otherwise, the typing
  // will give a result different than the type already computed for this
  // sequence function.
  //
  offExpr->synthTypeAndValueId(TRUE);

  // Replace the original value ID with the new expression.
  //
  getValueId().replaceItemExpr(offExpr);

  // Return the preCodeGen of the new OFFSET expression.
  //
  return offExpr->preCodeGen(generator);
}
// A transformation method for protecting sequence functions from not
// being evaluated due to short-circuit evaluation. 
//
void ItmScalarMinMax::protectiveSequenceFunctionTransformation
(Generator *generator)
{
  // Recurse on the children
  //
  ItemExpr::protectiveSequenceFunctionTransformation(generator);

  // Remove the original value id from the node being transformed.
  //
  ValueId id = getValueId();
  setValueId(NULL_VALUE_ID);
  synthTypeAndValueId(TRUE);

  // Construct the new subtree.
  //
  // SCALAR_MIN/MAX -- force evaluation of both children
  //
  // SCALAR(LEFT_CHILD, RIGHT_CHILD) ==>
  //   BLOCK(BLOCK(LEFT_CHILD, RIGHT_CHILD), 
  //         SCALAR(LEFT_CHILD, RIGHT_CHILD))
  // 
  ItemExpr *block = new(generator->wHeap()) ItmBlockFunction
    (new(generator->wHeap()) ItmBlockFunction(child(0), child(1)), this);
  
  // Replace the old expression with the new expression for the 
  // orginal value id
  //
  id.replaceItemExpr(block);

  // Run the new expression through type and value id synthesis
  //
  block->synthTypeAndValueId(TRUE);
}
void
RelSequence::addCancelExpr(CollHeap *wHeap)
{
  ItemExpr *cPred = NULL;

  if (this->partition().entries() > 0)
  {
    return;
  }
  if(cancelExpr().entries() > 0) 
  {
    return;
  }

  for(ValueId valId = selectionPred().init();
      selectionPred().next(valId);
      selectionPred().advance(valId)) 
  {
    ItemExpr *pred = valId.getItemExpr();

    // Look for preds that select a prefix of the sequence.
    // Rank() < const; Rank <= const; const > Rank; const >= Rank
    ItemExpr *op1 = NULL;
    ItemExpr *op2 = NULL;

    if(pred->getOperatorType() == ITM_LESS ||
       pred->getOperatorType() == ITM_LESS_EQ) 
    {
      op1 = pred->child(0);
      op2 = pred->child(1);
    }
    else if (pred->getOperatorType() == ITM_GREATER ||
             pred->getOperatorType() == ITM_GREATER_EQ) 
    {
      op1 = pred->child(1);
      op2 = pred->child(0);
    }
    NABoolean negate;
    if (op1 && op2 &&
        (op2->getOperatorType() == ITM_CONSTANT || 
         op2->getOperatorType() == ITM_DYN_PARAM)  &&
         (op1->getOperatorType() == ITM_OLAP_RANK ||
          op1->getOperatorType() == ITM_OLAP_DRANK ||
          (op1->getOperatorType() == ITM_OLAP_COUNT &&
           op1->child(0)->getOperatorType() == ITM_CONSTANT &&
           !op1->child(0)->castToConstValue(negate)->isNull())))
    {
       cPred = new(wHeap) UnLogic(ITM_NOT, pred);
       //break at first occurence
       break;
    }
  }
  
  if(cPred) 
  {
    cPred->synthTypeAndValueId(TRUE);
    cancelExpr().insert(cPred->getValueId());
  }
}
// A transformation method for protecting sequence functions from not
// being evaluated due to short-circuit evaluation.
//
void Case::protectiveSequenceFunctionTransformation(Generator *generator)
{
  // Recurse on the children
  //
  ItemExpr::protectiveSequenceFunctionTransformation(generator);

  // Remove the original value id from the node being transformed and
  // assign it a new value id.
  //
  ValueId id = getValueId();
  setValueId(NULL_VALUE_ID);
  synthTypeAndValueId(TRUE);

  // Construct the new subtree.
  //
  // Case -- force evaluation of all the WHEN, THEN and ELSE parts
  //
  // CASE(IFE1(W1,T1,IFE2(W2,T2,IFE3(...)))) ==>
  //   BLOCK(BLOCK(BLOCK(W1,T1),BLOCK(W2,T2)), CASE(...))
  //
  // Decend the ITM_IF_THEN_ELSE tree pulling out each WHEN and THEN pair.
  // Mate each pair with a block and attach them to the protected block, 
  // which contains all of the WHEN/THEN pairs for the entire tree.
  // Also, pull out any CASE operands and attach them to the protected
  // block as well.
  //
  ItemExpr *block = NULL;
  ItemExpr *ife = child(0);
  for(; (ife != NULL) && (ife->getOperatorType() == ITM_IF_THEN_ELSE);
       ife = ife->child(2))
    {
      ItemExpr *sub = new(generator->wHeap())
	ItmBlockFunction(ife->child(0), ife->child(1));
      if(block)
	block = new(generator->wHeap()) ItmBlockFunction(sub, block);
      else
	block = sub;
    }      

  // Add the ELSE condition, if any to the protected block
  //
  if(ife)
    block = new(generator->wHeap()) ItmBlockFunction(ife, block);

  // Construct the top-level block function. The left child is the protected
  // block, which contains all of the expresssions that need to be 
  // pre-evaluated. This right child is the original case statement.
  //
  block = new(generator->wHeap()) ItmBlockFunction(block, this);

  // Replace the old expression with the new expression for the
  // original id
  //
  id.replaceItemExpr(block);

  // Run the new expression through type and value id synthesis
  //
  block->synthTypeAndValueId(TRUE);
}
// ItmSeqOffset::preCodeGen
//
// Casts the second child to SqlInt.
//
ItemExpr *ItmSeqOffset::preCodeGen(Generator *generator)
{
  if (nodeIsPreCodeGenned())
    return this;
  
  CollHeap *wHeap = generator->wHeap();

  // The following code is being disabled (0 && ...) since it will
  // sometimes incorrectly think that the output of a tuple list of
  // contants is a single constant.  For example:
  //   SELECT a, b, c, MOVINGSUM(c,b) as MSUM, MOVINGAVG(c,b) as MAVG
  //   FROM (values
  //             (1,1, 1),
  //             (2,0, 2),
  //             (3,2, NULL),
  //             (4,0, 6),
  //             (5,3, 7)) as T(a,b,c)
  //   SEQUENCE BY a;
  //
  // For this query it will think that the offset index (b) is a
  // constant and it will use the value 3 for the
  // offsetConstantValue_.
  //
  if (0 && getArity() > 1)
  {
    NABoolean negate;
    ConstValue *cv = child(1)->castToConstValue(negate);
    if (cv AND cv->canGetExactNumericValue())
      {
        Lng32 scale;
        Int64 value = cv->getExactNumericValue(scale);

        if(scale == 0 && value >= 0 && value < INT_MAX) 
          {
            value = (negate ? -value : value);
            offsetConstantValue_ = (Int32)value;
            child(1) = NULL;
          }
      }
  }
    
  if (getArity() > 1)
  {

    const NAType &cType = child(1)->getValueId().getType();

    // (must be) signed; nulls allowed (if allowed by child1)   
   ItemExpr *castExpr   = new (wHeap) Cast (child(1),
                                           new (wHeap)
                                           SQLInt(wHeap, TRUE, cType.supportsSQLnullLogical()));
   castExpr->synthTypeAndValueId(TRUE);
   child (1) = castExpr;
  }
  return ItemExpr::preCodeGen(generator);
}
// PhysSequence::computeHistoryAttributes
//
// Helper function to compute the attribute for the history buffer based 
// on the items projected from the child and the computed history items.
// Also, adds the attribute information the the map table.
//
void
PhysSequence::computeHistoryAttributes(Generator *generator,
                                       MapTable *localMapTable, 
                                       Attributes **attrs,
                                       const ValueIdSet &historyIds) const
{
  // Get a local handle on some of the generator objects.
  //
  CollHeap *wHeap = generator->wHeap();

  // Populate the attribute vector with the flattened list of sequence 
  // functions and/or sequence function arguments that must be in the
  // history row. Add convert nodes for the items that are not sequence
  // functions to force them to be moved into the history row.
  //
  if(NOT historyIds.isEmpty())
    {
      Int32 i = 0;
      ValueId valId;

      for (valId = historyIds.init();
           historyIds.next(valId);
           historyIds.advance(valId))
        {
          // If this is not a sequence function, then insert a convert
          // node.
          //
          if(!valId.getItemExpr()->isASequenceFunction())
             {
               // Get a handle on the original expression and erase
               // the value ID.
               //
               ItemExpr *origExpr = valId.getItemExpr();
               origExpr->setValueId(NULL_VALUE_ID);
               origExpr->markAsUnBound();

               // Construct the cast expression with the original expression
               // as the child -- must have undone the child value ID to
               // avoid recursion later.
               //
               ItemExpr *castExpr = new(wHeap) 
                 Cast(origExpr, &(valId.getType()));

               // Replace the expression for the original value ID and the
               // synthesize the types and value ID for the new expression.
               //
               valId.replaceItemExpr(castExpr);
               castExpr->synthTypeAndValueId(TRUE);
             }
          attrs[i++] = (generator->addMapInfoToThis(localMapTable, valId, 0))->getAttr();
        }
    }
} // PhysSequence::computeHistoryAttributes
ItemExpr *ItmLagOlapFunction::preCodeGen(Generator *generator)
{
  if (nodeIsPreCodeGenned())
    return this;
  
  CollHeap *wHeap = generator->wHeap();
    
  if (getArity() > 1)
  {

    const NAType &cType = child(1)->getValueId().getType();
    ItemExpr *castExpr   = new (wHeap) Cast (child(1),
                                       new (wHeap)
                                       SQLInt(wHeap, TRUE, cType.supportsSQLnullLogical()));
    castExpr->synthTypeAndValueId(TRUE);
    child (1) = castExpr;
  }
  return ItemExpr::preCodeGen(generator);
}
Exemplo n.º 11
0
void PhysSequence::computeReadNReturnItems( ValueId topSeqVid,
                                            ValueId vid,
                                            const ValueIdSet &outputFromChild,
                                            CollHeap *wHeap)
{
  ItemExpr * itmExpr = vid.getItemExpr();


  if (outputFromChild.contains(vid)) 
  {
    return;
  }
  //test if itm_minus and then if negative offset ....
  if ( itmExpr->getOperatorType() == ITM_OFFSET &&
      ((ItmSeqOffset *)itmExpr)->getOffsetConstantValue() < 0)
  {
    readSeqFunctions() -= topSeqVid;
    returnSeqFunctions() += topSeqVid;

    readSeqFunctions() += itmExpr->child(0)->castToItemExpr()->getValueId();
    return;
  }
  
  if (itmExpr->getOperatorType() == ITM_MINUS)
  {
    ItemExpr * chld0  = itmExpr->child(0)->castToItemExpr();
    if ( chld0->getOperatorType() == ITM_OFFSET &&
        ((ItmSeqOffset *)chld0)->getOffsetConstantValue() <0)
    {
      readSeqFunctions() -= topSeqVid;
      returnSeqFunctions() += topSeqVid;

      readSeqFunctions() += chld0->child(0)->castToItemExpr()->getValueId();

      ItemExpr * chld1  = itmExpr->child(1)->castToItemExpr();
      if (chld1->getOperatorType() == ITM_OFFSET &&
          ((ItmSeqOffset *)chld1)->getOffsetConstantValue() < 0)
      {
        readSeqFunctions() += chld1->child(0)->castToItemExpr()->getValueId();
      }
      else
      {
        readSeqFunctions() += chld1->getValueId();
      }
      return;
    }
    
  }
  
  
  if (itmExpr->getOperatorType() == ITM_OLAP_MIN || 
           itmExpr->getOperatorType() == ITM_OLAP_MAX) 
  { 
    ItmSeqOlapFunction * olap = (ItmSeqOlapFunction *)itmExpr;
    if (olap->getframeEnd()>0)
    {
      readSeqFunctions() -= topSeqVid;
      returnSeqFunctions() += topSeqVid;

      ItemExpr *newChild = new(wHeap) Convert (itmExpr->child(0)->castToItemExpr());
      newChild->synthTypeAndValueId(TRUE);

      itmExpr->child(0) = newChild;

      readSeqFunctions() += newChild->getValueId();
      return;
    }
  }
  
  if (itmExpr->getOperatorType() == ITM_SCALAR_MIN || 
           itmExpr->getOperatorType() == ITM_SCALAR_MAX) 
  {
    ItemExpr * chld0  = itmExpr->child(0)->castToItemExpr();
    ItemExpr * chld1  = itmExpr->child(1)->castToItemExpr();
    if ((chld0->getOperatorType() == ITM_OLAP_MIN && chld1->getOperatorType() == ITM_OLAP_MIN )|| 
        (chld0->getOperatorType() == ITM_OLAP_MAX && chld1->getOperatorType() == ITM_OLAP_MAX ))
    {
      ItmSeqOlapFunction * olap0 = (ItmSeqOlapFunction *)chld0;
      ItmSeqOlapFunction * olap1 = (ItmSeqOlapFunction *)chld1;
      if ( olap1->getframeEnd()>0)
      { 
        CMPASSERT(olap0->getframeEnd()==0);

        readSeqFunctions() -= topSeqVid;
        returnSeqFunctions() += topSeqVid;
        readSeqFunctions() += olap0->getValueId();
        
        ItemExpr *newChild = new(wHeap) Convert (olap1->child(0)->castToItemExpr());
        newChild->synthTypeAndValueId(TRUE);

        olap1->child(0) = newChild;

        readSeqFunctions() += newChild->getValueId();
      }
      else
      {
        CMPASSERT(olap1->getframeEnd()==0);

        readSeqFunctions() -= topSeqVid;
        returnSeqFunctions() += topSeqVid;
        readSeqFunctions() += olap1->getValueId();

        ItemExpr *newChild = new(wHeap) Convert (olap0->child(0)->castToItemExpr());
        newChild->synthTypeAndValueId(TRUE);

        olap0->child(0) = newChild;

        readSeqFunctions() += newChild->getValueId();
      }
      return;
    }
  }

  for (Int32 i= 0 ; i < itmExpr->getArity(); i++)
  {
    ItemExpr * chld= itmExpr->child(i);
    computeReadNReturnItems(topSeqVid,
                            chld->getValueId(),
                            outputFromChild,
                            wHeap);
  }
}//void PhysSequence::computeReadNReturnItems(ItemExpr * other)
// ItmSeqMovingFunction::preCodeGen
//
// All of the moving sequence functions have been transformed away at this
// point except min and max. Transform these operations to a while-loop which 
// iterates over the past rows testing the min/max condition for each row. 
// Use the ItmScalarMin/Max functions for computing the min/max.
//
ItemExpr *ItmSeqMovingFunction::preCodeGen(Generator *generator)
{
  if (nodeIsPreCodeGenned())
    return this;
  markAsPreCodeGenned();

  // Get some local handles...
  //
  CollHeap *wHeap = generator->wHeap();
  ItemExpr *itmChild = child(0)->castToItemExpr();
  ItemExpr *itmWindow = child(1)->castToItemExpr();

  // What scalar operation needs to be done.
  //
  OperatorTypeEnum operation;
  if(getOperatorType() == ITM_MOVING_MIN) operation = ITM_SCALAR_MIN;
  else operation = ITM_SCALAR_MAX;

  // Allocate a HostVar for local storage of the index.
  //
  ItemExpr *itmLocalCounter 
    = new(wHeap) HostVar("_sys_LocalCounter",
			 new(wHeap) SQLInt(wHeap, TRUE,FALSE),
			 TRUE);

  // Expression to initailize the iterator.
  //
  ItemExpr *itmLocalCounterInitialize
    = new(wHeap) Assign(itmLocalCounter, 
			new(wHeap) ConstValue(0),
			FALSE);

  // Expression to increment the iterator.
  //
  ItemExpr *itmLocalCounterIncrement
    = new(wHeap) Assign(itmLocalCounter,
			new(wHeap) BiArith(ITM_PLUS,
					   itmLocalCounter,
					   new (wHeap) ConstValue(1)),
			FALSE);

  // Allocate a HostVar for referencing the result before it is computed.
  //
  ItemExpr *itmResult 
    = new(wHeap) HostVar("_sys_Result",
			 getValueId().getType().newCopy(wHeap),
			 TRUE);

  // Expression to initialize the result.
  //
  ItemExpr *itmResultInitialize
    = new(wHeap) Assign(itmResult,
			new(wHeap) ConstValue());
			
  // Expression to compute the min/max.
  //
  ItemExpr *itmOffsetExpr = new(wHeap) ItmSeqOffset( itmChild, itmLocalCounter);
  ((ItmSeqOffset *)itmOffsetExpr)->setIsOLAP(isOLAP());
  ItemExpr *itmResultUpdate
    = new(wHeap) Assign(itmResult,
			new(wHeap) ItmScalarMinMax(operation, 
						   itmResult, 
						   itmOffsetExpr));

  // Construct code blocks for the initialization and body for the while-loop
  //
  ItemExpr *itmInit 
    = new(wHeap) ItmBlockFunction(itmLocalCounterInitialize,
				  itmResultInitialize);
  ItemExpr *itmBody
    = new(wHeap) ItmBlockFunction(itmResultUpdate,
				  itmLocalCounterIncrement);
  
  // Construct the While loop (i < window)
  //
  ItemExpr *itmLoopCondition = new(wHeap) BiRelat
    (ITM_LESS, itmLocalCounter, itmWindow);
  ItemExpr *itmWhile 
    = new(wHeap) ItmWhileFunction(itmBody,
				    itmLoopCondition);
  
  
  // Construct the blocks to contain the initialization and looping.
  // The result is the final value of the min/max.
  //
  ItemExpr *itmBlock = new(wHeap) ItmBlockFunction
    (new(wHeap) ItmBlockFunction(itmInit, itmWhile),
     itmResult);
  
  // Replace the item for this value id with the new item expression.
  //
  getValueId().replaceItemExpr(itmBlock);

  // Run the new expression through type and value Id synthesis.
  //
  itmBlock->synthTypeAndValueId(TRUE);

  // Map the reference to the result to the actual result in the map table.
  //
  Attributes *attr =  generator->getMapInfo(itmBlock->getValueId())->getAttr();
  MapInfo *mapInfo = generator->addMapInfo(itmResult->getValueId(), attr);
  itmResult->markAsPreCodeGenned();
  mapInfo->codeGenerated();

  // Return the preCodeGen of the new expression.
  //
  return itmBlock->preCodeGen(generator);
}
ItemExpr *ItmSeqOlapFunction::preCodeGen(Generator *generator)
{
  if (getOperatorType() != ITM_OLAP_MIN && getOperatorType() != ITM_OLAP_MAX)
  {
    GenAssert(0, "ItmSeqOlapFunction::preCodeGen -- Should never get here!");
    return 0;
  }


  if (nodeIsPreCodeGenned())
    return this;
  markAsPreCodeGenned();

  // Get some local handles...
  //
  CollHeap *wHeap = generator->wHeap();
  ItemExpr *itmChild = child(0)->castToItemExpr();
  //ItemExpr *itmWindow = child(1)->castToItemExpr();

  // What scalar operation needs to be done.
  //
  OperatorTypeEnum operation;
  if(getOperatorType() == ITM_OLAP_MIN) operation = ITM_SCALAR_MIN;
  else operation = ITM_SCALAR_MAX;

  // Allocate a HostVar for local storage of the index.
  //
  ItemExpr *itmLocalCounter 
    = new(wHeap) HostVar("_sys_LocalCounter",
			 new(wHeap) SQLInt(wHeap, TRUE,FALSE),
			 TRUE);

  // Expression to initailize the iterator.
  //
  ItemExpr *itmLocalCounterInitialize
              = new(wHeap) Assign(itmLocalCounter, 
                                  new(wHeap) ConstValue(frameStart_),
			          FALSE);

  // Expression to increment the iterator.
  //
  ItemExpr *itmLocalCounterIncrement
    = new(wHeap) Assign(itmLocalCounter,
			new(wHeap) BiArith(ITM_PLUS,
					   itmLocalCounter,
					   new (wHeap) ConstValue(1)),
			FALSE);

  // Allocate a HostVar for referencing the result before it is computed.
  //
  ItemExpr *itmResult 
    = new(wHeap) HostVar("_sys_Result",
			 getValueId().getType().newCopy(wHeap),
			 TRUE);

  // Expression to initialize the result.
  //
  ItemExpr *itmResultInitialize
    = new(wHeap) Assign(itmResult,
			new(wHeap) ConstValue());
			
  // Expression to compute the min/max.
  //

  ItemExpr * invCouter= new(wHeap) BiArith(ITM_MINUS,
                                                new (wHeap) ConstValue(0),
					        itmLocalCounter);
					   
  ItemExpr *  itmOffsetExpr = new(wHeap) ItmSeqOffset( itmChild, invCouter);


  //ItemExpr * itmOffsetIsNotNull = new (wHeap) UnLogic(ITM_IS_NOT_NULL, itmOffsetExpr);

  ((ItmSeqOffset *)itmOffsetExpr)->setIsOLAP(isOLAP());
  ItemExpr *itmResultUpdate
    = new(wHeap) Assign(itmResult,
			new(wHeap) ItmScalarMinMax(operation, 
						   itmResult, 
						   itmOffsetExpr));

  // Construct code blocks for the initialization and body for the while-loop
  //
  ItemExpr *itmInit 
    = new(wHeap) ItmBlockFunction(itmLocalCounterInitialize,
				  itmResultInitialize);
  ItemExpr *itmBody
    = new(wHeap) ItmBlockFunction(itmResultUpdate,
				  itmLocalCounterIncrement);
  
  // Construct the While loop (i < window)
  //
  ItemExpr *itmLoopCondition = new(wHeap) BiRelat
    (ITM_LESS_EQ, itmLocalCounter, new(wHeap) ConstValue(frameEnd_));
  
  if (isFrameEndUnboundedFollowing()) //(frameEnd_ == INT_MAX)// not needed in other cases -- can cause issues fo the preceding part
  {
    ItemExpr *  itmOffset1 = new(wHeap) ItmSeqOffset( itmChild, invCouter,NULL,TRUE);
    ItemExpr * itmOffset1IsNotNull = new (wHeap) UnLogic(ITM_IS_NOT_NULL, itmOffset1);

    ((ItmSeqOffset *)itmOffset1)->setIsOLAP(isOLAP());

    itmLoopCondition = itmOffset1IsNotNull;
    //new (wHeap) BiLogic( ITM_AND,
                        //                  itmLoopCondition,
                       //                   itmOffset1IsNotNull);
  }
  ItemExpr *itmWhile 
    = new(wHeap) ItmWhileFunction(itmBody,
				    itmLoopCondition);
  
  
  // Construct the blocks to contain the initialization and looping.
  // The result is the final value of the min/max.
  //
  ItemExpr *itmBlock = new(wHeap) ItmBlockFunction
    (new(wHeap) ItmBlockFunction(itmInit, itmWhile),
     itmResult);
  
  // Replace the item for this value id with the new item expression.
  //
  getValueId().replaceItemExpr(itmBlock);

  // Run the new expression through type and value Id synthesis.
  //
  itmBlock->synthTypeAndValueId(TRUE);

  // Map the reference to the result to the actual result in the map table.
  //
  Attributes *attr =  generator->getMapInfo(itmBlock->getValueId())->getAttr();
  MapInfo *mapInfo = generator->addMapInfo(itmResult->getValueId(), attr);
  itmResult->markAsPreCodeGenned();
  mapInfo->codeGenerated();

  // Return the preCodeGen of the new expression.
  //
  return itmBlock->preCodeGen(generator);

}
// ItmSeqRunningFunction::preCodeGen
//
// Transforms the running sequence functions into scalar expressions
// that use offset to reference the previous value of the function.
//
ItemExpr *ItmSeqRunningFunction::preCodeGen(Generator *generator)
{
  if (nodeIsPreCodeGenned())
    return this;
  markAsPreCodeGenned();

  // Get some local handles...
  //
  CollHeap *wHeap = generator->wHeap();
  ItemExpr *itmChild = child(0)->castToItemExpr();

  // Allocate a HostVar for referencing the result before it is computed.
  //
  ItemExpr *itmResult 
    = new(wHeap) HostVar("_sys_Result",
			 getValueId().getType().newCopy(wHeap),
			 TRUE);

  // Create an item expression to reference the previous
  // value of this running sequence function.
  //
  ItemExpr *offExpr = new(wHeap) ItmSeqOffset(itmResult, 1);
  ((ItmSeqOffset *)offExpr)->setIsOLAP(isOLAP());
  // Add the sequence function specific computation.
  //
  ItemExpr *itmNewSeqFunc = 0;
  switch(getOperatorType())
    {
    case ITM_RUNNING_COUNT:
      {
	// By this point ITM_RUNNING_COUNT is count(column). The count
	// is one more than the previous count if the current column is
	// not null, otherwise, it is the previous count.
	//

        // Create the increment value.  For non-nullable values, this
        // is always 1, essentially runningcount(*).
        //
        ItemExpr *incr;
        if(itmChild->getValueId().getType().supportsSQLnullLogical()) {
          incr = generator->getExpGenerator()->createExprTree
            ("CASE WHEN @A1 IS NULL THEN @A3 ELSE @A2 END", 
             0, 3, 
             itmChild,
             new(wHeap) ConstValue(1),
             new(wHeap) ConstValue(0));
        } else {
          incr = new(wHeap) ConstValue(1);
        }

        ((ItmSeqOffset *)offExpr)->setNullRowIsZero(TRUE);
        ItemExpr *src = offExpr;

        // Do the increment.
        //
        itmNewSeqFunc = new(wHeap)
              BiArith(ITM_PLUS, src, incr);
      }
    break;
    
    case ITM_RUNNING_SUM:
      {
	// SUM(sum from previous row, child)
	//
	itmNewSeqFunc = new(wHeap) BiArithSum(ITM_PLUS, offExpr, itmChild);
      }
    break;
    
    case ITM_RUNNING_MIN:
      {
	// MIN(min from previous rows, child)
	//
	itmNewSeqFunc 
	  = new(wHeap) ItmScalarMinMax(ITM_SCALAR_MIN,
				       offExpr,
				       itmChild);
      }
    break;
    
    case ITM_RUNNING_MAX:
      {
	// MAX(max from previous row, child)
	//
	itmNewSeqFunc 
	  = new(wHeap) ItmScalarMinMax(ITM_SCALAR_MAX,
				       offExpr,
				       itmChild);
      }
    break;
    
    case ITM_LAST_NOT_NULL:
      {
	// If the current value is null then use the previous value
	// of last not null.
	//
	itmNewSeqFunc = generator->getExpGenerator()->createExprTree
	  ("CASE WHEN @A2 IS NOT NULL THEN @A2 ELSE @A1 END", 
	   0, 2, offExpr, itmChild);
      }
    break;

    case ITM_RUNNING_CHANGE:
      {
        // The running change (or 'rows since changed') can have a
        // composite child (a list of values)
        // Convert the list of values to a list of offset of values.
        //
        ItemExpr *offChild = itmChild;
      
        if (itmChild->getOperatorType() == ITM_ITEM_LIST)
          {
            // child is a multi-valued expression, transform into multiple
            // 
            ExprValueId treePtr = itmChild;

            ItemExprTreeAsList changeValues(&treePtr,
                                            ITM_ITEM_LIST,
                                            RIGHT_LINEAR_TREE);

            offChild = new(wHeap) ItmSeqOffset( changeValues[0], 1);
	    ((ItmSeqOffset *)offChild)->setIsOLAP(isOLAP());
            // add Offset expressions for all the items of the list
            // 
            CollIndex nc = changeValues.entries();
            for (CollIndex i = 1; i < nc; i++)
              {
                ItemExpr *off = new(generator->wHeap()) ItmSeqOffset( changeValues[i], 1);
		((ItmSeqOffset *)off)->setIsOLAP(isOLAP());
                offChild = new(generator->wHeap()) ItemList(offChild, off);
              }
          } else {
            offChild = new(wHeap) ItmSeqOffset( offChild, 1);
	    ((ItmSeqOffset *)offChild)->setIsOLAP(isOLAP());
          }
        
 
        ((ItmSeqOffset *)offExpr)->setNullRowIsZero(TRUE);
        ItemExpr *prevValue = offExpr;

        // Compare the value(s) to the previous value(s).  Use special
        // NULLs flags to treat NULLs as values.  Two NULL values are
        // considered equal here.
        //
        ItemExpr *pred = new (wHeap) BiRelat(ITM_EQUAL,
                                             itmChild,
                                             offChild,
                                             TRUE); // Special NULLs
        // running change = 
        //      (value(s) == prev(value(s))) ? prev(running change)+1 : 1
        //
        // Compute base value.
        //
        itmNewSeqFunc = new (wHeap) 
                IfThenElse(pred, prevValue, new (wHeap) SystemLiteral(0));
        
        itmNewSeqFunc = new (wHeap) Case(NULL, itmNewSeqFunc);

        // Force the evaluation of the offset expression so that the
        // result can be reused by subsequent references.
        //
        itmNewSeqFunc = new(wHeap) ItmBlockFunction(offChild, itmNewSeqFunc);

        // Increment the base value.
        //
        itmNewSeqFunc = new (wHeap) BiArith(ITM_PLUS, 
                                            itmNewSeqFunc,
                                            new(wHeap) SystemLiteral(1));

      }
      break;
      
    }
  
  // Get value Ids and types for all of the items. Must do this typing before
  // replacing this value Id's item expression -- otherwise, the typing
  // will give a result different than the type already computed for this
  // sequence function.
  //
  GenAssert(itmNewSeqFunc, "ItmSeqRunningFunction::preCodeGen -- Unexpected Operator Type!");
  itmNewSeqFunc->synthTypeAndValueId(TRUE);

  // Replace the original value ID with the new expression.
  //
  getValueId().replaceItemExpr(itmNewSeqFunc);
  
  // Map the reference to the result to the actual result in the map table.
  //
  Attributes *attr =  generator->getMapInfo
    (itmNewSeqFunc->getValueId())->getAttr();
  MapInfo *mapInfo = generator->addMapInfo(itmResult->getValueId(), attr);
  itmResult->markAsPreCodeGenned();
  mapInfo->codeGenerated();

  // Return the preCodeGen of the new expression.
  //
  return itmNewSeqFunc->preCodeGen(generator);
}
Exemplo n.º 15
0
// getHistoryAttributes
//
// Helper function that traverses the set of root sequence functions
// supplied by the compiler and constructs the set of all of the
// attributes that must be materialized in the history row.
// 
void PhysSequence::getHistoryAttributes(const ValueIdSet &sequenceFunctions,
                                        const ValueIdSet &outputFromChild,
                                        ValueIdSet &historyAttributes,
                                        NABoolean addConvNodes,
                                        CollHeap *wHeap,
                                        ValueIdMap *origAttributes) const
{
  if(addConvNodes && !origAttributes) {
    origAttributes = new (wHeap) ValueIdMap();
  }

  ValueIdSet children;
  for(ValueId valId = sequenceFunctions.init();
      sequenceFunctions.next(valId);
      sequenceFunctions.advance(valId)) {

    if(valId.getItemExpr()->isASequenceFunction()) {
      ItemExpr *itmExpr = valId.getItemExpr();

      switch(itmExpr->getOperatorType())
        {
          // The child needs to be in the history row.
          //
        case ITM_OFFSET:
        case ITM_ROWS_SINCE:
        case ITM_THIS:
        case ITM_NOT_THIS:

          // If the child needs to be in the history buffer, then
          // add a Convert node to force the value to be moved to the
          // history buffer.
          if (addConvNodes)
            {
              itmExpr->child(0) = 
                addConvNode(itmExpr->child(0), origAttributes, wHeap);
            }
          historyAttributes += itmExpr->child(0)->getValueId();
          break;

          // The sequence function needs to be in the history row.
          //
        case ITM_RUNNING_SUM:
        case ITM_RUNNING_COUNT:
        case ITM_RUNNING_MIN:
        case ITM_RUNNING_MAX:
        case ITM_LAST_NOT_NULL:
          historyAttributes += itmExpr->getValueId();
          break;
/*
        // after PhysSequence precode gen OLAP sum and count are already transform,ed into running
        // this is used during optimization phase-- 
        case ITM_OLAP_SUM:
        case ITM_OLAP_COUNT:
        case ITM_OLAP_RANK:
        case ITM_OLAP_DRANK:
          if (addConvNodes)
            {
              itmExpr->child(0) = 
                addConvNode(itmExpr->child(0), origAttributes, wHeap);
            }

          historyAttributes += itmExpr->child(0)->getValueId();
          //historyAttributes += itmExpr->getValueId();	  
          break;
*/
          // The child and sequence function need to be in the history row.
          //
        case ITM_OLAP_MIN:
        case ITM_OLAP_MAX:
        case ITM_MOVING_MIN:
        case ITM_MOVING_MAX:

          // If the child needs to be in the history buffer, then
          // add a Convert node to force the value to be moved to the
          // history buffer.
          if (addConvNodes)
            {
              itmExpr->child(0) = 
                addConvNode(itmExpr->child(0), origAttributes, wHeap);
            }

          historyAttributes += itmExpr->child(0)->getValueId();
          historyAttributes += itmExpr->getValueId();	  
          break;

        case ITM_RUNNING_CHANGE:
          if (itmExpr->child(0)->getOperatorType() == ITM_ITEM_LIST)
            {
              // child is a multi-valued expression
              // 
              ExprValueId treePtr = itmExpr->child(0);

              ItemExprTreeAsList changeValues(&treePtr,
                                              ITM_ITEM_LIST,
                                              RIGHT_LINEAR_TREE);

              CollIndex nc = changeValues.entries();
              
              ItemExpr *newChild = NULL;
              if(addConvNodes) {
                newChild = addConvNode(changeValues[nc-1], origAttributes, wHeap);
                historyAttributes += newChild->getValueId();
              } else {
                historyAttributes += changeValues[nc-1]->getValueId();
              }

              // add each item in the list
              // 
              for (CollIndex i = nc; i > 0; i--)
                {
                  if(addConvNodes) {
                    ItemExpr *conv
                      = addConvNode(changeValues[i-1], origAttributes, wHeap);

                    newChild = new(wHeap) ItemList(conv, newChild);
                    newChild->synthTypeAndValueId(TRUE);
                    historyAttributes += conv->getValueId();
                  } else {
                    historyAttributes += changeValues[i-1]->getValueId();
                  }
                }

              if(addConvNodes) {
                itmExpr->child(0) = newChild;
              }
            }
          else
            {

              // If the child needs to be in the history buffer, then
              // add a Convert node to force the value to be moved to the
              // history buffer.
              if (addConvNodes)
                {
                  itmExpr->child(0) = 
                    addConvNode(itmExpr->child(0), origAttributes, wHeap);
                }

              historyAttributes += itmExpr->child(0)->getValueId();
            }

          historyAttributes += itmExpr->getValueId();  
          break;

        default:
          CMPASSERT(0);
        }
    }

    // Gather all the children, and if not empty, recurse down to the
    // next level of the tree.
    //
    for(Lng32 i = 0; i < valId.getItemExpr()->getArity(); i++) 
    {
      if (!outputFromChild.contains(valId.getItemExpr()->child(i)->getValueId()))
        //!valId.getItemExpr()->child(i)->nodeIsPreCodeGenned()) 
      {
        children += valId.getItemExpr()->child(i)->getValueId();
      }
    }
  }
  
  if (NOT children.isEmpty())
  {
    getHistoryAttributes( children,
                          outputFromChild,
                          historyAttributes, 
                          addConvNodes, 
                          wHeap, 
                          origAttributes);
  }

} // PhysSequence::getHistoryAttributes
// ItmSeqRowsSince::preCodeGen
//
// Transform ItmSeqRowsSince to a do-while which iterates over the
// past rows testing the since condition for each row. The expression
// returns the relative index of the first row in which the since condition is
// TRUE or the number of rows in the history buffer + 1.
//
ItemExpr *ItmSeqRowsSince::preCodeGen(Generator *generator)
{
  if (nodeIsPreCodeGenned())
    return this;
  markAsPreCodeGenned();

  // Get some local handles...
  //
  CollHeap *wHeap = generator->wHeap();
  ItemExpr *itmChild = child(0)->castToItemExpr();
  ItemExpr *itmWindow = NULL;
  if(getArity() > 1) itmWindow = child(1)->castToItemExpr();

  // Allocate a counter for iterating through the past rows. The counter
  // also doubles as the result of the rows since. This requires the
  // counter to be nullable in case the condition is never true.
  //
  ItemExpr *itmLocalCounter 
    = new(wHeap) ItmExpressionVar(getValueId().getType().newCopy(wHeap));

  // If the ROWS SINCE is inclusive start the iterator at -1 to
  // include the current row, otherwise, start the iterator at 0 to
  // skip the current row. (The iterator is incremented before testing
  // the condition since a DoWhile loop is used -- thus, the iterator
  // is not starting at 0 and 1.)
  //
  ItemExpr *startExpr;
  if(this->includeCurrentRow()) startExpr = new(wHeap) ConstValue(-1);
  else startExpr = new(wHeap) ConstValue(0);
  
  // Expression to initialize the iterator. -- and put the variable in
  // the map table before it is used in an assignment.
  //
  ItemExpr *itmInitializeCounter = new(wHeap) ItmBlockFunction
    (itmLocalCounter,
     new(wHeap) Assign(itmLocalCounter, 
		       startExpr,
		       FALSE));
  
  // Expression to increment the iterator.
  //
  ItemExpr *itmIncrementCounter = new(wHeap) Assign
    (itmLocalCounter,
     new(wHeap) BiArith(ITM_PLUS,
			itmLocalCounter,
			new (wHeap) ConstValue(1)),
     FALSE);

  // Expression to make the counter NULL.
  //
  ItemExpr *itmNullCounter
    = new(wHeap) Assign(itmLocalCounter,
			new(wHeap) ConstValue(),
			FALSE);
  
  // Expression for DoWhile looping condition.
  //
  // AND(0) returns TRUE if the looping should continue, FALSE otherwise.
  // The looping should continue as long as the counter is within the
  // row history. the counter is less than the maximum search offset, and
  // the condition has not returned TRUE.
  //
  // The left side of AND(0) returns TRUE if the OFFSET of the current
  // counter value is within the row history and the counter is less
  // than the maximum search offset. If the left side of the AND(0)
  // returns FALSE, the counter is set to NULL because the condition
  // was not found to be true withing the search window -- and the
  // counter doubles as the result. In this case the right side of the
  // AND(0) is not evaluated because of short circuit evaluation.
  //
  // The right side of AND(0) returns TRUE if the condition is not TRUE
  // relative to the row indicated by counter.
  //
  //                 
  //                                    AND(0)
  //                               ____/      \___
  //                              /               \
  //                             /                 \
  //                       _ OR _                   IS_NOT_TRUE
  //                      /      \                      |    
  //                     /        BLOCK               OFFSET
  //               AND(2)        /     \             /      \
  //              /     \  Counter=NULL FALSE  ROWS SINCE  Counter     
  //    IS_NOT_NULL      \                       (cond)      
  //        /        LESS THAN               
  //       /         /       \               
  //     OFFSET   Counter  MaxWindow  
  //    /      \                  
  //ROWS SINCE  Counter           
  //  (cond)
  //        

  // Expression to test if counter is within history range. 
  //
  ItemExpr *itmRangeIndicator =  new (wHeap) ItmSeqOffset(
                                                          new (wHeap) UnLogic
                                                         (ITM_IS_TRUE,itmChild),
							  itmLocalCounter);
  ((ItmSeqOffset *)itmRangeIndicator)->setIsOLAP(isOLAP());
  // Expression to compute AND(2). If the window is not specified, then
  // return the left child of AND(2).
  //
  ItemExpr *itmAnd2;
  if(itmWindow)
    {
      itmAnd2 = new(wHeap) BiLogic
	(ITM_AND,
	 new(wHeap) UnLogic (ITM_IS_NOT_NULL, itmRangeIndicator),
	 new(wHeap) BiRelat (ITM_LESS_EQ, itmLocalCounter, itmWindow));
    }
  else
    {
      itmAnd2 = new(wHeap) UnLogic (ITM_IS_NOT_NULL, itmRangeIndicator);
    }

  // Expression to compute OR
  //
  ItemExpr *itmOr = new(wHeap) BiLogic
    (ITM_OR,
     itmAnd2,
     new(wHeap) ItmBlockFunction(itmNullCounter, new(wHeap) ConstValue(0)));

  // Expression to compute AND(0)
  //
  ItemExpr *itmLoopCondition = new(wHeap) BiLogic
    (ITM_AND, 
     itmOr, 
     new(wHeap) UnLogic(ITM_NOT, new (wHeap) UnLogic(ITM_IS_TRUE,itmChild)));

  // Construct the Do-While loop
  //
  ItemExpr *itmDoWhile 
    = new(wHeap) ItmDoWhileFunction(itmIncrementCounter,
				    itmLoopCondition);
  
  // Construct the counter initialization along with the looping.
  //
  ItemExpr *itmBlockPart
    = new(wHeap) ItmBlockFunction(itmInitializeCounter,
				  itmDoWhile);

  // Finally, construct a block to execute the operation and return
  // the FINAL value of the counter as the result. This is tricky, because
  // the do-while returns the value of the counter for the last time
  // the body (the increment expression) is executed which may be
  // different than the last value of the counter.
  //
  ItemExpr *itmBlock
    = new(wHeap) ItmBlockFunction(itmBlockPart, itmLocalCounter);
  
  // Replace the item for this value id with the new result item expression.
  //
  getValueId().replaceItemExpr(itmBlock);

  // Run the new expression through type and value Id synthesis.
  //
  itmBlock->synthTypeAndValueId(TRUE);

  // Save the previous rows since counter and set to the current one.
  //
  ItemExpr *savedRowsSinceCounter 
    = generator->getExpGenerator()->getRowsSinceCounter();

  generator->getExpGenerator()->setRowsSinceCounter (itmLocalCounter);

  // Save the preCodeGen of the new expression.
  //
  ItemExpr *tmpBlock = itmBlock->preCodeGen(generator);

  // Restore the saved ROWS SINCE counter expression.
  //
  generator->getExpGenerator()->setRowsSinceCounter (savedRowsSinceCounter);

  // return the saved expression
  //
  return tmpBlock;
}
Exemplo n.º 17
0
ItemExpr * buildEncodeTree(desc_struct * column,
                           desc_struct * key,
                           NAString * dataBuffer, //IN:contains original value
                           Generator * generator,
                           ComDiagsArea * diagsArea)
{
  ExpGenerator * expGen = generator->getExpGenerator();

  // values are encoded by evaluating the expression:
  //    encode (cast (<dataBuffer> as <datatype>))
  // where <dataBuffer> points to the string representation of the
  //      data value to be encoded, and <datatype> contains the
  //      PIC repsentation of the columns's datatype.

  // create the CAST part of the expression using the parser.
  
  // if this is a nullable column and the key value passed in
  // is a NULL value, then treat it as a special case. A NULL value
  // is passed in as an unquoted string of characters NULL in the
  // dataBuffer. This case has to be treated different since the
  // parser doesn't recognize the syntax "CAST (NULL as <datatype>)".
  NAString ns;
  ItemExpr * itemExpr;
  NABoolean nullValue = FALSE;

  NABoolean caseinsensitiveEncode = FALSE;
  if (column->body.columns_desc.caseinsensitive)
    caseinsensitiveEncode = TRUE;

  if (column->body.columns_desc.null_flag &&
      dataBuffer->length() >= 4 &&
      str_cmp(*dataBuffer, "NULL", 4) == 0)
    {
      nullValue = TRUE;

      ns = "CAST ( @A1 AS ";
      ns += column->body.columns_desc.pictureText;
      ns += ");";
  
      // create a NULL constant
      ConstValue * nullConst = new(expGen->wHeap()) ConstValue();
      nullConst->synthTypeAndValueId();

      itemExpr = expGen->createExprTree(ns,
                                        CharInfo::UTF8,
					ns.length(),
					1, nullConst);
    }
  else
    {
      ns = "CAST ( ";
      ns += *dataBuffer;
      ns += " AS ";
      ns += column->body.columns_desc.pictureText;
      ns += ");";
  
      itemExpr = expGen->createExprTree(ns,
                                        CharInfo::UTF8,
					ns.length());
    }

  CMPASSERT(itemExpr != NULL);
  ItemExpr *boundItemExpr =
  itemExpr->bindNode(generator->getBindWA());
  if (boundItemExpr == NULL)
    return NULL;

  // make sure that the source and target values have compatible type.
  // Do this only if source is not a null value.
  NAString srcval;
  srcval = "";
  srcval += *dataBuffer;
  srcval += ";";
  ItemExpr * srcNode = expGen->createExprTree(srcval, CharInfo::UTF8, srcval.length());
  CMPASSERT(srcNode != NULL);
  srcNode->synthTypeAndValueId();
  if ((NOT nullValue) &&
      (NOT srcNode->getValueId().getType().isCompatible(itemExpr->getValueId().getType())))
    {
      if (diagsArea)
	{
	  emitDyadicTypeSQLnameMsg(-4039, 
				   itemExpr->getValueId().getType(),
				   srcNode->getValueId().getType(),
				   column->body.columns_desc.colname,
				   NULL,
				   diagsArea);
	}

      return NULL;
    }

  if (column->body.columns_desc.null_flag)
    ((NAType *)&(itemExpr->getValueId().getType()))->setNullable(TRUE);
  else
    ((NAType *)&(itemExpr->getValueId().getType()))->setNullable(FALSE);
  
  // Explode varchars by moving them to a fixed field
  // whose length is equal to the max length of varchar.
  ////collation??
  DataType datatype = column->body.columns_desc.datatype;
  if (DFS2REC::isSQLVarChar(datatype))
    {
      char lenBuf[10];
      NAString vc((NASize_T)100);	// preallocate a big-enough buf

      size_t len = column->body.columns_desc.length;
      if (datatype == REC_BYTE_V_DOUBLE) len /= SQL_DBCHAR_SIZE;

      vc = "CAST (@A1 as CHAR(";
      vc += str_itoa(len, lenBuf);
      if ( column->body.columns_desc.character_set == CharInfo::UTF8 ||
           ( column->body.columns_desc.character_set == CharInfo::SJIS &&
             column->body.columns_desc.encoding_charset == CharInfo::SJIS ) )
        {
          vc += " BYTE";
          if (len > 1)
            vc += "S";
        }
      vc += ") CHARACTER SET ";
      vc += CharInfo::getCharSetName(column->body.columns_desc.character_set);
      vc += ");";

      itemExpr = expGen->createExprTree(vc, CharInfo::UTF8, vc.length(), 1, itemExpr);
      itemExpr->synthTypeAndValueId();

      ((NAType *)&(itemExpr->getValueId().getType()))->
        setNullable(column->body.columns_desc.null_flag);
  }

  // add the encode node on top of it.
  short desc_flag = TRUE;
  if (key->body.keys_desc.ordering == 0) // ascending
    desc_flag = FALSE;
  
  itemExpr = new(expGen->wHeap()) CompEncode(itemExpr, desc_flag);
  
  itemExpr->synthTypeAndValueId();
  
  ((CompEncode*)itemExpr)->setCaseinsensitiveEncode(caseinsensitiveEncode);

  return itemExpr;
}
Exemplo n.º 18
0
// -----------------------------------------------------------------------
// make an IndexDesc from an existing TableDesc and an NAFileSet
// -----------------------------------------------------------------------
IndexDesc::IndexDesc(TableDesc *tdesc, 
                     NAFileSet *fileSet, 
                     CmpContext* cmpContext)
     : tableDesc_(tdesc), clusteringIndexFlag_(FALSE), 
       identityColumnUniqueIndexFlag_(FALSE), partFunc_(NULL),
       fileSet_(fileSet), cmpContext_(cmpContext), scanBasicCosts_(NULL)
{
  DCMPASSERT( tdesc != NULL AND fileSet != NULL );

  Lng32 ixColNumber;
  ValueId keyValueId;
  ValueId baseValueId;

  const NATable *naTable = tdesc->getNATable();

  indexLevels_ = fileSet_->getIndexLevels();

  // ---------------------------------------------------------------------
  // Make the column list for the index or vertical partition.
  // Any reference to index also holds for vertical partitions.
  // ---------------------------------------------------------------------
  const NAColumnArray & allColumns = fileSet_->getAllColumns();

  // any index gets a new set of IndexColumn
  // item expressions and new value ids
  CollIndex i = 0;
  for (i = 0; i < allColumns.entries(); i++)
    {
      ItemExpr *baseItemExpr = NULL;

      // make a new IndexColumn item expression, indicate how it is
      // defined (in terms of base table columns) and give a value
      // id to the new IndexColumn expression
      if (allColumns[i]->getPosition() >= 0)
	{
	  baseValueId =
	    tdesc->getColumnList()[allColumns[i]->getPosition()];
	  baseItemExpr = baseValueId.getItemExpr();
	}
      else
	{
	  // this column doesn't exist in the base table.
	  // This is the KEYTAG column of sql/mp indices.
	  ItemExpr * keytag = new(wHeap())
            NATypeToItem((NAType *)(allColumns[i]->getType()));
	  keytag->synthTypeAndValueId();
	  baseValueId = keytag->getValueId();

	  baseItemExpr = NULL;
	}

#pragma nowarn(1506)   // warning elimination 
      IndexColumn *ixcol = new(wHeap()) IndexColumn(fileSet_,i,baseValueId);
#pragma warn(1506)  // warning elimination 
      ixcol->synthTypeAndValueId();

      // add the newly obtained value id to the index column list
      indexColumns_.insert(ixcol->getValueId());

      // if the index column is defined as a 1:1 copy of a base
      // column, add it as an equivalent index column (EIC) to the
      // base column item expression
      if ((baseItemExpr) &&
	  (baseItemExpr->getOperatorType() == ITM_BASECOLUMN))
	((BaseColumn *) baseItemExpr)->addEIC(ixcol->getValueId());
    }

  // ---------------------------------------------------------------------
  // make the list of access key columns in the index and make a list
  // of the order that the index provides
  // ---------------------------------------------------------------------
  const NAColumnArray & indexKeyColumns = fileSet_->getIndexKeyColumns();
  for (i = 0; i < indexKeyColumns.entries(); i++)
    {
      // which column of the index is this (usually this will be == i)
#pragma nowarn(1506)   // warning elimination 

      if ( !naTable->isHbaseTable() )
         ixColNumber = allColumns.index(indexKeyColumns[i]);
      else {
         // For Hbase tables, a new NAColumn is created for every column
         // in an index. The above pointer-based lookup for the key column
         // in base table will only find the index column itself. The
         // fix is to lookup by the column name and type as is 
         // implemented by the getColumnPosition() method.
         ixColNumber = allColumns.getColumnPosition(*indexKeyColumns[i]);
         CMPASSERT(ixColNumber >= 0);
      }

#pragma warn(1506)  // warning elimination 

      // insert the value id of the index column into the key column
      // value id list
      keyValueId = indexColumns_[ixColNumber];
      indexKey_.insert(keyValueId);

      // insert the same value id into the order list, if the column
      // is in ascending order, otherwise insert the inverse of the
      // column
      if (indexKeyColumns.isAscending(i))
	{
	  orderOfKeyValues_.insert(keyValueId);
	}
      else
	{
	  InverseOrder *invExpr = new(wHeap())
	    InverseOrder(keyValueId.getItemExpr());
	  invExpr->synthTypeAndValueId();
	  orderOfKeyValues_.insert(invExpr->getValueId());
	}
    }

  markIdentityColumnUniqueIndex(tdesc);

  // ---------------------------------------------------------------------
  // Find the clustering key columns in the index and store their value
  // ids in clusteringKey_
  // ---------------------------------------------------------------------
  NABoolean found = TRUE;
  const NAColumnArray & clustKeyColumns =
                      naTable->getClusteringIndex()->getIndexKeyColumns();

  for (i = 0; i < clustKeyColumns.entries() AND found; i++)
    {
      // which column of the index is this?
#pragma nowarn(1506)   // warning elimination 
      ixColNumber = allColumns.index(clustKeyColumns[i]);
#pragma warn(1506)  // warning elimination 

      found = (ixColNumber != NULL_COLL_INDEX);

      if (found)
	{
	  // insert the value id of the index column into the clustering key
	  // value id list
	  keyValueId = indexColumns_[ixColNumber];
	  clusteringKey_.insert(keyValueId);
	}
      else
	{
	  // clustering key isn't contained in this index, clear the
	  // list that is supposed to indicate the clustering key
	  clusteringKey_.clear();
	}
    }

  // ---------------------------------------------------------------------
  // make the list of partitioning key columns in the index and make a list
  // of the order that the partitioning provides
  // ---------------------------------------------------------------------
  const NAColumnArray & partitioningKeyColumns 
                                    = fileSet_->getPartitioningKeyColumns();
  for (i = 0; i < partitioningKeyColumns.entries(); i++)
    {
      // which column of the index is this 
#pragma nowarn(1506)   // warning elimination 
      ixColNumber = allColumns.index(partitioningKeyColumns[i]);
#pragma warn(1506)  // warning elimination 

      // insert the value id of the index column into the partitioningkey column
      // value id list
      keyValueId = indexColumns_[ixColNumber];
      partitioningKey_.insert(keyValueId);

      // insert the same value id into the order list, if the column
      // is in ascending order, otherwise insert the inverse of the
      // column
      if (partitioningKeyColumns.isAscending(i))
	{
	  orderOfPartitioningKeyValues_.insert(keyValueId);
	}
      else
	{
	  InverseOrder *invExpr = new(wHeap())
	    InverseOrder(keyValueId.getItemExpr());
	  invExpr->synthTypeAndValueId();
	  orderOfPartitioningKeyValues_.insert(invExpr->getValueId());
	}
    }

  // ---------------------------------------------------------------------
  // If this index is partitioned, find the partitioning key columns
  // and build a partitioning function.
  // ---------------------------------------------------------------------
  if ((fileSet_->getCountOfFiles() > 1) ||
      (fileSet_->getPartitioningFunction() &&
       fileSet_->getPartitioningFunction()->
       isARoundRobinPartitioningFunction()))
    partFunc_ = fileSet_->getPartitioningFunction()->
      createPartitioningFunctionForIndexDesc(this);
  
} // IndexDesc::IndexDesc()