Exemplo n.º 1
0
bool CLinearRidgeRegression::train_machine(CFeatures* data)
{
    REQUIRE(m_labels,"No labels set\n");

    if (!data)
    	data=features;

    REQUIRE(data,"No features provided and no featured previously set\n");

    REQUIRE(m_labels->get_num_labels() == data->get_num_vectors(),
    	"Number of training vectors (%d) does not match number of labels (%d)\n",
    	m_labels->get_num_labels(), data->get_num_vectors());

    REQUIRE(data->get_feature_class() == C_DENSE,
    	"Expected Dense Features (%d) but got (%d)\n",
    	C_DENSE, data->get_feature_class());

    REQUIRE(data->get_feature_type() == F_DREAL,
    	"Expected Real Features (%d) but got (%d)\n",
    	F_DREAL, data->get_feature_type());

    CDenseFeatures<float64_t>* feats=(CDenseFeatures<float64_t>*) data;
    int32_t num_feat=feats->get_num_features();
    int32_t num_vec=feats->get_num_vectors();

    SGMatrix<float64_t> kernel_matrix(num_feat,num_feat);
    SGMatrix<float64_t> feats_matrix(feats->get_feature_matrix());
    SGVector<float64_t> y(num_feat);
    SGVector<float64_t> tau_vector(num_feat);

    tau_vector.zero();
    tau_vector.add(m_tau);

    Map<MatrixXd> eigen_kernel_matrix(kernel_matrix.matrix, num_feat,num_feat);
    Map<MatrixXd> eigen_feats_matrix(feats_matrix.matrix, num_feat,num_vec);
    Map<VectorXd> eigen_y(y.vector, num_feat);
    Map<VectorXd> eigen_labels(((CRegressionLabels*)m_labels)->get_labels(),num_vec);
    Map<VectorXd> eigen_tau(tau_vector.vector, num_feat);

    eigen_kernel_matrix = eigen_feats_matrix*eigen_feats_matrix.transpose();

    eigen_kernel_matrix.diagonal() += eigen_tau;

    eigen_y = eigen_feats_matrix*eigen_labels ;

    LLT<MatrixXd> llt;
    llt.compute(eigen_kernel_matrix);
    if(llt.info() != Eigen::Success)
    {
    	SG_WARNING("Features covariance matrix was not positive definite\n");
    	return false;
    }
    eigen_y = llt.solve(eigen_y);

    set_w(y);
    return true;
}
Exemplo n.º 2
0
// Recompute the kernel.
void GPCMGaussianProcess::recomputeKernel()
{
    // Constants.
    int N = dataMatrix.rows();
    int D = dataMatrix.cols();

    // Initialize the covariance matrix.
    K.noalias() = kernel->covariance(X);

    // Compute inverse of kernel matrix.
    LLT<MatrixXd> cholesky = K.llt();
    logDetK = cholesky.matrixLLT().diagonal().array().log().sum()*2.0;
    invK = cholesky.solve(MatrixXd::Identity(N,N));

    // Clear gK matrices.
    gK.setZero(N,N);
    gKd.setZero(N,N);
}
Exemplo n.º 3
0
bool CKernelRidgeRegression::solve_krr_system()
{
	SGMatrix<float64_t> kernel_matrix(kernel->get_kernel_matrix());
	int32_t n = kernel_matrix.num_rows;
	SGVector<float64_t> y = ((CRegressionLabels*)m_labels)->get_labels();

	for(index_t i=0; i<n; i++)
		kernel_matrix(i,i) += m_tau;

	Map<MatrixXd> eigen_kernel_matrix(kernel_matrix.matrix, n, n);
	Map<VectorXd> eigen_alphas(m_alpha.vector, n);
	Map<VectorXd> eigen_y(y.vector, n);

	LLT<MatrixXd> llt;
	llt.compute(eigen_kernel_matrix);
	if (llt.info() != Eigen::Success)
	{
		SG_WARNING("Features covariance matrix was not positive definite\n");
		return false;
	}
	eigen_alphas = llt.solve(eigen_y);
	return true;
}
Exemplo n.º 4
0
void SlamSystem::BA()
{
    R.resize(numOfState);
    T.resize(numOfState);
    vel.resize(numOfState);
    for (int i = 0; i < numOfState ; i++)
    {
        int k = head + i;
        if (k >= slidingWindowSize){
          k -= slidingWindowSize;
        }
        R[k] = slidingWindow[k]->R_bk_2_b0;
        T[k] = slidingWindow[k]->T_bk_2_b0;
        vel[k] = slidingWindow[k]->v_bk;
    }

    int sizeofH = 9 * numOfState;
    MatrixXd HTH(sizeofH, sizeofH);
    VectorXd HTb(sizeofH);
    MatrixXd tmpHTH;
    VectorXd tmpHTb;

    MatrixXd H_k1_2_k(9, 18);
    MatrixXd H_k1_2_k_T;
    VectorXd residualIMU(9);

    MatrixXd H_i_2_j(9, 18);
    MatrixXd H_i_2_j_T;
    VectorXd residualCamera(9);
    MatrixXd tmpP_inv(9, 9);

    for (int iterNum = 0; iterNum < maxIterationBA; iterNum++)
    {
      HTH.setZero();
      HTb.setZero();

      //1. prior constraints
      int m_sz = margin.size;
      VectorXd dx = VectorXd::Zero(STATE_SZ(numOfState - 1));

      if (m_sz != (numOfState - 1)){
        assert("prior matrix goes wrong!!!");
      }

      for (int i = numOfState - 2; i >= 0; i--)
      {
        int k = head + i;
        if (k >= slidingWindowSize){
          k -= slidingWindowSize;
        }
        //dp, dv, dq
        dx.segment(STATE_SZ(i), 3) = T[k] - slidingWindow[k]->T_bk_2_b0;
        dx.segment(STATE_SZ(i) + 3, 3) = vel[k] - slidingWindow[k]->v_bk;
        dx.segment(STATE_SZ(i) + 6, 3) = Quaterniond(slidingWindow[k]->R_bk_2_b0.transpose() * R[k]).vec() * 2.0;
      }
      HTH.block(0, 0, STATE_SZ(m_sz), STATE_SZ(m_sz)) += margin.Ap.block(0, 0, STATE_SZ(m_sz), STATE_SZ(m_sz));
      HTb.segment(0, STATE_SZ(m_sz)) -= margin.Ap.block(0, 0, STATE_SZ(m_sz), STATE_SZ(m_sz))*dx;
      HTb.segment(0, STATE_SZ(m_sz)) -= margin.bp.segment(0, STATE_SZ(m_sz));

      //2. imu constraints
      for (int i = numOfState-2; i >= 0; i-- )
      {
        int k = head + i;
        if (k >= slidingWindowSize){
          k -= slidingWindowSize;
        }
        if ( slidingWindow[k]->imuLinkFlag == false){
          continue;
        }
        int k1 = k + 1;
        if (k1 >= slidingWindowSize){
          k1 -= slidingWindowSize;
        }
        residualIMU = math.ResidualImu(T[k], vel[k], R[k],
                                   T[k1], vel[k1], R[k1],
                                   gravity_b0, slidingWindow[k]->timeIntegral,
                                   slidingWindow[k]->alpha_c_k, slidingWindow[k]->beta_c_k, slidingWindow[k]->R_k1_k);
        H_k1_2_k = math.JacobianImu(T[k], vel[k], R[k],
                                   T[k1], vel[k1], R[k1],
                                   gravity_b0, slidingWindow[k]->timeIntegral);
        H_k1_2_k_T = H_k1_2_k.transpose();
        H_k1_2_k_T *= slidingWindow[k]->P_k.inverse();
        HTH.block(i * 9, i * 9, 18, 18) += H_k1_2_k_T  *  H_k1_2_k;
        HTb.segment(i * 9, 18) -= H_k1_2_k_T * residualIMU;
      }

      //3. camera constraints
      for (int i = 0; i < numOfState; i++)
      {
        int currentStateID = head + i;
        if (currentStateID >= slidingWindowSize){
          currentStateID -= slidingWindowSize;
        }
        if (slidingWindow[currentStateID]->keyFrameFlag == false){
          continue;
        }

        list<int>::iterator iter = slidingWindow[currentStateID]->cameraLinkList.begin();
        for (; iter != slidingWindow[currentStateID]->cameraLinkList.end(); iter++ )
        {
          int linkID = *iter;

          H_i_2_j = math.JacobianDenseTracking(T[currentStateID], R[currentStateID], T[linkID], R[linkID] ) ;
          residualCamera = math.ResidualDenseTracking(T[currentStateID], R[currentStateID], T[linkID], R[linkID],
                                                      slidingWindow[currentStateID]->cameraLink[linkID].T_bi_2_bj,
                                                      slidingWindow[currentStateID]->cameraLink[linkID].R_bi_2_bj ) ;
//          residualCamera.segment(0, 3) = R[linkID].transpose()*(T[currentStateID] - T[linkID]) - slidingWindow[currentStateID]->cameraLink[linkID].T_bi_2_bj;
//          residualCamera.segment(3, 3).setZero();
//          residualCamera.segment(6, 3) = 2.0 * (Quaterniond(slidingWindow[currentStateID]->cameraLink[linkID].R_bi_2_bj.transpose()) * Quaterniond(R[linkID].transpose()*R[currentStateID])).vec();

          tmpP_inv.setZero();
          tmpP_inv.block(0, 0, 3, 3) = slidingWindow[currentStateID]->cameraLink[linkID].P_inv.block(0, 0, 3, 3) ;
          tmpP_inv.block(0, 6, 3, 3) = slidingWindow[currentStateID]->cameraLink[linkID].P_inv.block(0, 3, 3, 3) ;
          tmpP_inv.block(6, 0, 3, 3) = slidingWindow[currentStateID]->cameraLink[linkID].P_inv.block(3, 0, 3, 3) ;
          tmpP_inv.block(6, 6, 3, 3) = slidingWindow[currentStateID]->cameraLink[linkID].P_inv.block(3, 3, 3, 3) ;
          double r_v = residualCamera.segment(0, 3).norm() ;
          if ( r_v > huber_r_v ){
            tmpP_inv *= huber_r_v/r_v ;
          }
          double r_w = residualCamera.segment(6, 3).norm() ;
          if ( r_w > huber_r_w ){
            tmpP_inv *= huber_r_w/r_w ;
          }

          H_i_2_j_T = H_i_2_j.transpose();
          H_i_2_j_T *= tmpP_inv;

          tmpHTH = H_i_2_j_T  *  H_i_2_j;
          tmpHTb = H_i_2_j_T * residualCamera;

          int currentStateIDIndex = currentStateID - head;
          if ( currentStateIDIndex < 0){
            currentStateIDIndex += slidingWindowSize;
          }
          int linkIDIndex = linkID - head  ;
          if (linkIDIndex < 0){
            linkIDIndex += slidingWindowSize;
          }

          HTH.block(currentStateIDIndex * 9, currentStateIDIndex * 9, 9, 9) += tmpHTH.block(0, 0, 9, 9);
          HTH.block(currentStateIDIndex * 9, linkIDIndex * 9, 9, 9) += tmpHTH.block(0, 9, 9, 9);
          HTH.block(linkIDIndex * 9, currentStateIDIndex * 9, 9, 9) += tmpHTH.block(9, 0, 9, 9);
          HTH.block(linkIDIndex * 9, linkIDIndex * 9, 9, 9) += tmpHTH.block(9, 9, 9, 9);

          HTb.segment(currentStateIDIndex * 9, 9) -= tmpHTb.segment(0, 9);
          HTb.segment(linkIDIndex * 9, 9) -= tmpHTb.segment(9, 9);
        }
      }
//      printf("[numList in BA]=%d\n", numList ) ;

      //solve the BA
      //cout << "HTH\n" << HTH << endl;

      LLT<MatrixXd> lltOfHTH = HTH.llt();
      ComputationInfo info = lltOfHTH.info();
      if (info == Success)
      {
        VectorXd dx = lltOfHTH.solve(HTb);

 //       printf("[BA] %d %f\n",iterNum, dx.norm() ) ;

 //       cout << iterNum << endl ;
 //       cout << dx.transpose() << endl ;

        //cout << "iteration " << iterNum << "\n" << dx << endl;
#ifdef DEBUG_INFO
        geometry_msgs::Vector3 to_pub ;
        to_pub.x = dx.norm() ;
        printf("%d %f\n",iterNum, to_pub.x ) ;
        pub_BA.publish( to_pub ) ;
#endif

        VectorXd errorUpdate(9);
        for (int i = 0; i < numOfState; i++)
        {
          int k = head + i;
          if (k >= slidingWindowSize){
            k -= slidingWindowSize;
          }
          errorUpdate = dx.segment(i * 9, 9);
          T[k] += errorUpdate.segment(0, 3);
          vel[k] += errorUpdate.segment(3, 3);

          Quaterniond q(R[k]);
          Quaterniond dq;
          dq.x() = errorUpdate(6) * 0.5;
          dq.y() = errorUpdate(7) * 0.5;
          dq.z() = errorUpdate(8) * 0.5;
          dq.w() = sqrt(1 - SQ(dq.x()) * SQ(dq.y()) * SQ(dq.z()));
          R[k] = (q * dq).normalized().toRotationMatrix();
        }
        //cout << T[head].transpose() << endl;
      }
      else
      {
        ROS_WARN("LLT error!!!");
        iterNum = maxIterationBA;
        //cout << HTH << endl;
        //FullPivLU<MatrixXd> luHTH(HTH);
        //printf("rank = %d\n", luHTH.rank() ) ;
        //HTH.rank() ;
      }
    }

    // Include correction for information vector
    int m_sz = margin.size;
    VectorXd r0 = VectorXd::Zero(STATE_SZ(numOfState - 1));
    for (int i = numOfState - 2; i >= 0; i--)
    {
      int k = head + i;
      if (k >= slidingWindowSize){
        k -= slidingWindowSize;
      }
      //dp, dv, dq
      r0.segment(STATE_SZ(i), 3) = T[k] - slidingWindow[k]->T_bk_2_b0;
      r0.segment(STATE_SZ(i) + 3, 3) = vel[k] - slidingWindow[k]->v_bk;
      r0.segment(STATE_SZ(i) + 6, 3) = Quaterniond(slidingWindow[k]->R_bk_2_b0.transpose() * R[k]).vec() * 2.0;
    }
    margin.bp.segment(0, STATE_SZ(m_sz)) += margin.Ap.block(0, 0, STATE_SZ(m_sz), STATE_SZ(m_sz))*r0;

    for (int i = 0; i < numOfState ; i++)
    {
        int k = head + i;
        if (k >= slidingWindowSize){
          k -= slidingWindowSize;
        }
        slidingWindow[k]->R_bk_2_b0 = R[k];
        slidingWindow[k]->T_bk_2_b0 = T[k];
        slidingWindow[k]->v_bk = vel[k];
    }
}