bool CLinearRidgeRegression::train_machine(CFeatures* data) { REQUIRE(m_labels,"No labels set\n"); if (!data) data=features; REQUIRE(data,"No features provided and no featured previously set\n"); REQUIRE(m_labels->get_num_labels() == data->get_num_vectors(), "Number of training vectors (%d) does not match number of labels (%d)\n", m_labels->get_num_labels(), data->get_num_vectors()); REQUIRE(data->get_feature_class() == C_DENSE, "Expected Dense Features (%d) but got (%d)\n", C_DENSE, data->get_feature_class()); REQUIRE(data->get_feature_type() == F_DREAL, "Expected Real Features (%d) but got (%d)\n", F_DREAL, data->get_feature_type()); CDenseFeatures<float64_t>* feats=(CDenseFeatures<float64_t>*) data; int32_t num_feat=feats->get_num_features(); int32_t num_vec=feats->get_num_vectors(); SGMatrix<float64_t> kernel_matrix(num_feat,num_feat); SGMatrix<float64_t> feats_matrix(feats->get_feature_matrix()); SGVector<float64_t> y(num_feat); SGVector<float64_t> tau_vector(num_feat); tau_vector.zero(); tau_vector.add(m_tau); Map<MatrixXd> eigen_kernel_matrix(kernel_matrix.matrix, num_feat,num_feat); Map<MatrixXd> eigen_feats_matrix(feats_matrix.matrix, num_feat,num_vec); Map<VectorXd> eigen_y(y.vector, num_feat); Map<VectorXd> eigen_labels(((CRegressionLabels*)m_labels)->get_labels(),num_vec); Map<VectorXd> eigen_tau(tau_vector.vector, num_feat); eigen_kernel_matrix = eigen_feats_matrix*eigen_feats_matrix.transpose(); eigen_kernel_matrix.diagonal() += eigen_tau; eigen_y = eigen_feats_matrix*eigen_labels ; LLT<MatrixXd> llt; llt.compute(eigen_kernel_matrix); if(llt.info() != Eigen::Success) { SG_WARNING("Features covariance matrix was not positive definite\n"); return false; } eigen_y = llt.solve(eigen_y); set_w(y); return true; }
// Recompute the kernel. void GPCMGaussianProcess::recomputeKernel() { // Constants. int N = dataMatrix.rows(); int D = dataMatrix.cols(); // Initialize the covariance matrix. K.noalias() = kernel->covariance(X); // Compute inverse of kernel matrix. LLT<MatrixXd> cholesky = K.llt(); logDetK = cholesky.matrixLLT().diagonal().array().log().sum()*2.0; invK = cholesky.solve(MatrixXd::Identity(N,N)); // Clear gK matrices. gK.setZero(N,N); gKd.setZero(N,N); }
bool CKernelRidgeRegression::solve_krr_system() { SGMatrix<float64_t> kernel_matrix(kernel->get_kernel_matrix()); int32_t n = kernel_matrix.num_rows; SGVector<float64_t> y = ((CRegressionLabels*)m_labels)->get_labels(); for(index_t i=0; i<n; i++) kernel_matrix(i,i) += m_tau; Map<MatrixXd> eigen_kernel_matrix(kernel_matrix.matrix, n, n); Map<VectorXd> eigen_alphas(m_alpha.vector, n); Map<VectorXd> eigen_y(y.vector, n); LLT<MatrixXd> llt; llt.compute(eigen_kernel_matrix); if (llt.info() != Eigen::Success) { SG_WARNING("Features covariance matrix was not positive definite\n"); return false; } eigen_alphas = llt.solve(eigen_y); return true; }
void SlamSystem::BA() { R.resize(numOfState); T.resize(numOfState); vel.resize(numOfState); for (int i = 0; i < numOfState ; i++) { int k = head + i; if (k >= slidingWindowSize){ k -= slidingWindowSize; } R[k] = slidingWindow[k]->R_bk_2_b0; T[k] = slidingWindow[k]->T_bk_2_b0; vel[k] = slidingWindow[k]->v_bk; } int sizeofH = 9 * numOfState; MatrixXd HTH(sizeofH, sizeofH); VectorXd HTb(sizeofH); MatrixXd tmpHTH; VectorXd tmpHTb; MatrixXd H_k1_2_k(9, 18); MatrixXd H_k1_2_k_T; VectorXd residualIMU(9); MatrixXd H_i_2_j(9, 18); MatrixXd H_i_2_j_T; VectorXd residualCamera(9); MatrixXd tmpP_inv(9, 9); for (int iterNum = 0; iterNum < maxIterationBA; iterNum++) { HTH.setZero(); HTb.setZero(); //1. prior constraints int m_sz = margin.size; VectorXd dx = VectorXd::Zero(STATE_SZ(numOfState - 1)); if (m_sz != (numOfState - 1)){ assert("prior matrix goes wrong!!!"); } for (int i = numOfState - 2; i >= 0; i--) { int k = head + i; if (k >= slidingWindowSize){ k -= slidingWindowSize; } //dp, dv, dq dx.segment(STATE_SZ(i), 3) = T[k] - slidingWindow[k]->T_bk_2_b0; dx.segment(STATE_SZ(i) + 3, 3) = vel[k] - slidingWindow[k]->v_bk; dx.segment(STATE_SZ(i) + 6, 3) = Quaterniond(slidingWindow[k]->R_bk_2_b0.transpose() * R[k]).vec() * 2.0; } HTH.block(0, 0, STATE_SZ(m_sz), STATE_SZ(m_sz)) += margin.Ap.block(0, 0, STATE_SZ(m_sz), STATE_SZ(m_sz)); HTb.segment(0, STATE_SZ(m_sz)) -= margin.Ap.block(0, 0, STATE_SZ(m_sz), STATE_SZ(m_sz))*dx; HTb.segment(0, STATE_SZ(m_sz)) -= margin.bp.segment(0, STATE_SZ(m_sz)); //2. imu constraints for (int i = numOfState-2; i >= 0; i-- ) { int k = head + i; if (k >= slidingWindowSize){ k -= slidingWindowSize; } if ( slidingWindow[k]->imuLinkFlag == false){ continue; } int k1 = k + 1; if (k1 >= slidingWindowSize){ k1 -= slidingWindowSize; } residualIMU = math.ResidualImu(T[k], vel[k], R[k], T[k1], vel[k1], R[k1], gravity_b0, slidingWindow[k]->timeIntegral, slidingWindow[k]->alpha_c_k, slidingWindow[k]->beta_c_k, slidingWindow[k]->R_k1_k); H_k1_2_k = math.JacobianImu(T[k], vel[k], R[k], T[k1], vel[k1], R[k1], gravity_b0, slidingWindow[k]->timeIntegral); H_k1_2_k_T = H_k1_2_k.transpose(); H_k1_2_k_T *= slidingWindow[k]->P_k.inverse(); HTH.block(i * 9, i * 9, 18, 18) += H_k1_2_k_T * H_k1_2_k; HTb.segment(i * 9, 18) -= H_k1_2_k_T * residualIMU; } //3. camera constraints for (int i = 0; i < numOfState; i++) { int currentStateID = head + i; if (currentStateID >= slidingWindowSize){ currentStateID -= slidingWindowSize; } if (slidingWindow[currentStateID]->keyFrameFlag == false){ continue; } list<int>::iterator iter = slidingWindow[currentStateID]->cameraLinkList.begin(); for (; iter != slidingWindow[currentStateID]->cameraLinkList.end(); iter++ ) { int linkID = *iter; H_i_2_j = math.JacobianDenseTracking(T[currentStateID], R[currentStateID], T[linkID], R[linkID] ) ; residualCamera = math.ResidualDenseTracking(T[currentStateID], R[currentStateID], T[linkID], R[linkID], slidingWindow[currentStateID]->cameraLink[linkID].T_bi_2_bj, slidingWindow[currentStateID]->cameraLink[linkID].R_bi_2_bj ) ; // residualCamera.segment(0, 3) = R[linkID].transpose()*(T[currentStateID] - T[linkID]) - slidingWindow[currentStateID]->cameraLink[linkID].T_bi_2_bj; // residualCamera.segment(3, 3).setZero(); // residualCamera.segment(6, 3) = 2.0 * (Quaterniond(slidingWindow[currentStateID]->cameraLink[linkID].R_bi_2_bj.transpose()) * Quaterniond(R[linkID].transpose()*R[currentStateID])).vec(); tmpP_inv.setZero(); tmpP_inv.block(0, 0, 3, 3) = slidingWindow[currentStateID]->cameraLink[linkID].P_inv.block(0, 0, 3, 3) ; tmpP_inv.block(0, 6, 3, 3) = slidingWindow[currentStateID]->cameraLink[linkID].P_inv.block(0, 3, 3, 3) ; tmpP_inv.block(6, 0, 3, 3) = slidingWindow[currentStateID]->cameraLink[linkID].P_inv.block(3, 0, 3, 3) ; tmpP_inv.block(6, 6, 3, 3) = slidingWindow[currentStateID]->cameraLink[linkID].P_inv.block(3, 3, 3, 3) ; double r_v = residualCamera.segment(0, 3).norm() ; if ( r_v > huber_r_v ){ tmpP_inv *= huber_r_v/r_v ; } double r_w = residualCamera.segment(6, 3).norm() ; if ( r_w > huber_r_w ){ tmpP_inv *= huber_r_w/r_w ; } H_i_2_j_T = H_i_2_j.transpose(); H_i_2_j_T *= tmpP_inv; tmpHTH = H_i_2_j_T * H_i_2_j; tmpHTb = H_i_2_j_T * residualCamera; int currentStateIDIndex = currentStateID - head; if ( currentStateIDIndex < 0){ currentStateIDIndex += slidingWindowSize; } int linkIDIndex = linkID - head ; if (linkIDIndex < 0){ linkIDIndex += slidingWindowSize; } HTH.block(currentStateIDIndex * 9, currentStateIDIndex * 9, 9, 9) += tmpHTH.block(0, 0, 9, 9); HTH.block(currentStateIDIndex * 9, linkIDIndex * 9, 9, 9) += tmpHTH.block(0, 9, 9, 9); HTH.block(linkIDIndex * 9, currentStateIDIndex * 9, 9, 9) += tmpHTH.block(9, 0, 9, 9); HTH.block(linkIDIndex * 9, linkIDIndex * 9, 9, 9) += tmpHTH.block(9, 9, 9, 9); HTb.segment(currentStateIDIndex * 9, 9) -= tmpHTb.segment(0, 9); HTb.segment(linkIDIndex * 9, 9) -= tmpHTb.segment(9, 9); } } // printf("[numList in BA]=%d\n", numList ) ; //solve the BA //cout << "HTH\n" << HTH << endl; LLT<MatrixXd> lltOfHTH = HTH.llt(); ComputationInfo info = lltOfHTH.info(); if (info == Success) { VectorXd dx = lltOfHTH.solve(HTb); // printf("[BA] %d %f\n",iterNum, dx.norm() ) ; // cout << iterNum << endl ; // cout << dx.transpose() << endl ; //cout << "iteration " << iterNum << "\n" << dx << endl; #ifdef DEBUG_INFO geometry_msgs::Vector3 to_pub ; to_pub.x = dx.norm() ; printf("%d %f\n",iterNum, to_pub.x ) ; pub_BA.publish( to_pub ) ; #endif VectorXd errorUpdate(9); for (int i = 0; i < numOfState; i++) { int k = head + i; if (k >= slidingWindowSize){ k -= slidingWindowSize; } errorUpdate = dx.segment(i * 9, 9); T[k] += errorUpdate.segment(0, 3); vel[k] += errorUpdate.segment(3, 3); Quaterniond q(R[k]); Quaterniond dq; dq.x() = errorUpdate(6) * 0.5; dq.y() = errorUpdate(7) * 0.5; dq.z() = errorUpdate(8) * 0.5; dq.w() = sqrt(1 - SQ(dq.x()) * SQ(dq.y()) * SQ(dq.z())); R[k] = (q * dq).normalized().toRotationMatrix(); } //cout << T[head].transpose() << endl; } else { ROS_WARN("LLT error!!!"); iterNum = maxIterationBA; //cout << HTH << endl; //FullPivLU<MatrixXd> luHTH(HTH); //printf("rank = %d\n", luHTH.rank() ) ; //HTH.rank() ; } } // Include correction for information vector int m_sz = margin.size; VectorXd r0 = VectorXd::Zero(STATE_SZ(numOfState - 1)); for (int i = numOfState - 2; i >= 0; i--) { int k = head + i; if (k >= slidingWindowSize){ k -= slidingWindowSize; } //dp, dv, dq r0.segment(STATE_SZ(i), 3) = T[k] - slidingWindow[k]->T_bk_2_b0; r0.segment(STATE_SZ(i) + 3, 3) = vel[k] - slidingWindow[k]->v_bk; r0.segment(STATE_SZ(i) + 6, 3) = Quaterniond(slidingWindow[k]->R_bk_2_b0.transpose() * R[k]).vec() * 2.0; } margin.bp.segment(0, STATE_SZ(m_sz)) += margin.Ap.block(0, 0, STATE_SZ(m_sz), STATE_SZ(m_sz))*r0; for (int i = 0; i < numOfState ; i++) { int k = head + i; if (k >= slidingWindowSize){ k -= slidingWindowSize; } slidingWindow[k]->R_bk_2_b0 = R[k]; slidingWindow[k]->T_bk_2_b0 = T[k]; slidingWindow[k]->v_bk = vel[k]; } }