Exemplo n.º 1
0
template <typename PointT> pcl::PointCloud<pcl::PointXYZL>::Ptr
pcl::SupervoxelClustering<PointT>::getLabeledCloud () const
{
  pcl::PointCloud<pcl::PointXYZL>::Ptr labeled_cloud (new pcl::PointCloud<pcl::PointXYZL>);
  pcl::copyPointCloud (*input_,*labeled_cloud);
  
  pcl::PointCloud <pcl::PointXYZL>::iterator i_labeled;
  typename pcl::PointCloud <PointT>::const_iterator i_input = input_->begin ();
  std::vector <int> indices;
  std::vector <float> sqr_distances;
  for (i_labeled = labeled_cloud->begin (); i_labeled != labeled_cloud->end (); ++i_labeled,++i_input)
  {
    if ( !pcl::isFinite<PointT> (*i_input))
      i_labeled->label = 0;
    else
    {     
      i_labeled->label = 0;
      LeafContainerT *leaf = adjacency_octree_->getLeafContainerAtPoint (*i_input);
      VoxelData& voxel_data = leaf->getData ();
      if (voxel_data.owner_)
        i_labeled->label = voxel_data.owner_->getLabel ();
        
    }
      
  }
    
  return (labeled_cloud);
}
Exemplo n.º 2
0
template <typename PointT> pcl::PointCloud<pcl::PointXYZRGBA>::Ptr
pcl::SupervoxelClustering<PointT>::getColoredCloud () const
{
  
  pcl::PointCloud<pcl::PointXYZRGBA>::Ptr colored_cloud = boost::make_shared <pcl::PointCloud<pcl::PointXYZRGBA> >();
  pcl::copyPointCloud (*input_,*colored_cloud);
  
  pcl::PointCloud <pcl::PointXYZRGBA>::iterator i_colored;
  typename pcl::PointCloud <PointT>::const_iterator i_input = input_->begin ();
  std::vector <int> indices;
  std::vector <float> sqr_distances;
  for (i_colored = colored_cloud->begin (); i_colored != colored_cloud->end (); ++i_colored,++i_input)
  {
    if ( !pcl::isFinite<PointT> (*i_input))
      i_colored->rgb = 0;
    else
    {     
      i_colored->rgb = 0;
      LeafContainerT *leaf = adjacency_octree_->getLeafContainerAtPoint (*i_input);
      VoxelData& voxel_data = leaf->getData ();
      if (voxel_data.owner_)
        i_colored->rgba = label_colors_[voxel_data.owner_->getLabel ()];
      
    }
    
  }
  
  return (colored_cloud);
}
Exemplo n.º 3
0
template <typename PointT> void
pcl::SupervoxelClustering<PointT>::computeVoxelData ()
{
  voxel_centroid_cloud_.reset (new PointCloudT);
  voxel_centroid_cloud_->resize (adjacency_octree_->getLeafCount ());
  typename LeafVectorT::iterator leaf_itr = adjacency_octree_->begin ();
  typename PointCloudT::iterator cent_cloud_itr = voxel_centroid_cloud_->begin ();
  for (int idx = 0 ; leaf_itr != adjacency_octree_->end (); ++leaf_itr, ++cent_cloud_itr, ++idx)
  {
    VoxelData& new_voxel_data = (*leaf_itr)->getData ();
    //Add the point to the centroid cloud
    new_voxel_data.getPoint (*cent_cloud_itr);
    //voxel_centroid_cloud_->push_back(new_voxel_data.getPoint ());
    new_voxel_data.idx_ = idx;
  }
  
  //If normals were provided
  if (input_normals_)
  {
    //Verify that input normal cloud size is same as input cloud size
    assert (input_normals_->size () == input_->size ());
    //For every point in the input cloud, find its corresponding leaf
    typename NormalCloudT::const_iterator normal_itr = input_normals_->begin ();
    for (typename PointCloudT::const_iterator input_itr = input_->begin (); input_itr != input_->end (); ++input_itr, ++normal_itr)
    {
      //If the point is not finite we ignore it
      if ( !pcl::isFinite<PointT> (*input_itr))
        continue;
      //Otherwise look up its leaf container
        LeafContainerT* leaf = adjacency_octree_->getLeafContainerAtPoint (*input_itr);
        
        //Get the voxel data object
        VoxelData& voxel_data = leaf->getData ();
        //Add this normal in (we will normalize at the end)
        voxel_data.normal_ += normal_itr->getNormalVector4fMap ();
        voxel_data.curvature_ += normal_itr->curvature;
    }
    //Now iterate through the leaves and normalize 
    for (leaf_itr = adjacency_octree_->begin (); leaf_itr != adjacency_octree_->end (); ++leaf_itr)
    {
      VoxelData& voxel_data = (*leaf_itr)->getData ();
      voxel_data.normal_.normalize ();
      voxel_data.owner_ = 0;
      voxel_data.distance_ = std::numeric_limits<float>::max ();
      //Get the number of points in this leaf
      int num_points = (*leaf_itr)->getPointCounter ();
      voxel_data.curvature_ /= num_points;
    }
  }
  else //Otherwise just compute the normals
  {
    for (leaf_itr = adjacency_octree_->begin (); leaf_itr != adjacency_octree_->end (); ++leaf_itr)
    {
      VoxelData& new_voxel_data = (*leaf_itr)->getData ();
      //For every point, get its neighbors, build an index vector, compute normal
      std::vector<int> indices;
      indices.reserve (81); 
      //Push this point
      indices.push_back (new_voxel_data.idx_);
      for (typename LeafContainerT::const_iterator neighb_itr=(*leaf_itr)->cbegin (); neighb_itr!=(*leaf_itr)->cend (); ++neighb_itr)
      {
        VoxelData& neighb_voxel_data = (*neighb_itr)->getData ();
        //Push neighbor index
        indices.push_back (neighb_voxel_data.idx_);
        //Get neighbors neighbors, push onto cloud
        for (typename LeafContainerT::const_iterator neighb_neighb_itr=(*neighb_itr)->cbegin (); neighb_neighb_itr!=(*neighb_itr)->cend (); ++neighb_neighb_itr)
        {
          VoxelData& neighb2_voxel_data = (*neighb_neighb_itr)->getData ();
          indices.push_back (neighb2_voxel_data.idx_);
        }
      }
      //Compute normal
      pcl::computePointNormal (*voxel_centroid_cloud_, indices, new_voxel_data.normal_, new_voxel_data.curvature_);
      pcl::flipNormalTowardsViewpoint (voxel_centroid_cloud_->points[new_voxel_data.idx_], 0.0f,0.0f,0.0f, new_voxel_data.normal_);
      new_voxel_data.normal_[3] = 0.0f;
      new_voxel_data.normal_.normalize ();
      new_voxel_data.owner_ = 0;
      new_voxel_data.distance_ = std::numeric_limits<float>::max ();
    }
  }
  
  
}