Exemplo n.º 1
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("GAMM-channel.mesh", &mesh);

  // Perform initial mesh refinements.
  mesh.refine_towards_boundary(BDY_SOLID_WALL_BOTTOM, 1);
  for (int i = 0; i < INIT_REF_NUM; i++) 
    mesh.refine_all_elements();
  mesh.refine_towards_boundary(BDY_SOLID_WALL_BOTTOM, 1);

  // Initialize boundary condition types and spaces with default shapesets.
  L2Space space_rho(&mesh, P_INIT);
  L2Space space_rho_v_x(&mesh, P_INIT);
  L2Space space_rho_v_y(&mesh, P_INIT);
  L2Space space_e(&mesh, P_INIT);
  int ndof = Space::get_num_dofs(Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e));
  info("ndof: %d", ndof);

  // Initialize solutions, set initial conditions.
  InitialSolutionEulerDensity prev_rho(&mesh, RHO_EXT);
  InitialSolutionEulerDensityVelX prev_rho_v_x(&mesh, RHO_EXT * V1_EXT);
  InitialSolutionEulerDensityVelY prev_rho_v_y(&mesh, RHO_EXT * V2_EXT);
  InitialSolutionEulerDensityEnergy prev_e(&mesh, QuantityCalculator::calc_energy(RHO_EXT, RHO_EXT * V1_EXT, RHO_EXT * V2_EXT, P_EXT, KAPPA));

  // Numerical flux.
  OsherSolomonNumericalFlux num_flux(KAPPA);

  // Initialize weak formulation.
  EulerEquationsWeakFormImplicitMultiComponent wf(&num_flux, KAPPA, RHO_EXT, V1_EXT, V2_EXT, P_EXT, BDY_SOLID_WALL_BOTTOM, BDY_SOLID_WALL_TOP, 
    BDY_INLET, BDY_OUTLET, &prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, PRECONDITIONING);

  wf.set_time_step(time_step);

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem dp(&wf, Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e), is_linear);
  
  // If the FE problem is in fact a FV problem.
  if(P_INIT == 0)
    dp.set_fvm();

  // Project the initial solution on the FE space 
  // in order to obtain initial vector for NOX. 
  info("Projecting initial solution on the FE mesh.");
  scalar* coeff_vec = new scalar[Space::get_num_dofs(Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e))];
  OGProjection::project_global(Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e), 
    Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), coeff_vec);

  // Filters for visualization of Mach number, pressure and entropy.
  MachNumberFilter Mach_number(Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA);
  PressureFilter pressure(Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA);
  EntropyFilter entropy(Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA, RHO_EXT, P_EXT);

  ScalarView pressure_view("Pressure", new WinGeom(0, 0, 600, 300));
  ScalarView Mach_number_view("Mach number", new WinGeom(700, 0, 600, 300));
  ScalarView entropy_production_view("Entropy estimate", new WinGeom(0, 400, 600, 300));

  /*
  ScalarView s1("1", new WinGeom(0, 0, 600, 300));
  ScalarView s2("2", new WinGeom(700, 0, 600, 300));
  ScalarView s3("3", new WinGeom(0, 400, 600, 300));
  ScalarView s4("4", new WinGeom(700, 400, 600, 300));
  */

  // Initialize NOX solver.
  NoxSolver solver(&dp, NOX_MESSAGE_TYPE);
  solver.set_ls_tolerance(NOX_LINEAR_TOLERANCE);
  solver.disable_abs_resid();
  solver.set_conv_rel_resid(NOX_NONLINEAR_TOLERANCE);
  if(PRECONDITIONING) {
    RCP<Precond> pc = rcp(new MlPrecond("sa"));
    solver.set_precond(pc);
  }

  int iteration = 0; double t = 0;
  for(t = 0.0; t < 3.0; t += time_step) {
    info("---- Time step %d, time %3.5f.", iteration++, t);

    OGProjection::project_global(Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e), 
    Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), coeff_vec);
    
    solver.set_init_sln(coeff_vec);

    info("Assembling by DiscreteProblem, solving by NOX.");
    if (solver.solve())
      Solution::vector_to_solutions(solver.get_solution(), Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e), 
      Hermes::vector<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    else
      error("NOX failed.");
   
    // Visualization.
    if((iteration - 1) % EVERY_NTH_STEP == 0) {
      // Hermes visualization.
      if(HERMES_VISUALIZATION) {
        Mach_number.reinit();
        pressure.reinit();
        entropy.reinit();
        pressure_view.show(&pressure);
        entropy_production_view.show(&entropy);
        Mach_number_view.show(&Mach_number);
        /*
        s1.show(&prev_rho);
        s2.show(&prev_rho_v_x);
        s3.show(&prev_rho_v_y);
        s4.show(&prev_e);
        */
      }
      // Output solution in VTK format.
      if(VTK_VISUALIZATION) {
        pressure.reinit();
        Mach_number.reinit();
        Linearizer lin;
        char filename[40];
        sprintf(filename, "pressure-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&pressure, filename, "Pressure", false);
        sprintf(filename, "pressure-3D-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&pressure, filename, "Pressure", true);
        sprintf(filename, "Mach number-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&Mach_number, filename, "MachNumber", false);
        sprintf(filename, "Mach number-3D-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&Mach_number, filename, "MachNumber", true);
      }
    }

    info("Number of nonlin iterations: %d (norm of residual: %g)", 
      solver.get_num_iters(), solver.get_residual());
    info("Total number of iterations in linsolver: %d (achieved tolerance in the last step: %g)", 
      solver.get_num_lin_iters(), solver.get_achieved_tol());
  }
  
  pressure_view.close();
  entropy_production_view.close();
  Mach_number_view.close();

  /*
  s1.close();
  s2.close();
  s3.close();
  s4.close();
  */
  return 0;
}
Exemplo n.º 2
0
int main() {
  // Create coarse mesh, set Dirichlet BC, enumerate 
  // basis functions
  Mesh *mesh = new Mesh(A, B, N_elem, P_init, N_eq);
  mesh->set_bc_left_dirichlet(0, Val_dir_left);
  mesh->set_bc_right_dirichlet(0, Val_dir_right);
  mesh->assign_dofs();

  // Create discrete problem on coarse mesh
  DiscreteProblem *dp = new DiscreteProblem();
  dp->add_matrix_form(0, 0, jacobian);
  dp->add_vector_form(0, residual);

  // Convergence graph wrt. the number of degrees of freedom
  GnuplotGraph graph;
  graph.set_log_y();
  graph.set_captions("Convergence History", "Degrees of Freedom", "Error");
  graph.add_row("exact error [%]", "k", "-", "o");
  graph.add_row("max FTR error", "k", "--");

  // Main adaptivity loop
  int adapt_iterations = 1;
  double ftr_errors[MAX_ELEM_NUM];      // This array decides what 
                                         // elements will be refined.
  ElemPtr2 ref_ftr_pairs[MAX_ELEM_NUM]; // To store element pairs from the 
                                         // FTR solution. Decides how 
                                         // elements will be hp-refined. 
  for (int i=0; i < MAX_ELEM_NUM; i++) {
    ref_ftr_pairs[i][0] = new Element();
    ref_ftr_pairs[i][1] = new Element();
  }
  while(1) {
    printf("============ Adaptivity step %d ============\n", adapt_iterations); 

    printf("N_dof = %d\n", mesh->get_n_dof());
 
    // Newton's loop on coarse mesh
    newton(dp, mesh, NULL, NEWTON_TOL_COARSE, NEWTON_MAXITER);

    // For every element perform its fast trial refinement (FTR),
    // calculate the norm of the difference between the FTR
    // solution and the coarse mesh solution, and store the
    // error in the ftr_errors[] array.
    int n_elem = mesh->get_n_active_elem();
    for (int i=0; i < n_elem; i++) {

      printf("=== Starting FTR of Elem [%d]\n", i);

      // Replicate coarse mesh including solution.
      Mesh *mesh_ref_local = mesh->replicate();

      // Perform FTR of element 'i'
      mesh_ref_local->reference_refinement(i, 1);
      printf("Elem [%d]: fine mesh created (%d DOF).\n", 
             i, mesh_ref_local->assign_dofs());

      // Newton's loop on the FTR mesh
      newton(dp, mesh_ref_local, NULL, NEWTON_TOL_REF, NEWTON_MAXITER);

      // Print FTR solution (enumerated) 
      Linearizer *lxx = new Linearizer(mesh_ref_local);
      char out_filename[255];
      sprintf(out_filename, "solution_ref_%d.gp", i);
      lxx->plot_solution(out_filename);
      delete lxx;

      // Calculate norm of the difference between the coarse mesh 
      // and FTR solutions.
      // NOTE: later we want to look at the difference in some quantity 
      // of interest rather than error in global norm.
      double err_est_array[MAX_ELEM_NUM];
      ftr_errors[i] = calc_error_estimate(NORM, mesh, mesh_ref_local, 
                      err_est_array);
      //printf("Elem [%d]: absolute error (est) = %g\n", i, ftr_errors[i]);

      // Copy the reference element pair for element 'i'
      // into the ref_ftr_pairs[i][] array
      Iterator *I = new Iterator(mesh);
      Iterator *I_ref = new Iterator(mesh_ref_local);
      Element *e, *e_ref;
      while (1) {
        e = I->next_active_element();
        e_ref = I_ref->next_active_element();
        if (e->id == i) {
  	  e_ref->copy_into(ref_ftr_pairs[e->id][0]);
          // coarse element 'e' was split in space
          if (e->level != e_ref->level) {
            e_ref = I_ref->next_active_element();
            e_ref->copy_into(ref_ftr_pairs[e->id][1]);
          }
          break;
        }
      }

      delete I;
      delete I_ref;
      delete mesh_ref_local;
    }  

    // If exact solution available, also calculate exact error
    if (EXACT_SOL_PROVIDED) {
      // Calculate element errors wrt. exact solution
      double err_exact_total = calc_error_exact(NORM, mesh, exact_sol);
     
      // Calculate the norm of the exact solution
      // (using a fine subdivision and high-order quadrature)
      int subdivision = 500; // heuristic parameter
      int order = 20;        // heuristic parameter
      double exact_sol_norm = calc_solution_norm(NORM, exact_sol, N_eq, A, B,
                                                  subdivision, order);
      // Calculate an estimate of the global relative error
      double err_exact_rel = err_exact_total/exact_sol_norm;
      //printf("Relative error (exact) = %g %%\n", 100.*err_exact_rel);
      graph.add_values(0, mesh->get_n_dof(), 100 * err_exact_rel);
    }

    // Calculate max FTR error
    double max_ftr_error = 0;
    for (int i=0; i < mesh->get_n_active_elem(); i++) {
      if (ftr_errors[i] > max_ftr_error) max_ftr_error = ftr_errors[i];
    }
    printf("Max FTR error = %g\n", max_ftr_error);

    // Add entry to DOF convergence graph
    graph.add_values(1, mesh->get_n_dof(), max_ftr_error);

    // Decide whether the max. FTR error is sufficiently small
    if(max_ftr_error < TOL_ERR_FTR) break;

    // debug
    if (adapt_iterations >= 1) break;

    // Returns updated coarse mesh with the last solution on it. 
    adapt(NORM, ADAPT_TYPE, THRESHOLD, ftr_errors,
          mesh, ref_ftr_pairs);

    adapt_iterations++;
  }

  // Plot meshes, results, and errors
  adapt_plotting(mesh, ref_ftr_pairs,
                 NORM, EXACT_SOL_PROVIDED, exact_sol);

  // Save convergence graph
  graph.save("conv_dof.gp");

  printf("Done.\n");
  return 1;
}
Exemplo n.º 3
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  MeshSharedPtr mesh(new Mesh);
  if (USE_XML_FORMAT == true)
  {
    MeshReaderH2DXML mloader;  
    Hermes::Mixins::Loggable::Static::info("Reading mesh in XML format.");
    try
    {
      mloader.load("domain.xml", mesh);
    }
    catch(Hermes::Exceptions::Exception& e)
    {
      e.print_msg();
    }
  }
  else 
  {
    MeshReaderH2D mloader;
    Hermes::Mixins::Loggable::Static::info("Reading mesh in original format.");
    mloader.load("domain.mesh", mesh);
  }

  // Perform initial mesh refinements (optional).
  for (int i = 0; i < INIT_REF_NUM; i++) 
    mesh->refine_all_elements();

  // Initialize the weak formulation.
  CustomWeakFormPoisson wf("Aluminum", new Hermes1DFunction<double>(LAMBDA_AL), 
                           "Copper", new Hermes1DFunction<double>(LAMBDA_CU), 
                           new Hermes2DFunction<double>(-VOLUME_HEAT_SRC));
  
  // Initialize essential boundary conditions.
  DefaultEssentialBCConst<double> bc_essential(
      Hermes::vector<std::string>("Bottom", "Inner", "Outer", "Left"), FIXED_BDY_TEMP);
  EssentialBCs<double> bcs(&bc_essential);

  // Create an H1 space with default shapeset.
  SpaceSharedPtr<double> space(new H1Space<double>(mesh, &bcs, P_INIT));
  int ndof = space->get_num_dofs();
  Hermes::Mixins::Loggable::Static::info("ndof = %d", ndof);

  // Initialize the FE problem.
  DiscreteProblem<double> dp(&wf, space);

  // Initialize Newton solver.
  NewtonSolver<double> newton(&dp);

  // Perform Newton's iteration.
  try
  {
    // When newton.solve() is used without any parameters, this means that the initial coefficient 
    // vector will be the zero vector, tolerance will be 1e-8, maximum allowed number of iterations 
    // will be 100, and residual will be measured using Euclidean vector norm.
    newton.solve();
  }
  catch(std::exception& e)
  {
    std::cout << e.what();
    
  }

  // Translate the resulting coefficient vector into a Solution.
  MeshFunctionSharedPtr<double> sln(new Solution<double>);
  Solution<double>::vector_to_solution(newton.get_sln_vector(), space, sln);

  // VTK output.
  if (VTK_VISUALIZATION) 
  {
    // Output solution in VTK format.
    Linearizer lin;
    bool mode_3D = true;
    lin.save_solution_vtk(sln, "sln.vtk", "Temperature", mode_3D);
    Hermes::Mixins::Loggable::Static::info("Solution in VTK format saved to file %s.", "sln.vtk");

    // Output mesh and element orders in VTK format.
    Orderizer ord;
    ord.save_orders_vtk(space, "ord.vtk");
    Hermes::Mixins::Loggable::Static::info("Element orders in VTK format saved to file %s.", "ord.vtk");
  }

  // Visualize the solution.
  if (HERMES_VISUALIZATION) 
  {
    ScalarView view("Solution", new WinGeom(0, 0, 440, 350));
    // Hermes uses adaptive FEM to approximate higher-order FE solutions with linear
    // triangles for OpenGL. The second parameter of View::show() sets the error 
    // tolerance for that. Options are HERMES_EPS_LOW, HERMES_EPS_NORMAL (default), 
    // HERMES_EPS_HIGH and HERMES_EPS_VERYHIGH. The size of the graphics file grows 
    // considerably with more accurate representation, so use it wisely.
    view.show(sln, HERMES_EPS_HIGH);
    View::wait();
  }

  return 0;
}
Exemplo n.º 4
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("cathedral.mesh", &mesh);

  // Perform initial mesh refinements.
  for(int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();
  mesh.refine_towards_boundary(bdy_air, INIT_REF_NUM_BDY);

  // Initialize an H1 space with default shepeset.
  H1Space space(&mesh, bc_types, essential_bc_values, P_INIT);
  int ndof = get_num_dofs(&space);
  info("ndof = %d.", ndof);

  // Set initial condition.
  Solution tsln;
  tsln.set_const(&mesh, T_INIT);

  // Initialize weak formulation.
  WeakForm wf;
  wf.add_matrix_form(bilinear_form<double, double>, bilinear_form<Ord, Ord>);
  wf.add_matrix_form_surf(bilinear_form_surf<double, double>, bilinear_form_surf<Ord, Ord>, bdy_air);
  wf.add_vector_form(linear_form<double, double>, linear_form<Ord, Ord>, H2D_ANY, &tsln);
  wf.add_vector_form_surf(linear_form_surf<double, double>, linear_form_surf<Ord, Ord>, bdy_air);

  // Initialize the linear problem.
  LinearProblem lp(&wf, &space);

  // Initialize matrix solver.
  Matrix* mat; Vector* rhs; CommonSolver* solver;  
  init_matrix_solver(matrix_solver, ndof, mat, rhs, solver);

  // Time stepping:
  int nsteps = (int)(FINAL_TIME/TAU + 0.5);
  bool rhsonly = false;
  for(int ts = 1; ts <= nsteps; ts++)
  {
    info("---- Time step %d, time %3.5f, ext_temp %g", ts, TIME, temp_ext(TIME));

    // Assemble stiffness matrix and rhs.
    lp.assemble(mat, rhs, rhsonly);
    rhsonly = true;

    // Solve the matrix problem.
    if (!solver->solve(mat, rhs)) error ("Matrix solver failed.\n");

    // Update tsln.
    tsln.set_fe_solution(&space, rhs);

    if (ts % OUTPUT_FREQUENCY == 0) {
      Linearizer lin;
      int item = H2D_FN_VAL_0;
      double eps = H2D_EPS_NORMAL;
      double max_abs = -1.0;
      MeshFunction* xdisp = NULL; 
      MeshFunction* ydisp = NULL;
      double dmult = 1.0;
      lin.process_solution(&tsln, item, eps, max_abs, xdisp, ydisp, dmult);
      char* filename = new char[100];
      sprintf(filename, "tsln_%d.lin", ts);

      // Save Linearizer data.
      lin.save_data(filename);
      info("Linearizer data saved to file %s.", filename);

      // Save complete Solution.
      sprintf(filename, "tsln_%d.dat", ts);
      bool compress = false;   // Gzip compression not used as it only works on Linux.
      tsln.save(filename, compress);
      info("Complete Solution saved to file %s.", filename);
    }

    // Update the time variable.
    TIME += TAU;
  }

  info("Let's assume that the remote computation has finished and you fetched the *.lin files.");
  info("Visualizing Linearizer data from file tsln_40.lin.");

  // First use ScalarView to read and show the Linearizer data.
  WinGeom* win_geom_1 = new WinGeom(0, 0, 450, 600);
  ScalarView sview_1("Saved Linearizer data", win_geom_1);
  sview_1.lin.load_data("tsln_40.lin");
  sview_1.set_min_max_range(0,20);
  sview_1.fix_scale_width(3);
  sview_1.show_linearizer_data();

  info("Visualizing Solution from file tsln_60.dat.");

  Solution sln_from_file;
  sln_from_file.load("tsln_60.dat");
  WinGeom* win_geom_2 = new WinGeom(460, 0, 450, 600);
  ScalarView sview_2("Saved Solution data", win_geom_2);
  sview_2.set_min_max_range(0,20);
  sview_2.fix_scale_width(3);
  sview_2.show(&sln_from_file);

  info("Visualizing Mesh and Orders extracted from the Solution.");
 
  int p_init = 1;
  // The NULLs are for bc_types() and essential_bc_values().
  H1Space space_from_file(sln_from_file.get_mesh(), NULL, NULL, p_init);
  space_from_file.set_element_orders(sln_from_file.get_element_orders());
  WinGeom* win_geom_3 = new WinGeom(920, 0, 450, 600);
  OrderView oview("Saved Solution -> Space", win_geom_3);
  oview.show(&space_from_file);

  // Wait for the view to be closed.
  View::wait();
  return 0;
}
Exemplo n.º 5
0
int main(int argc, char* argv[])
{
    // Instantiate a class with global functions.
    Hermes2D hermes2d;

    // Load the mesh.
    Mesh mesh;
    H2DReader mloader;
    mloader.load("cathedral.mesh", &mesh);

    // Perform initial mesh refinements.
    for(int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();
    mesh.refine_towards_boundary("Boundary_air", INIT_REF_NUM_BDY);
    mesh.refine_towards_boundary("Boundary_ground", INIT_REF_NUM_BDY);

    // Previous time level solution (initialized by the external temperature).
    Solution tsln(&mesh, TEMP_INIT);

    // Initialize the weak formulation.
    double current_time = 0;
    CustomWeakFormHeatRK1 wf("Boundary_air", ALPHA, LAMBDA, HEATCAP, RHO, time_step,
                             &current_time, TEMP_INIT, T_FINAL, &tsln);

    // Initialize boundary conditions.
    DefaultEssentialBCConst essential_bc("Boundary_ground", TEMP_INIT);
    EssentialBCs bcs(&essential_bc);

    // Initialize an H1 space with default shepeset.
    H1Space space(&mesh, &bcs, P_INIT);
    int ndof = Space::get_num_dofs(&space);
    info("ndof = %d.", ndof);

    // Initialize the FE problem.
    DiscreteProblem dp(&wf, &space);

    // Set up the solver, matrix, and rhs according to the solver selection.
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);
    solver->set_factorization_scheme(HERMES_REUSE_FACTORIZATION_COMPLETELY);

    // Initial coefficient vector for the Newton's method.
    scalar* coeff_vec = new scalar[ndof];
    memset(coeff_vec, 0, ndof*sizeof(scalar));

    // Initialize views.
    ScalarView Tview("Temperature", new WinGeom(0, 0, 450, 600));
    char title[100];
    sprintf(title, "Time %3.5f", current_time);
    Tview.set_min_max_range(0,20);
    Tview.set_title(title);
    Tview.fix_scale_width(3);

    // Time stepping:
    int nsteps = (int)(T_FINAL/time_step + 0.5);
    bool jacobian_changed = true;
    for(int ts = 1; ts <= nsteps; ts++)
    {
        info("---- Time step %d, time %3.5f", ts, current_time);

        // Perform Newton's iteration.
        if (!hermes2d.solve_newton(coeff_vec, &dp, solver, matrix, rhs,
                                   jacobian_changed)) error("Newton's iteration failed.");
        jacobian_changed = false;

        // Translate the resulting coefficient vector into the Solution sln.
        Solution::vector_to_solution(coeff_vec, &space, &tsln);

        if (ts % OUTPUT_FREQUENCY == 0) {
            Linearizer lin;
            int item = H2D_FN_VAL_0;
            double eps = HERMES_EPS_NORMAL;
            double max_abs = -1.0;
            MeshFunction* xdisp = NULL;
            MeshFunction* ydisp = NULL;
            double dmult = 1.0;
            lin.process_solution(&tsln, item, eps, max_abs, xdisp, ydisp, dmult);
            char* filename = new char[100];
            sprintf(filename, "tsln_%d.lin", ts);

            // Save Linearizer data.
            lin.save_data(filename);
            info("Linearizer data saved to file %s.", filename);

            // Save complete Solution.
            sprintf(filename, "tsln_%d.dat", ts);
            bool compress = false;   // Gzip compression not used as it only works on Linux.
            tsln.save(filename, compress);
            info("Complete Solution saved to file %s.", filename);
        }

        // Update the time variable.
        current_time += time_step;
    }

    info("Let's assume that the remote computation has finished and you fetched the *.lin files.");
    info("Visualizing Linearizer data from file tsln_40.lin.");

    // First use ScalarView to read and show the Linearizer data.
    WinGeom* win_geom_1 = new WinGeom(0, 0, 450, 600);
    ScalarView sview_1("Saved Linearizer data", win_geom_1);
    sview_1.lin.load_data("tsln_40.lin");
    sview_1.set_min_max_range(0,20);
    sview_1.fix_scale_width(3);
    sview_1.show_linearizer_data();

    info("Visualizing Solution from file tsln_60.dat.");

    Solution sln_from_file;
    sln_from_file.load("tsln_60.dat");
    WinGeom* win_geom_2 = new WinGeom(460, 0, 450, 600);
    ScalarView sview_2("Saved Solution data", win_geom_2);
    sview_2.set_min_max_range(0,20);
    sview_2.fix_scale_width(3);
    sview_2.show(&sln_from_file);

    info("Visualizing Mesh and Orders extracted from the Solution.");

    int p_init = 1;

    H1Space space_from_file(sln_from_file.get_mesh(), p_init);
    space_from_file.set_element_orders(sln_from_file.get_element_orders());
    OrderView oview("Saved Solution -> Space", new WinGeom(920, 0, 450, 600));
    oview.show(&space_from_file);

    // Clean up.
    delete solver;
    delete matrix;
    delete rhs;

    // Wait for the view to be closed.
    View::wait();
    return 0;
}
Exemplo n.º 6
0
int main(int argc, char* argv[])
{
  Hermes::vector<std::string> BDY_NATURAL_CONCENTRATION;
  BDY_NATURAL_CONCENTRATION.push_back("4");

  // Load the mesh.
  Mesh basemesh;
  H2DReader mloader;
  mloader.load("GAMM-channel.mesh", &basemesh);

  // Initialize the meshes.
  Mesh mesh_flow, mesh_concentration;
  mesh_flow.copy(&basemesh);
  mesh_concentration.copy(&basemesh);

  for(unsigned int i = 0; i < INIT_REF_NUM_CONCENTRATION; i++)
    mesh_concentration.refine_all_elements();

  mesh_concentration.refine_towards_boundary(BDY_DIRICHLET_CONCENTRATION, INIT_REF_NUM_CONCENTRATION_BDY);
  //mesh_flow.refine_towards_boundary(BDY_DIRICHLET_CONCENTRATION, INIT_REF_NUM_CONCENTRATION_BDY);

  for(unsigned int i = 0; i < INIT_REF_NUM_FLOW; i++)
    mesh_flow.refine_all_elements();

  // Initialize boundary condition types and spaces with default shapesets.
  // For the concentration.
  EssentialBCs<double> bcs_concentration;

  bcs_concentration.add_boundary_condition(new ConcentrationTimedepEssentialBC(BDY_DIRICHLET_CONCENTRATION, CONCENTRATION_EXT, CONCENTRATION_EXT_STARTUP_TIME));

  L2Space<double>space_rho(&mesh_flow, P_INIT_FLOW);
  L2Space<double>space_rho_v_x(&mesh_flow, P_INIT_FLOW);
  L2Space<double>space_rho_v_y(&mesh_flow, P_INIT_FLOW);
  L2Space<double>space_e(&mesh_flow, P_INIT_FLOW);
  // Space<double> for concentration.
  H1Space<double> space_c(&mesh_concentration, &bcs_concentration, P_INIT_CONCENTRATION);

  int ndof = Space<double>::get_num_dofs(Hermes::vector<Space<double>*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c));
  info("ndof: %d", ndof);

  // Initialize solutions, set initial conditions.
  InitialSolutionEulerDensity sln_rho(&mesh_flow, RHO_EXT);
  InitialSolutionEulerDensityVelX sln_rho_v_x(&mesh_flow, RHO_EXT * V1_EXT);
  InitialSolutionEulerDensityVelY sln_rho_v_y(&mesh_flow, RHO_EXT * V2_EXT);
  InitialSolutionEulerDensityEnergy sln_e(&mesh_flow, QuantityCalculator::calc_energy(RHO_EXT, RHO_EXT * V1_EXT, RHO_EXT * V2_EXT, P_EXT, KAPPA));
  InitialSolutionConcentration sln_c(&mesh_concentration, 0.0);

  InitialSolutionEulerDensity prev_rho(&mesh_flow, RHO_EXT);
  InitialSolutionEulerDensityVelX prev_rho_v_x(&mesh_flow, RHO_EXT * V1_EXT);
  InitialSolutionEulerDensityVelY prev_rho_v_y(&mesh_flow, RHO_EXT * V2_EXT);
  InitialSolutionEulerDensityEnergy prev_e(&mesh_flow, QuantityCalculator::calc_energy(RHO_EXT, RHO_EXT * V1_EXT, RHO_EXT * V2_EXT, P_EXT, KAPPA));
  InitialSolutionConcentration prev_c(&mesh_concentration, 0.0);

  // Numerical flux.
  OsherSolomonNumericalFlux num_flux(KAPPA);

  // Initialize weak formulation.
  EulerEquationsWeakFormImplicitCoupled wf(&num_flux, KAPPA, RHO_EXT, V1_EXT, V2_EXT, P_EXT, BDY_SOLID_WALL_BOTTOM,
    BDY_SOLID_WALL_TOP, BDY_INLET, BDY_OUTLET, BDY_NATURAL_CONCENTRATION, &prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, &prev_c, PRECONDITIONING, EPSILON);

  wf.set_time_step(time_step);

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem<double> dp(&wf, Hermes::vector<Space<double>*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c));
  // Project the initial solution on the FE space 
  // in order to obtain initial vector for NOX. 
  info("Projecting initial solution on the FE mesh.");
  double* coeff_vec = new double[Space<double>::get_num_dofs(Hermes::vector<Space<double>*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c))];
  OGProjection<double>::project_global(Hermes::vector<Space<double>*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c), 
    Hermes::vector<MeshFunction<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, &prev_c), coeff_vec);

  // Filters for visualization of Mach number, pressure and entropy.
  MachNumberFilter Mach_number(Hermes::vector<MeshFunction<double>*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e), KAPPA);
  PressureFilter pressure(Hermes::vector<MeshFunction<double>*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e), KAPPA);
  EntropyFilter entropy(Hermes::vector<MeshFunction<double>*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e), KAPPA, RHO_EXT, P_EXT);

  /*
  ScalarView<double> pressure_view("Pressure", new WinGeom(0, 0, 600, 300));
  ScalarView<double> Mach_number_view("Mach number", new WinGeom(700, 0, 600, 300));
  ScalarView<double> entropy_production_view("Entropy estimate", new WinGeom(0, 400, 600, 300));
  ScalarView<double> s5("Concentration", new WinGeom(700, 400, 600, 300));
  */

  ScalarView<double> s1("1", new WinGeom(0, 0, 600, 300));
  ScalarView<double> s2("2", new WinGeom(700, 0, 600, 300));
  ScalarView<double> s3("3", new WinGeom(0, 400, 600, 300));
  ScalarView<double> s4("4", new WinGeom(700, 400, 600, 300));
  ScalarView<double> s5("Concentration", new WinGeom(350, 200, 600, 300));

  // Initialize NOX solver.
  NoxSolver<double> solver(&dp);
  solver.set_ls_tolerance(NOX_LINEAR_TOLERANCE);
  solver.disable_abs_resid();
  solver.set_conv_rel_resid(NOX_NONLINEAR_TOLERANCE);

  // Set up CFL calculation class.
  CFLCalculation CFL(CFL_NUMBER, KAPPA);

  // Set up Advection-Diffusion-Equation stability calculation class.
  ADEStabilityCalculation ADES(ADVECTION_STABILITY_CONSTANT, DIFFUSION_STABILITY_CONSTANT, EPSILON);

  // Select preconditioner.
  if(PRECONDITIONING)
  {
    RCP<Precond<double> > pc = rcp(new Preconditioners::MlPrecond<double>("sa"));
    solver.set_precond(pc);
  }

  int iteration = 0; double t = 0;
  for(t = 0.0; t < 100.0; t += time_step)
  {
    info("---- Time step %d, time %3.5f.", iteration++, t);

    OGProjection<double>::project_global(Hermes::vector<Space<double>*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c), 
      Hermes::vector<MeshFunction<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, &prev_c), coeff_vec);

    info("Assembling by DiscreteProblem, solving by NOX.");
    if (solver.solve(coeff_vec))
      Solution<double>::vector_to_solutions(solver.get_sln_vector(), Hermes::vector<Space<double>*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c), 
      Hermes::vector<Solution<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, &prev_c));
    else
      error("NOX failed.");
    util_time_step = time_step;

    CFL.calculate(Hermes::vector<Solution<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), &mesh_flow, util_time_step);

    time_step = util_time_step;

    ADES.calculate(Hermes::vector<Solution<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y), &mesh_concentration, util_time_step);

    if(util_time_step < time_step)
      time_step = util_time_step;

    // Visualization.
    if((iteration - 1) % EVERY_NTH_STEP == 0) {
      // Hermes visualization.
      if(HERMES_VISUALIZATION)
      {        /*
               Mach_number.reinit();
               pressure.reinit();
               entropy.reinit();
               pressure_view.show(&pressure);
               entropy_production_view.show(&entropy);
               Mach_number_view.show(&Mach_number);
               s5.show(&prev_c);
               */
        s1.show(&prev_rho);
        s2.show(&prev_rho_v_x);
        s3.show(&prev_rho_v_y);
        s4.show(&prev_e);
        s5.show(&prev_c);
        /*
        s1.save_numbered_screenshot("density%i.bmp", iteration, true);
        s2.save_numbered_screenshot("density_v_x%i.bmp", iteration, true);
        s3.save_numbered_screenshot("density_v_y%i.bmp", iteration, true);
        s4.save_numbered_screenshot("energy%i.bmp", iteration, true);
        s5.save_numbered_screenshot("concentration%i.bmp", iteration, true);
        */
        //s5.wait_for_close();

      }
      // Output solution in VTK format.
      if(VTK_VISUALIZATION)
      {
        pressure.reinit();
        Mach_number.reinit();
        Linearizer<double> lin;
        char filename[40];
        sprintf(filename, "pressure-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&pressure, filename, "Pressure", false);
        sprintf(filename, "pressure-3D-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&pressure, filename, "Pressure", true);
        sprintf(filename, "Mach number-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&Mach_number, filename, "MachNumber", false);
        sprintf(filename, "Mach number-3D-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&Mach_number, filename, "MachNumber", true);
        sprintf(filename, "Concentration-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_c, filename, "Concentration", true);
        sprintf(filename, "Concentration-3D-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_c, filename, "Concentration", true);

      }
    }
  }

  /*
  pressure_view.close();
  entropy_production_view.close();
  Mach_number_view.close();
  s5.close();
  */

  s1.close();
  s2.close();
  s3.close();
  s4.close();
  s5.close();

  return 0;
}
Exemplo n.º 7
0
int main(int argc, char* argv[])
{
  // Provide a possibility to change INITIAL_CONCENTRATION_STATE through an argument.
  if(argc > 1)
    INITIAL_CONCENTRATION_STATE = atoi(argv[1]);

  if(argc > 2)
    INIT_REF_NUM_FLOW = atoi(argv[2]);

  if(argc > 3)
    INIT_REF_NUM_CONCENTRATION = atoi(argv[3]);
  
  if(argc > 4)
    INIT_REF_NUM_CONCENTRATION_BDY = atoi(argv[4]);

  // Load the mesh.
  Mesh basemesh;
  H2DReader mloader;
  if(INITIAL_CONCENTRATION_STATE == 1)
    mloader.load("GAMM-channel-4-bnds.mesh", &basemesh);
  else
    mloader.load("channel-4-bnds.mesh", &basemesh);


  // Initialize the meshes.
  Mesh mesh_flow, mesh_concentration;
  mesh_flow.copy(&basemesh);
  mesh_concentration.copy(&basemesh);

  for(unsigned int i = 0; i < INIT_REF_NUM_CONCENTRATION; i++)
    mesh_concentration.refine_all_elements();

  if(INITIAL_CONCENTRATION_STATE != 2)
    mesh_concentration.refine_towards_boundary(3, INIT_REF_NUM_CONCENTRATION_BDY);
  
  //mesh_concentration.refine_towards_boundary(1, INIT_REF_NUM_CONCENTRATION_BDY, false);

  for(unsigned int i = 0; i < INIT_REF_NUM_FLOW; i++)
    mesh_flow.refine_all_elements();

  // Initialize boundary condition types and spaces with default shapesets.
  BCTypes bc_types_euler;
  bc_types_euler.add_bc_neumann(Hermes::vector<int>(BDY_SOLID_WALL_TOP, BDY_SOLID_WALL_BOTTOM, BDY_INLET, BDY_OUTLET));

  BCTypes bc_types_concentration;
  BCValues bc_values_concentration;

  switch(INITIAL_CONCENTRATION_STATE) {
  case 0:
    bc_types_concentration.add_bc_neumann(Hermes::vector<int>(BDY_INLET, BDY_OUTLET, BDY_SOLID_WALL_TOP));
    bc_types_concentration.add_bc_dirichlet(Hermes::vector<int>(BDY_SOLID_WALL_BOTTOM));
    bc_values_concentration.add_const(Hermes::vector<int>(BDY_SOLID_WALL_BOTTOM), CONCENTRATION_EXT);
    break;
  case 1:
    bc_types_concentration.add_bc_neumann(Hermes::vector<int>(BDY_INLET, BDY_OUTLET, BDY_SOLID_WALL_TOP));
    bc_types_concentration.add_bc_dirichlet(Hermes::vector<int>(BDY_SOLID_WALL_BOTTOM));
    bc_values_concentration.add_const(Hermes::vector<int>(BDY_SOLID_WALL_BOTTOM), CONCENTRATION_EXT);
    break;
  case 2:
    bc_types_concentration.add_bc_neumann(Hermes::vector<int>(BDY_SOLID_WALL_BOTTOM, BDY_OUTLET, BDY_SOLID_WALL_TOP));
    bc_types_concentration.add_bc_dirichlet(Hermes::vector<int>(BDY_INLET));
    bc_values_concentration.add_const(Hermes::vector<int>(BDY_INLET), CONCENTRATION_EXT);
    break;
  }

  L2Space space_rho(&mesh_flow, &bc_types_euler, P_INIT_FLOW);
  L2Space space_rho_v_x(&mesh_flow, &bc_types_euler, P_INIT_FLOW);
  L2Space space_rho_v_y(&mesh_flow, &bc_types_euler, P_INIT_FLOW);
  L2Space space_e(&mesh_flow, &bc_types_euler, P_INIT_FLOW);
  // Space for concentration.
  H1Space space_c(&mesh_concentration, &bc_types_concentration, &bc_values_concentration, P_INIT_CONCENTRATION);

  // Initialize solutions, set initial conditions.
  Solution sln_rho, sln_rho_v_x, sln_rho_v_y, sln_e, sln_c, prev_rho, prev_rho_v_x, prev_rho_v_y, prev_e, prev_c;
  sln_rho.set_exact(&mesh_flow, ic_density);
  sln_rho_v_x.set_exact(&mesh_flow, ic_density_vel_x);
  sln_rho_v_y.set_exact(&mesh_flow, ic_density_vel_y);
  sln_e.set_exact(&mesh_flow, ic_energy);
  sln_c.set_exact(&mesh_concentration, ic_concentration);
  prev_rho.set_exact(&mesh_flow, ic_density);
  prev_rho_v_x.set_exact(&mesh_flow, ic_density_vel_x);
  prev_rho_v_y.set_exact(&mesh_flow, ic_density_vel_y);
  prev_e.set_exact(&mesh_flow, ic_energy);
  prev_c.set_exact(&mesh_concentration, ic_concentration);

  // Initialize weak formulation.
  bool is_matrix_free = true;
  WeakForm wf(5, is_matrix_free);

  // Volumetric linear forms.
  wf.add_vector_form(0, callback(linear_form_0_time));
  wf.add_vector_form(1, callback(linear_form_1_time));
  wf.add_vector_form(2, callback(linear_form_2_time));
  wf.add_vector_form(3, callback(linear_form_3_time));
  wf.add_vector_form(4, callback(linear_form_4_time));

  // Volumetric linear forms.
  // Linear forms coming from the linearization by taking the Eulerian fluxes' Jacobian matrices 
  // from the previous time step.
  // Unnecessary for FVM.
  if(P_INIT_FLOW.order_h > 0 || P_INIT_FLOW.order_v > 0) {
    // First flux.
    wf.add_vector_form(0, callback(linear_form_0_1), HERMES_ANY);
    
    wf.add_vector_form(1, callback(linear_form_1_0_first_flux), HERMES_ANY);
    wf.add_vector_form(1, callback(linear_form_1_1_first_flux), HERMES_ANY);
    wf.add_vector_form(1, callback(linear_form_1_2_first_flux), HERMES_ANY);
    wf.add_vector_form(1, callback(linear_form_1_3_first_flux), HERMES_ANY);
    wf.add_vector_form(2, callback(linear_form_2_0_first_flux), HERMES_ANY);
    wf.add_vector_form(2, callback(linear_form_2_1_first_flux), HERMES_ANY);
    wf.add_vector_form(2, callback(linear_form_2_2_first_flux), HERMES_ANY);
    wf.add_vector_form(2, callback(linear_form_2_3_first_flux), HERMES_ANY);
    wf.add_vector_form(3, callback(linear_form_3_0_first_flux), HERMES_ANY);
    wf.add_vector_form(3, callback(linear_form_3_1_first_flux), HERMES_ANY);
    wf.add_vector_form(3, callback(linear_form_3_2_first_flux), HERMES_ANY);
    wf.add_vector_form(3, callback(linear_form_3_3_first_flux), HERMES_ANY);
    
    // Second flux.
    wf.add_vector_form(0, callback(linear_form_0_2), HERMES_ANY);
    wf.add_vector_form(1, callback(linear_form_1_0_second_flux), HERMES_ANY);
    wf.add_vector_form(1, callback(linear_form_1_1_second_flux), HERMES_ANY);
    wf.add_vector_form(1, callback(linear_form_1_2_second_flux), HERMES_ANY);
    wf.add_vector_form(1, callback(linear_form_1_3_second_flux), HERMES_ANY);
    wf.add_vector_form(2, callback(linear_form_2_0_second_flux), HERMES_ANY);
    wf.add_vector_form(2, callback(linear_form_2_1_second_flux), HERMES_ANY);
    wf.add_vector_form(2, callback(linear_form_2_2_second_flux), HERMES_ANY);
    wf.add_vector_form(2, callback(linear_form_2_3_second_flux), HERMES_ANY);
    wf.add_vector_form(3, callback(linear_form_3_0_second_flux), HERMES_ANY);
    wf.add_vector_form(3, callback(linear_form_3_1_second_flux), HERMES_ANY);
    wf.add_vector_form(3, callback(linear_form_3_2_second_flux), HERMES_ANY);
    wf.add_vector_form(3, callback(linear_form_3_3_second_flux), HERMES_ANY);
  }

  // Volumetric linear forms coming from the time discretization.
  wf.add_vector_form(0, linear_form_time, linear_form_order, HERMES_ANY, &prev_rho);
  wf.add_vector_form(1, linear_form_time, linear_form_order, HERMES_ANY, &prev_rho_v_x);
  wf.add_vector_form(2, linear_form_time, linear_form_order, HERMES_ANY, &prev_rho_v_y);
  wf.add_vector_form(3, linear_form_time, linear_form_order, HERMES_ANY, &prev_e);
  wf.add_vector_form(4, callback(linear_form_time_concentration), HERMES_ANY, &prev_c);

  // Surface linear forms - inner edges coming from the DG formulation.
  wf.add_vector_form_surf(0, linear_form_interface_0, linear_form_order, H2D_DG_INNER_EDGE);
  wf.add_vector_form_surf(1, linear_form_interface_1, linear_form_order, H2D_DG_INNER_EDGE);
  wf.add_vector_form_surf(2, linear_form_interface_2, linear_form_order, H2D_DG_INNER_EDGE);
  wf.add_vector_form_surf(3, linear_form_interface_3, linear_form_order, H2D_DG_INNER_EDGE);

  // Surface linear forms - inlet / outlet edges.
  wf.add_vector_form_surf(0, bdy_flux_inlet_outlet_comp_0, linear_form_order, BDY_INLET);
  wf.add_vector_form_surf(1, bdy_flux_inlet_outlet_comp_1, linear_form_order, BDY_INLET);
  wf.add_vector_form_surf(2, bdy_flux_inlet_outlet_comp_2, linear_form_order, BDY_INLET);
  wf.add_vector_form_surf(3, bdy_flux_inlet_outlet_comp_3, linear_form_order, BDY_INLET);

  wf.add_vector_form_surf(0, bdy_flux_inlet_outlet_comp_0, linear_form_order, BDY_OUTLET);
  wf.add_vector_form_surf(1, bdy_flux_inlet_outlet_comp_1, linear_form_order, BDY_OUTLET);
  wf.add_vector_form_surf(2, bdy_flux_inlet_outlet_comp_2, linear_form_order, BDY_OUTLET);
  wf.add_vector_form_surf(3, bdy_flux_inlet_outlet_comp_3, linear_form_order, BDY_OUTLET);
  
  // Surface linear forms - Solid wall edges.
  wf.add_vector_form_surf(0, bdy_flux_solid_wall_comp_0, linear_form_order, BDY_SOLID_WALL_BOTTOM);
  wf.add_vector_form_surf(1, bdy_flux_solid_wall_comp_1, linear_form_order, BDY_SOLID_WALL_BOTTOM);
  wf.add_vector_form_surf(2, bdy_flux_solid_wall_comp_2, linear_form_order, BDY_SOLID_WALL_BOTTOM);
  wf.add_vector_form_surf(3, bdy_flux_solid_wall_comp_3, linear_form_order, BDY_SOLID_WALL_BOTTOM);

  wf.add_vector_form_surf(0, bdy_flux_solid_wall_comp_0, linear_form_order, BDY_SOLID_WALL_TOP);
  wf.add_vector_form_surf(1, bdy_flux_solid_wall_comp_1, linear_form_order, BDY_SOLID_WALL_TOP);
  wf.add_vector_form_surf(2, bdy_flux_solid_wall_comp_2, linear_form_order, BDY_SOLID_WALL_TOP);
  wf.add_vector_form_surf(3, bdy_flux_solid_wall_comp_3, linear_form_order, BDY_SOLID_WALL_TOP);

  // Forms for concentration.
  wf.add_vector_form(4, callback(volume_linear_form_concentration_grad_grad), HERMES_ANY);
  
  wf.add_vector_form(4, callback(volume_linear_form_concentration_convective), HERMES_ANY);

  wf.add_vector_form_surf(4, callback(surface_linear_form_concentration_inlet_outlet), BDY_INLET);

  wf.add_vector_form_surf(4, callback(surface_linear_form_concentration_inlet_outlet), BDY_OUTLET);

  wf.add_vector_form_surf(4, callback(surface_linear_form_concentration_solid_wall), BDY_SOLID_WALL_TOP);

  wf.add_vector_form_surf(4, callback(inner_linear_form_concentration), H2D_DG_INNER_EDGE);

  if(PRECONDITIONING) {
    // Preconditioning forms.
    wf.add_matrix_form(0, 0, callback(bilinear_form_precon));
    wf.add_matrix_form(1, 1, callback(bilinear_form_precon));
    wf.add_matrix_form(2, 2, callback(bilinear_form_precon));
    wf.add_matrix_form(3, 3, callback(bilinear_form_precon));
    wf.add_matrix_form(4, 4, callback(bilinear_form_precon));
  }

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem dp(&wf, Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c), is_linear);
  // Project the initial solution on the FE space 
  // in order to obtain initial vector for NOX. 
  info("Projecting initial solution on the FE mesh.");
  scalar* coeff_vec = new scalar[Space::get_num_dofs(Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c))];
  OGProjection::project_global(Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c), 
    Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, &prev_c), coeff_vec);
  
  // Filters for visualization of pressure and the two components of velocity.
  /*
  SimpleFilter pressure(calc_pressure_func, Hermes::vector<MeshFunction*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e));
  SimpleFilter u(calc_u_func, Hermes::vector<MeshFunction*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e));
  SimpleFilter w(calc_w_func, Hermes::vector<MeshFunction*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e));
  SimpleFilter Mach_number(calc_Mach_func, Hermes::vector<MeshFunction*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e));
  SimpleFilter entropy_estimate(calc_entropy_estimate_func, Hermes::vector<MeshFunction*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e));

  ScalarView pressure_view("Pressure", new WinGeom(0, 0, 600, 300));
  ScalarView Mach_number_view("Mach number", new WinGeom(700, 0, 600, 300));
  ScalarView entropy_production_view("Entropy estimate", new WinGeom(0, 400, 600, 300));
  VectorView vview("Velocity", new WinGeom(700, 400, 600, 300));
  */

  ScalarView s1("w0", new WinGeom(0, 0, 600, 300));
  ScalarView s2("w1", new WinGeom(700, 0, 600, 300));
  ScalarView s3("w2", new WinGeom(0, 400, 600, 300));
  ScalarView s4("w3", new WinGeom(700, 400, 600, 300));
  ScalarView s5("Concentration", new WinGeom(350, 200, 600, 300));
  
  // Iteration number.
  int iteration = 0;
  
  // Output of the approximate time derivative.
  std::ofstream time_der_out("time_der");

  // Initialize NOX solver.
  NoxSolver solver(&dp);
  solver.set_ls_tolerance(1E-2);
  solver.disable_abs_resid();
  solver.set_conv_rel_resid(1.00);

  // Select preconditioner.
  if(PRECONDITIONING) {
    RCP<Precond> pc = rcp(new MlPrecond("sa"));
    solver.set_precond(pc);
  }

  for(t = 0.0; t < 3.0; t += TAU)
  {
    info("---- Time step %d, time %3.5f.", iteration++, t);

    OGProjection::project_global(Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c), 
    Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, &prev_c), coeff_vec);

    info("Assembling by DiscreteProblem, solving by NOX.");
    solver.set_init_sln(coeff_vec);
    if (solver.solve())
      Solution::vector_to_solutions(solver.get_solution(), Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c), 
      Hermes::vector<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, &prev_c));
    else
      error("NOX failed.");

    /*
    // Visualization.
    pressure.reinit();
    u.reinit();
    w.reinit();
    Mach_number.reinit();
    entropy_estimate.reinit();
    pressure_view.show(&pressure);
    entropy_production_view.show(&entropy_estimate);
    Mach_number_view.show(&Mach_number);
    vview.show(&u, &w);
    */

    info("Number of nonlin iterations: %d (norm of residual: %g)", 
      solver.get_num_iters(), solver.get_residual());
    info("Total number of iterations in linsolver: %d (achieved tolerance in the last step: %g)", 
      solver.get_num_lin_iters(), solver.get_achieved_tol());

    // Visualization.
    if((iteration - 1) % EVERY_NTH_STEP == 0) {
      // Hermes visualization.
      if(HERMES_VISUALIZATION) {
        s1.show(&prev_rho);
        s2.show(&prev_rho_v_x);
        s3.show(&prev_rho_v_y);
        s4.show(&prev_e);
        s5.show(&prev_c);
      }
      // Output solution in VTK format.
      if(VTK_OUTPUT) {
        Linearizer lin;
        char filename[40];
        sprintf(filename, "w0-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_rho, filename, "w0", false);
        sprintf(filename, "w1-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_rho_v_x, filename, "w1", false);
        sprintf(filename, "w2-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_rho_v_y, filename, "w2", false);
        sprintf(filename, "w3-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_e, filename, "w3", false);
        sprintf(filename, "concentration-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_c, filename, "concentration", false);
      }
    }
  }
  
  s1.close();
  s2.close();
  s3.close();
  s4.close();
  s5.close();
  time_der_out.close();
  return 0;
}
Exemplo n.º 8
0
int main(int argc, char* argv[])
{
  Hermes::vector<std::string> BDY_NATURAL_CONCENTRATION;
  BDY_NATURAL_CONCENTRATION.push_back("2");

  std::ofstream time_step_out("time_step");

  // Load the mesh.
  Mesh basemesh;
  H2DReader mloader;
  mloader.load("GAMM-channel.mesh", &basemesh);

  // Initialize the meshes.
  Mesh mesh_flow, mesh_concentration;
  mesh_flow.copy(&basemesh);
  mesh_concentration.copy(&basemesh);

  for(unsigned int i = 0; i < INIT_REF_NUM_CONCENTRATION; i++)
    mesh_concentration.refine_all_elements(0, true);

  mesh_concentration.refine_towards_boundary(BDY_DIRICHLET_CONCENTRATION, INIT_REF_NUM_CONCENTRATION_BDY, true);
  //mesh_flow.refine_towards_boundary(BDY_DIRICHLET_CONCENTRATION, INIT_REF_NUM_CONCENTRATION_BDY);

  for(unsigned int i = 0; i < INIT_REF_NUM_FLOW; i++)
    mesh_flow.refine_all_elements(0, true);

  // Initialize boundary condition types and spaces with default shapesets.
  // For the concentration.
  EssentialBCs<double> bcs_concentration;

  bcs_concentration.add_boundary_condition(new ConcentrationTimedepEssentialBC(BDY_DIRICHLET_CONCENTRATION, CONCENTRATION_EXT, CONCENTRATION_EXT_STARTUP_TIME));
  bcs_concentration.add_boundary_condition(new ConcentrationTimedepEssentialBC(BDY_SOLID_WALL_TOP, 0.0, CONCENTRATION_EXT_STARTUP_TIME));
  bcs_concentration.add_boundary_condition(new ConcentrationTimedepEssentialBC(BDY_INLET, 0.0, CONCENTRATION_EXT_STARTUP_TIME));

  L2Space<double>space_rho(&mesh_flow, P_INIT_FLOW);
  L2Space<double>space_rho_v_x(&mesh_flow, P_INIT_FLOW);
  L2Space<double>space_rho_v_y(&mesh_flow, P_INIT_FLOW);
  L2Space<double>space_e(&mesh_flow, P_INIT_FLOW);
  // Space<double> for concentration.
  H1Space<double> space_c(&mesh_concentration, &bcs_concentration, P_INIT_CONCENTRATION);

  int ndof = Space<double>::get_num_dofs(Hermes::vector<Space<double>*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c));
  info("ndof: %d", ndof);

  // Initialize solutions, set initial conditions.
  InitialSolutionEulerDensity sln_rho(&mesh_flow, RHO_EXT);
  InitialSolutionEulerDensityVelX sln_rho_v_x(&mesh_flow, RHO_EXT * V1_EXT);
  InitialSolutionEulerDensityVelY sln_rho_v_y(&mesh_flow, RHO_EXT * V2_EXT);
  InitialSolutionEulerDensityEnergy sln_e(&mesh_flow, QuantityCalculator::calc_energy(RHO_EXT, RHO_EXT * V1_EXT, RHO_EXT * V2_EXT, P_EXT, KAPPA));
  InitialSolutionConcentration sln_c(&mesh_concentration, 0.0);

  InitialSolutionEulerDensity prev_rho(&mesh_flow, RHO_EXT);
  InitialSolutionEulerDensityVelX prev_rho_v_x(&mesh_flow, RHO_EXT * V1_EXT);
  InitialSolutionEulerDensityVelY prev_rho_v_y(&mesh_flow, RHO_EXT * V2_EXT);
  InitialSolutionEulerDensityEnergy prev_e(&mesh_flow, QuantityCalculator::calc_energy(RHO_EXT, RHO_EXT * V1_EXT, RHO_EXT * V2_EXT, P_EXT, KAPPA));
  InitialSolutionConcentration prev_c(&mesh_concentration, 0.0);

  Solution<double> rsln_rho, rsln_rho_v_x, rsln_rho_v_y, rsln_e, rsln_c;

  // Numerical flux.
  OsherSolomonNumericalFlux num_flux(KAPPA);

  // Initialize weak formulation.
  WeakForm<double>* wf = NULL;
  if(SEMI_IMPLICIT)
    wf = new EulerEquationsWeakFormSemiImplicitCoupled(&num_flux, KAPPA, RHO_EXT, V1_EXT, V2_EXT, P_EXT, BDY_SOLID_WALL_BOTTOM,
    BDY_SOLID_WALL_TOP, BDY_INLET, BDY_OUTLET, BDY_NATURAL_CONCENTRATION, &prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, &prev_c, EPSILON, (P_INIT_FLOW == 0 && CAND_LIST_FLOW == H2D_H_ANISO));
  else
    wf = new EulerEquationsWeakFormExplicitCoupled(&num_flux, KAPPA, RHO_EXT, V1_EXT, V2_EXT, P_EXT, BDY_SOLID_WALL_BOTTOM,
    BDY_SOLID_WALL_TOP, BDY_INLET, BDY_OUTLET, BDY_NATURAL_CONCENTRATION, &prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, &prev_c, EPSILON, (P_INIT_FLOW == 0 && CAND_LIST_FLOW == H2D_H_ANISO));

  // Filters for visualization of Mach number, pressure and entropy.
  MachNumberFilter Mach_number(Hermes::vector<MeshFunction<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA);
  PressureFilter pressure(Hermes::vector<MeshFunction<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA);
  EntropyFilter entropy(Hermes::vector<MeshFunction<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA, RHO_EXT, P_EXT);

  ScalarView<double> pressure_view("Pressure", new WinGeom(0, 0, 600, 400));
  ScalarView<double> Mach_number_view("Mach number", new WinGeom(700, 0, 600, 400));
  ScalarView<double> s5("Concentration", new WinGeom(700, 400, 600, 400));

  OrderView<double> order_view_flow("Orders - flow", new WinGeom(700, 350, 600, 400));
  OrderView<double> order_view_conc("Orders - concentration", new WinGeom(700, 700, 600, 400));

  // Initialize refinement selector.
  L2ProjBasedSelector<double> l2selector_flow(CAND_LIST_FLOW, CONV_EXP, H2DRS_DEFAULT_ORDER);
  L2ProjBasedSelector<double> l2selector_concentration(CAND_LIST_CONCENTRATION, CONV_EXP, H2DRS_DEFAULT_ORDER);

  // Set up CFL calculation class.
  CFLCalculation CFL(CFL_NUMBER, KAPPA);

  // Set up Advection-Diffusion-Equation stability calculation class.
  ADEStabilityCalculation ADES(ADVECTION_STABILITY_CONSTANT, DIFFUSION_STABILITY_CONSTANT, EPSILON);

  int iteration = 0; double t = 0;
  for(t = 0.0; t < 100.0; t += time_step)
  {
    time_step_out << time_step << std::endl;
    info("---- Time step %d, time %3.5f.", iteration++, t);

    if(iteration == 2) {
      ERR_STOP_FLOW = 0.55;
      ERR_STOP_CONCENTRATION = 8.3;
    }

    // Periodic global derefinements.
    if (iteration > 1 && iteration % UNREF_FREQ == 0 && (REFINEMENT_COUNT_FLOW > 0 || REFINEMENT_COUNT_CONCENTRATION > 0)) {
      info("Global mesh derefinement.");
      if(REFINEMENT_COUNT_FLOW > 0) {
        REFINEMENT_COUNT_FLOW = 0;
        space_rho.unrefine_all_mesh_elements();
        if(CAND_LIST_FLOW == H2D_HP_ANISO)
          space_rho.adjust_element_order(-1, P_INIT_FLOW);
        space_rho_v_x.copy_orders(&space_rho);
        space_rho_v_y.copy_orders(&space_rho);
        space_e.copy_orders(&space_rho);
      }
      if(REFINEMENT_COUNT_CONCENTRATION > 0) {
        REFINEMENT_COUNT_CONCENTRATION = 0;
        space_c.unrefine_all_mesh_elements();
        space_c.adjust_element_order(-1, P_INIT_CONCENTRATION);
      }
    }

    // Adaptivity loop:
    int as = 1; 
    bool done = false;
    do
    {
      info("---- Adaptivity step %d:", as);

      // Construct globally refined reference mesh and setup reference space.
      int order_increase = 0;
      if(CAND_LIST_FLOW == H2D_HP_ANISO)
        order_increase = 1;
      Hermes::vector<Space<double> *>* ref_spaces = Space<double>::construct_refined_spaces(Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x, 
        &space_rho_v_y, &space_e, &space_c), order_increase);
      if(CAND_LIST_FLOW != H2D_HP_ANISO)
        (*ref_spaces)[4]->adjust_element_order(+1, P_INIT_CONCENTRATION);

      // Project the previous time level solution onto the new fine mesh.
      info("Projecting the previous time level solution onto the new fine mesh.");
      OGProjection<double>::project_global(*ref_spaces, Hermes::vector<Solution<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, &prev_c), 
        Hermes::vector<Solution<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, &prev_c), matrix_solver_type);

      if(iteration == 1) {
        if(CAND_LIST_FLOW == H2D_HP_ANISO)
        {
          prev_rho.set_const((*ref_spaces)[4]->get_mesh(), RHO_EXT);
          prev_rho_v_x.set_const((*ref_spaces)[4]->get_mesh(), RHO_EXT * V1_EXT);
          prev_rho_v_y.set_const((*ref_spaces)[4]->get_mesh(), RHO_EXT * V2_EXT);
          prev_e.set_const((*ref_spaces)[4]->get_mesh(), QuantityCalculator::calc_energy(RHO_EXT, RHO_EXT * V1_EXT, RHO_EXT * V2_EXT, P_EXT, KAPPA));
        }
        prev_c.set_const((*ref_spaces)[4]->get_mesh(), 0.0);
      }

      if(as > 1) {
        delete rsln_rho.get_mesh();
        delete rsln_rho_v_x.get_mesh();
        delete rsln_rho_v_y.get_mesh();
        delete rsln_e.get_mesh();
        delete rsln_c.get_mesh();
      }

      // Report NDOFs.
      info("ndof_coarse: %d, ndof_fine: %d.", 
        Space<double>::get_num_dofs(Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x, 
        &space_rho_v_y, &space_e, &space_c)), Space<double>::get_num_dofs(*ref_spaces));

      // Very imporant, set the meshes for the flow as the same.
      (*ref_spaces)[1]->get_mesh()->set_seq((*ref_spaces)[0]->get_mesh()->get_seq());
      (*ref_spaces)[2]->get_mesh()->set_seq((*ref_spaces)[0]->get_mesh()->get_seq());
      (*ref_spaces)[3]->get_mesh()->set_seq((*ref_spaces)[0]->get_mesh()->get_seq());

      // Set up the solver, matrix, and rhs according to the solver selection.
      SparseMatrix<double>* matrix = create_matrix<double>(matrix_solver_type);
      Vector<double>* rhs = create_vector<double>(matrix_solver_type);
      LinearSolver<double>* solver = create_linear_solver<double>(matrix_solver_type, matrix, rhs);

      // Initialize the FE problem.
      bool is_linear = true;
      DiscreteProblem<double> dp(wf, *ref_spaces);
      if(SEMI_IMPLICIT)
        static_cast<EulerEquationsWeakFormSemiImplicitCoupled*>(wf)->set_time_step(time_step);
      else
        static_cast<EulerEquationsWeakFormExplicitCoupled*>(wf)->set_time_step(time_step);

      // Assemble stiffness matrix and rhs.
      info("Assembling the stiffness matrix and right-hand side vector.");
      dp.assemble(matrix, rhs);

      // Solve the matrix problem.
      info("Solving the matrix problem.");
      if (solver->solve())
        Solution<double>::vector_to_solutions(solver->get_sln_vector(), *ref_spaces, 
        Hermes::vector<Solution<double>*>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e, &rsln_c));
      else
        error ("Matrix solver failed.\n");

      Hermes::vector<Space<double>*> flow_spaces((*ref_spaces)[0], (*ref_spaces)[1], (*ref_spaces)[2], (*ref_spaces)[3]);

      double* flow_solution_vector = new double[Space<double>::get_num_dofs(flow_spaces)];

      OGProjection<double>::project_global(flow_spaces, Hermes::vector<MeshFunction<double> *>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e), flow_solution_vector);

			FluxLimiter flux_limiter(FluxLimiter::Krivodonova, flow_solution_vector, flow_spaces);

			flux_limiter.limit_according_to_detector();

			flux_limiter.get_limited_solutions(Hermes::vector<Solution<double> *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
			
      if(SHOCK_CAPTURING)
        flux_limiter.get_limited_solutions(Hermes::vector<Solution<double>*>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e));
      
      // Project the fine mesh solution onto the coarse mesh.
      info("Projecting reference solution on coarse mesh.");
      OGProjection<double>::project_global(Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x,
        &space_rho_v_y, &space_e, &space_c), Hermes::vector<Solution<double>*>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e, &rsln_c),
        Hermes::vector<Solution<double>*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e, &sln_c), matrix_solver_type,
        Hermes::vector<ProjNormType>(HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM));

      util_time_step = time_step;
      if(SEMI_IMPLICIT)
        CFL.calculate_semi_implicit(Hermes::vector<Solution<double>*>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e), &mesh_flow, util_time_step);
      else
        CFL.calculate(Hermes::vector<Solution<double>*>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e), &mesh_flow, util_time_step);

      time_step = util_time_step;

      ADES.calculate(Hermes::vector<Solution<double>*>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y), &mesh_concentration, util_time_step);

      // Calculate element errors and total error estimate.
      info("Calculating error estimates.");
      Adapt<double> adaptivity_flow(Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x,
        &space_rho_v_y, &space_e), Hermes::vector<ProjNormType>(HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM));

      double err_est_rel_total_flow = adaptivity_flow.calc_err_est(Hermes::vector<Solution<double>*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e),
        Hermes::vector<Solution<double>*>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e)) * 100;

      Adapt<double> adaptivity_concentration(&space_c, HERMES_L2_NORM);

      double err_est_rel_total_concentration = adaptivity_concentration.calc_err_est(&sln_c, &rsln_c) * 100;

      // Report results.
      info("Error estimate for the flow part: %g%%", err_est_rel_total_flow);

      info("Error estimate for the concentration part: %g%%", err_est_rel_total_concentration);

      // If err_est too large, adapt the mesh.
      if (err_est_rel_total_flow < ERR_STOP_FLOW && err_est_rel_total_concentration < ERR_STOP_CONCENTRATION)
      {
        done = true;
        if(SHOCK_CAPTURING)
          flux_limiter.limit_according_to_detector(Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x, 
            &space_rho_v_y, &space_e));
      }

      else
      {
        info("Adapting coarse meshes.");
        if(err_est_rel_total_flow > ERR_STOP_FLOW)
        {
          done = adaptivity_flow.adapt(Hermes::vector<RefinementSelectors::Selector<double> *>(&l2selector_flow, &l2selector_flow, &l2selector_flow, &l2selector_flow), 
            THRESHOLD, STRATEGY, MESH_REGULARITY);
          REFINEMENT_COUNT_FLOW++;
        }
        else
          done = true;
        if(err_est_rel_total_concentration > ERR_STOP_CONCENTRATION)
        {
          if(!adaptivity_concentration.adapt(&l2selector_concentration, THRESHOLD, STRATEGY, MESH_REGULARITY))
            done = false;
          REFINEMENT_COUNT_CONCENTRATION++;
        }

        if (Space<double>::get_num_dofs(Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x, 
          &space_rho_v_y, &space_e, &space_c)) >= NDOF_STOP) 
          done = true;
        else
          // Increase the counter of performed adaptivity steps.
          as++;
      }

      // Save orders.
      if((iteration - 1) % EVERY_NTH_STEP == 0 && done)
      {
        if(HERMES_VISUALIZATION)
        {
          Hermes::vector<Space<double> *>* ref_spaces_local = Space<double>::construct_refined_spaces(Hermes::vector<Space<double> *>(&space_rho, &space_c), 0);
          order_view_flow.show((*ref_spaces_local)[0]);
          order_view_conc.show((*ref_spaces_local)[1]);
          order_view_flow.save_numbered_screenshot("FlowMesh%i.bmp", (int)(iteration / 5), true);
          order_view_conc.save_numbered_screenshot("ConcentrationMesh%i.bmp", (int)(iteration / 5), true);
          for(unsigned int i = 0; i < ref_spaces_local->size(); i++) {
            delete (*ref_spaces_local)[i]->get_mesh();
            delete (*ref_spaces_local)[i];
          }
        }
        if(VTK_VISUALIZATION)
        {
          Orderizer ord;
          char filename[40];
          sprintf(filename, "Flow-mesh-%i.vtk", iteration - 1);
          ord.save_orders_vtk((*ref_spaces)[0], filename);
          sprintf(filename, "Concentration-mesh-%i.vtk", iteration - 1);
          ord.save_orders_vtk((*ref_spaces)[4], filename);
        }
      }

      // Clean up.
      delete solver;
      delete matrix;
      delete rhs;
      for(unsigned int i = 0; i < ref_spaces->size(); i++)
        delete (*ref_spaces)[i];
    }
    while (done == false);

    // Copy the solutions into the previous time level ones.

    prev_rho.copy(&rsln_rho);
    prev_rho_v_x.copy(&rsln_rho_v_x);
    prev_rho_v_y.copy(&rsln_rho_v_y);
    prev_e.copy(&rsln_e);
    prev_c.copy(&rsln_c);
    delete rsln_rho.get_mesh();
    delete rsln_rho_v_x.get_mesh();
    delete rsln_rho_v_y.get_mesh();
    delete rsln_e.get_mesh();
    delete rsln_c.get_mesh();

    // Visualization.
    if((iteration - 1) % EVERY_NTH_STEP == 0) {
      // Hermes visualization.
      if(HERMES_VISUALIZATION)
      {
        Mach_number.reinit();
        pressure.reinit();

        pressure_view.show_mesh(false);
        pressure_view.show(&pressure);
        pressure_view.set_scale_format("%1.3f");

        Mach_number_view.show_mesh(false);
        Mach_number_view.set_scale_format("%1.3f");
        Mach_number_view.show(&Mach_number);

        s5.show_mesh(false);
        s5.set_scale_format("%0.3f");
        s5.show(&prev_c);

        pressure_view.save_numbered_screenshot("pressure%i.bmp", (int)(iteration / 5), true);
        Mach_number_view.save_numbered_screenshot("Mach_number%i.bmp", (int)(iteration / 5), true);
        s5.save_numbered_screenshot("concentration%i.bmp", (int)(iteration / 5), true);

      }
      // Output solution in VTK format.
      if(VTK_VISUALIZATION)
      {
        pressure.reinit();
        Mach_number.reinit();
        Linearizer<double> lin;
        char filename[40];
        //sprintf(filename, "pressure-%i.vtk", iteration - 1);
        //lin.save_solution_vtk(&pressure, filename, "Pressure", false);
        sprintf(filename, "pressure-3D-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&pressure, filename, "Pressure", true);
        //sprintf(filename, "Mach number-%i.vtk", iteration - 1);
        //lin.save_solution_vtk(&Mach_number, filename, "MachNumber", false);
        sprintf(filename, "Mach number-3D-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&Mach_number, filename, "MachNumber", true);
        //sprintf(filename, "Concentration-%i.vtk", iteration - 1);
        //lin.save_solution_vtk(&prev_c, filename, "Concentration", true);
        sprintf(filename, "Concentration-3D-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_c, filename, "Concentration", true);

      }
    }
  }

  /*
  pressure_view.close();
  entropy_production_view.close();
  Mach_number_view.close();
  s5.close();
  */

  return 0;
}
Exemplo n.º 9
0
int main(int argc, char* argv[])
{
  // Instantiate a class with global functions.
  Hermes2D hermes2d;

  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("domain.mesh", &mesh);

  // Perform initial mesh refinements (optional).
  for (int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();

  // Initialize the weak formulation.
  CustomWeakForm wf;
  
  // Initialize boundary conditions.
  CustomDirichletCondition bc_essential(Hermes::vector<std::string>("Bdy"),
                                        BDY_A_PARAM, BDY_B_PARAM, BDY_C_PARAM);
  EssentialBCs bcs(&bc_essential);

  // Create an H1 space with default shapeset.
  H1Space space(&mesh, &bcs, P_INIT);
  int ndof = space.get_num_dofs();
  info("ndof = %d", ndof);

  // Initialize the FE problem.
  DiscreteProblem dp(&wf, &space);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  // Initial coefficient vector for the Newton's method.  
  scalar* coeff_vec = new scalar[ndof];
  memset(coeff_vec, 0, ndof*sizeof(scalar));

  // Perform Newton's iteration.
  bool jacobian_changed = true;
  double newton_tol = 1e-8;
  int newton_max_iter = 100; 
  bool verbose = true; 
  if (!hermes2d.solve_newton(coeff_vec, &dp, solver, matrix, rhs, jacobian_changed, 
                             newton_tol, newton_max_iter, verbose)) error("Newton's iteration failed.");

  // Translate the resulting coefficient vector into the Solution sln.
  Solution sln;
  Solution::vector_to_solution(coeff_vec, &space, &sln);

  // VTK output.
  if (VTK_VISUALIZATION) {
    // Output solution in VTK format.
    Linearizer lin;
    bool mode_3D = true;
    lin.save_solution_vtk(&sln, "sln.vtk", "Temperature", mode_3D);
    info("Solution in VTK format saved to file %s.", "sln.vtk");

    // Output mesh and element orders in VTK format.
    Orderizer ord;
    ord.save_orders_vtk(&space, "ord.vtk");
    info("Element orders in VTK format saved to file %s.", "ord.vtk");
  }

  // Visualize the solution.
  if (HERMES_VISUALIZATION) {
    ScalarView view("Solution", new WinGeom(0, 0, 440, 350));
    view.show(&sln, HERMES_EPS_HIGH);
    View::wait();
  }

  // Clean up.
  delete solver;
  delete matrix;
  delete rhs;
  delete [] coeff_vec;

  return 0;
}
Exemplo n.º 10
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("domain.mesh", &mesh);

  // Perform initial mesh refinements (optional).
  //mesh.refine_all_elements();

  // Initialize boundary conditions
  DefaultEssentialBCConst bc_essential(Hermes::vector<std::string>(BDY_BOTTOM, BDY_OUTER, BDY_LEFT, BDY_INNER), 0.0);
  EssentialBCs bcs(&bc_essential);

  // Create an H1 space with default shapeset.
  H1Space space(&mesh, &bcs, P_INIT);
  int ndof = Space::get_num_dofs(&space);
  info("ndof = %d", ndof);

  // Initialize the weak formulation. Not providing the order determination form 
  // (or callback) turns on adaptive numerical quadrature. The quadrature begins 
  // with using a first-order rule in the entire element. Then the element is split 
  // uniformly in space and the quadrature order is increased by "adapt_order_increase".
  // Then the form is calculated again by employing the new quadrature in subelements. 
  // This provides a more accurate result. If relative error is less than 
  // "adapt_rel_error_tol", the computation stops, otherwise the same procedure is 
  // applied recursively to all four subelements. 
  int adapt_order_increase = 1;
  double adapt_rel_error_tol = 1e1;
  WeakFormPoisson wf(CONST_F, ADAPTIVE_QUADRATURE, adapt_order_increase, adapt_rel_error_tol);
  
  if (ADAPTIVE_QUADRATURE)
    info("Adaptive quadrature ON.");    
  else
    info("Adaptive quadrature OFF.");    

  // Initialize the FE problem.
  bool is_linear = true;
  DiscreteProblem dp(&wf, &space, is_linear);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  // Initialize the solution.
  Solution sln;

  // Assemble the stiffness matrix and right-hand side vector.
  info("Assembling the stiffness matrix and right-hand side vector.");
  dp.assemble(matrix, rhs);

  // Solve the linear system and if successful, obtain the solution.
  info("Solving the matrix problem.");
  if(solver->solve()) Solution::vector_to_solution(solver->get_solution(), &space, &sln);
  else error ("Matrix solver failed.\n");

  // VTK output.
  if (VTK_VISUALIZATION) {
    // Output solution in VTK format.
    Linearizer lin;
    bool mode_3D = true;
    lin.save_solution_vtk(&sln, "sln.vtk", "Temperature", mode_3D);
    info("Solution in VTK format saved to file %s.", "sln.vtk");

    // Output mesh and element orders in VTK format.
    Orderizer ord;
    ord.save_orders_vtk(&space, "ord.vtk");
    info("Element orders in VTK format saved to file %s.", "ord.vtk");
  }

  // Visualize the solution.
  if (HERMES_VISUALIZATION) {
    ScalarView view("Solution", new WinGeom(0, 0, 440, 350));
    view.show(&sln);
    View::wait();
  }

  // Clean up.
  delete solver;
  delete matrix;
  delete rhs;

  return 0;
}
Exemplo n.º 11
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh mesh;
  MeshReaderH2D mloader;
  if (ALIGN_MESH) 
    mloader.load("oven_load_circle.mesh", &mesh);
  else 
    mloader.load("oven_load_square.mesh", &mesh);

  // Perform initial mesh refinemets.
  for (int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();

  // Initialize boundary conditions
  DefaultEssentialBCConst<std::complex<double> > bc_essential(BDY_PERFECT_CONDUCTOR, std::complex<double>(0.0, 0.0));

  EssentialBCs<std::complex<double> > bcs(&bc_essential);

  // Create an Hcurl space with default shapeset.
  HcurlSpace<std::complex<double> > space(&mesh, &bcs, P_INIT);
  int ndof = space.get_num_dofs();
  Hermes::Mixins::Loggable::Static::info("ndof = %d", ndof);

  // Initialize the weak formulation.
  CustomWeakForm wf(e_0, mu_0, mu_r, kappa, omega, J, ALIGN_MESH, &mesh, BDY_CURRENT);

  // Initialize coarse and reference mesh solution.
  Solution<std::complex<double> > sln, ref_sln;

  // Initialize refinements selector.
  HcurlProjBasedSelector<std::complex<double> > selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);

  // Initialize views.
  ScalarView eview("Electric field", new WinGeom(0, 0, 580, 400));
  OrderView  oview("Polynomial orders", new WinGeom(590, 0, 550, 400));
  
  // DOF and CPU convergence graphs initialization.
  SimpleGraph graph_dof, graph_cpu;
  
  // Time measurement.
  Hermes::Mixins::TimeMeasurable cpu_time;
  cpu_time.tick();

  // Adaptivity loop:
  int as = 1; bool done = false;
  do
  {
    Hermes::Mixins::Loggable::Static::info("---- Adaptivity step %d:", as);

    // Construct globally refined reference mesh and setup reference space.
    Mesh::ReferenceMeshCreator refMeshCreator(&mesh);
    Mesh* ref_mesh = refMeshCreator.create_ref_mesh();

    Space<std::complex<double> >::ReferenceSpaceCreator refSpaceCreator(&space, ref_mesh);
    Space<std::complex<double> >* ref_space = refSpaceCreator.create_ref_space();
    int ndof_ref = Space<std::complex<double> >::get_num_dofs(ref_space);

    // Initialize reference problem.
    Hermes::Mixins::Loggable::Static::info("Solving on reference mesh.");
    DiscreteProblem<std::complex<double> > dp(&wf, ref_space);

    // Time measurement.
    cpu_time.tick();

    // Perform Newton's iteration.
    Hermes::Hermes2D::NewtonSolver<std::complex<double> > newton(&dp);
    try
    {
      newton.set_newton_max_iter(NEWTON_MAX_ITER);
      newton.set_newton_tol(NEWTON_TOL);
      newton.solve();
    }
    catch(Hermes::Exceptions::Exception e)
    {
      e.print_msg();
      throw Hermes::Exceptions::Exception("Newton's iteration failed.");
    };
    // Translate the resulting coefficient vector into the Solution<std::complex<double> > sln.
    Hermes::Hermes2D::Solution<std::complex<double> >::vector_to_solution(newton.get_sln_vector(), ref_space, &ref_sln);
  
    // Project the fine mesh solution onto the coarse mesh.
    Hermes::Mixins::Loggable::Static::info("Projecting reference solution on coarse mesh.");
    OGProjection<std::complex<double> > ogProjection; ogProjection.project_global(&space, &ref_sln, &sln); 
   
    // View the coarse mesh solution and polynomial orders.
    RealFilter real(&sln);
    MagFilter<double> magn(&real);
    ValFilter limited_magn(&magn, 0.0, 4e3);
    char title[100];
    sprintf(title, "Electric field, adaptivity step %d", as);
    eview.set_title(title);
    //eview.set_min_max_range(0.0, 4e3);
    eview.show(&limited_magn);
    sprintf(title, "Polynomial orders, adaptivity step %d", as);
    oview.set_title(title);
    oview.show(&space);

    // Calculate element errors and total error estimate.
    Hermes::Mixins::Loggable::Static::info("Calculating error estimate."); 
    Adapt<std::complex<double> >* adaptivity = new Adapt<std::complex<double> >(&space);

    // Set custom error form and calculate error estimate.
    CustomErrorForm cef(kappa);
    adaptivity->set_error_form(0, 0, &cef);
    double err_est_rel = adaptivity->calc_err_est(&sln, &ref_sln) * 100;

    // Report results.
    Hermes::Mixins::Loggable::Static::info("ndof_coarse: %d, ndof_fine: %d, err_est_rel: %g%%", 
      Space<std::complex<double> >::get_num_dofs(&space), 
      Space<std::complex<double> >::get_num_dofs(ref_space), err_est_rel);

    // Time measurement.
    cpu_time.tick();

    // Add entry to DOF and CPU convergence graphs.
    graph_dof.add_values(Space<std::complex<double> >::get_num_dofs(&space), err_est_rel);
    graph_dof.save("conv_dof_est.dat");
    graph_cpu.add_values(cpu_time.accumulated(), err_est_rel);
    graph_cpu.save("conv_cpu_est.dat");

    // If err_est too large, adapt the mesh.
    if (err_est_rel < ERR_STOP) done = true;
    else 
    {
      Hermes::Mixins::Loggable::Static::info("Adapting coarse mesh.");
      done = adaptivity->adapt(&selector, THRESHOLD, STRATEGY, MESH_REGULARITY);
    }
    if (space.get_num_dofs() >= NDOF_STOP) done = true;

    delete adaptivity;
    if(!done)
    {
      delete ref_space->get_mesh();
      delete ref_space;
    }
    
    // Increase counter.
    as++;
  }
  while (done == false);
  
  Hermes::Mixins::Loggable::Static::info("Total running time: %g s", cpu_time.accumulated());

  RealFilter ref_real(&sln);
  MagFilter<double> ref_magn(&ref_real);
  ValFilter ref_limited_magn(&ref_magn, 0.0, 4e3);
  eview.set_title("Fine mesh solution - magnitude");
  eview.show(&ref_limited_magn);

  // Output solution in VTK format.
  Linearizer lin;
  bool mode_3D = true;
  lin.save_solution_vtk(&ref_limited_magn, "sln.vtk", "Magnitude of E", mode_3D);
  Hermes::Mixins::Loggable::Static::info("Solution in VTK format saved to file %s.", "sln.vtk");

  // Wait for all views to be closed.
  View::wait();
  return 0;
}
Exemplo n.º 12
0
int main(int argc, char* argv[])
{
  // Instantiate a class with global functions.
  Hermes2D hermes2d;

  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("../domain.mesh", &mesh);

  // Perform initial mesh refinements (optional).
  for (int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();

  // Initialize the weak formulation.
  CustomWeakFormPoissonDirichlet wf("Aluminum", LAMBDA_AL, "Copper", 
                                    LAMBDA_CU, VOLUME_HEAT_SRC);
  
  // Initialize boundary conditions.
  CustomDirichletCondition bc_essential(Hermes::vector<std::string>("Bottom", "Inner", "Outer", "Left"),
                                        BDY_A_PARAM, BDY_B_PARAM, BDY_C_PARAM);
  EssentialBCs bcs(&bc_essential);

  // Create an H1 space with default shapeset.
  H1Space space(&mesh, &bcs, P_INIT);
  int ndof = space.get_num_dofs();
  info("ndof = %d", ndof);

  // Initialize the FE problem.
  DiscreteProblem dp(&wf, &space);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  // Initial coefficient vector for the Newton's method.  
  scalar* coeff_vec = new scalar[ndof];
  memset(coeff_vec, 0, ndof*sizeof(scalar));

  // Perform Newton's iteration.
  if (!hermes2d.solve_newton(coeff_vec, &dp, solver, matrix, rhs)) error("Newton's iteration failed.");

  // Translate the resulting coefficient vector into the Solution sln.
  Solution sln;
  Solution::vector_to_solution(coeff_vec, &space, &sln);

  // VTK output.
  if (VTK_VISUALIZATION) {
    // Output solution in VTK format.
    Linearizer lin;
    bool mode_3D = true;
    lin.save_solution_vtk(&sln, "sln.vtk", "Temperature", mode_3D);
    info("Solution in VTK format saved to file %s.", "sln.vtk");

    // Output mesh and element orders in VTK format.
    Orderizer ord;
    ord.save_orders_vtk(&space, "ord.vtk");
    info("Element orders in VTK format saved to file %s.", "ord.vtk");
  }

  ndof = Space::get_num_dofs(&space);
  printf("ndof = %d\n", ndof);
  double sum = 0;
  for (int i=0; i < ndof; i++) sum += coeff_vec[i];
  printf("coefficient sum = %g\n", sum);

  bool success = true;
  if (fabs(sum + 4.2471) > 1e-3) success = 0;

  if (success == 1) {
    printf("Success!\n");
    return ERR_SUCCESS;
  }
  else {
    printf("Failure!\n");
    return ERR_FAILURE;
  }

}
Exemplo n.º 13
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh basemesh;
  H2DReader mloader;
  if(GAMM_CHANNEL)
    mloader.load("GAMM-channel.mesh", &basemesh);
  else
    mloader.load("channel.mesh", &basemesh);

  // Initialize the meshes.
  Mesh mesh_flow, mesh_concentration;
  mesh_flow.copy(&basemesh);
  mesh_concentration.copy(&basemesh);

  for(unsigned int i = 0; i < INIT_REF_NUM_CONCENTRATION; i++)
    mesh_concentration.refine_all_elements();
  switch(SETUP_VARIANT) {
  case 0:
    mesh_concentration.refine_towards_boundary(BDY_INLET, INIT_REF_NUM_CONCENTRATION_BDY, false);
    break;
  case 1:
    mesh_concentration.refine_towards_boundary(BDY_SOLID_WALL_BOTTOM, INIT_REF_NUM_CONCENTRATION_BDY, false);
    break;
  case 2:
    mesh_concentration.refine_towards_boundary(BDY_SOLID_WALL_TOP, INIT_REF_NUM_CONCENTRATION_BDY, false);
    break;
  }

  for(unsigned int i = 0; i < INIT_REF_NUM_FLOW; i++)
    mesh_flow.refine_all_elements();

  // Initialize boundary condition types and spaces with default shapesets.
  // For the flow.
  EssentialBCs bcs_flow;

  // For the concentration.
  EssentialBCs bcs_concentration;

  switch(SETUP_VARIANT) {
  case 0:
    //bcs_concentration.add_boundary_condition(new NaturalEssentialBC(Hermes::vector<std::string>(BDY_OUTLET, BDY_SOLID_WALL_BOTTOM, BDY_SOLID_WALL_TOP)));
    bcs_concentration.add_boundary_condition(new DefaultEssentialBCConst(BDY_INLET, CONCENTRATION_EXT));
    break;
  case 1:
    //bcs_concentration.add_boundary_condition(new NaturalEssentialBC(Hermes::vector<std::string>(BDY_OUTLET, BDY_INLET, BDY_SOLID_WALL_TOP)));
    bcs_concentration.add_boundary_condition(new DefaultEssentialBCConst(BDY_SOLID_WALL_BOTTOM, CONCENTRATION_EXT));
    break;
  case 2:
    //bcs_concentration.add_boundary_condition(new NaturalEssentialBC(Hermes::vector<std::string>(BDY_OUTLET, BDY_SOLID_WALL_BOTTOM, BDY_INLET)));
    bcs_concentration.add_boundary_condition(new DefaultEssentialBCConst(BDY_SOLID_WALL_TOP, CONCENTRATION_EXT));
    break;
  }

  L2Space space_rho(&mesh_flow, &bcs_flow, P_INIT_FLOW);
  L2Space space_rho_v_x(&mesh_flow, &bcs_flow, P_INIT_FLOW);
  L2Space space_rho_v_y(&mesh_flow, &bcs_flow, P_INIT_FLOW);
  L2Space space_e(&mesh_flow, &bcs_flow, P_INIT_FLOW);
  // Space for concentration.
  H1Space space_c(&mesh_concentration, &bcs_concentration, P_INIT_CONCENTRATION);
  int ndof = Space::get_num_dofs(Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c));
  info("ndof: %d", ndof);

  // Initialize solutions, set initial conditions.
  InitialSolutionEulerDensity sln_rho(&mesh_flow, RHO_EXT);
  InitialSolutionEulerDensityVelX sln_rho_v_x(&mesh_flow, RHO_EXT * V1_EXT);
  InitialSolutionEulerDensityVelY sln_rho_v_y(&mesh_flow, RHO_EXT * V2_EXT);
  InitialSolutionEulerDensityEnergy sln_e(&mesh_flow, QuantityCalculator::calc_energy(RHO_EXT, RHO_EXT * V1_EXT, RHO_EXT * V2_EXT, P_EXT, KAPPA));
  InitialSolutionConcentration sln_c(&mesh_concentration, 0.0);

  InitialSolutionEulerDensity prev_rho(&mesh_flow, RHO_EXT);
  InitialSolutionEulerDensityVelX prev_rho_v_x(&mesh_flow, RHO_EXT * V1_EXT);
  InitialSolutionEulerDensityVelY prev_rho_v_y(&mesh_flow, RHO_EXT * V2_EXT);
  InitialSolutionEulerDensityEnergy prev_e(&mesh_flow, QuantityCalculator::calc_energy(RHO_EXT, RHO_EXT * V1_EXT, RHO_EXT * V2_EXT, P_EXT, KAPPA));
  InitialSolutionConcentration prev_c(&mesh_concentration, 0.0);

  // Numerical flux.
  OsherSolomonNumericalFlux num_flux(KAPPA);

  // Initialize weak formulation.
  EulerEquationsWeakFormImplicitCoupled wf(SETUP_VARIANT, &num_flux, KAPPA, RHO_EXT, V1_EXT, V2_EXT, P_EXT, BDY_SOLID_WALL_BOTTOM, BDY_SOLID_WALL_TOP, 
    BDY_INLET, BDY_OUTLET, &prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, &prev_c, PRECONDITIONING, EPSILON);
  wf.set_time_step(time_step);

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem dp(&wf, Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c), is_linear);
  // Project the initial solution on the FE space 
  // in order to obtain initial vector for NOX. 
  info("Projecting initial solution on the FE mesh.");
  scalar* coeff_vec = new scalar[Space::get_num_dofs(Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c))];
  OGProjection::project_global(Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c), 
    Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, &prev_c), coeff_vec);
  
  // Filters for visualization of Mach number, pressure and entropy.
  MachNumberFilter Mach_number(Hermes::vector<MeshFunction*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e), KAPPA);
  PressureFilter pressure(Hermes::vector<MeshFunction*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e), KAPPA);
  EntropyFilter entropy(Hermes::vector<MeshFunction*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e), KAPPA, RHO_EXT, P_EXT);

  ScalarView pressure_view("Pressure", new WinGeom(0, 0, 600, 300));
  ScalarView Mach_number_view("Mach number", new WinGeom(700, 0, 600, 300));
  ScalarView entropy_production_view("Entropy estimate", new WinGeom(0, 400, 600, 300));

  ScalarView s5("Concentration", new WinGeom(700, 400, 600, 300));
  
  /*
  ScalarView s1("1", new WinGeom(0, 0, 600, 300));
  ScalarView s2("2", new WinGeom(700, 0, 600, 300));
  ScalarView s3("3", new WinGeom(0, 400, 600, 300));
  ScalarView s4("4", new WinGeom(700, 400, 600, 300));
  ScalarView s5("Concentration", new WinGeom(350, 200, 600, 300));
  */
  
  // Initialize NOX solver.
  NoxSolver solver(&dp);
  solver.set_ls_tolerance(NOX_LINEAR_TOLERANCE);
  solver.disable_abs_resid();
  solver.set_conv_rel_resid(1.00);

  // Select preconditioner.
  if(PRECONDITIONING) {
    RCP<Precond> pc = rcp(new MlPrecond("sa"));
    solver.set_precond(pc);
  }

  int iteration = 0; double t = 0;
  for(t = 0.0; t < 3.0; t += time_step) {
    info("---- Time step %d, time %3.5f.", iteration++, t);

    OGProjection::project_global(Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c), 
    Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, &prev_c), coeff_vec);

    info("Assembling by DiscreteProblem, solving by NOX.");
    solver.set_init_sln(coeff_vec);
    if (solver.solve())
      Solution::vector_to_solutions(solver.get_solution(), Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c), 
      Hermes::vector<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, &prev_c));
    else
      error("NOX failed.");

    // Visualization.
    if((iteration - 1) % EVERY_NTH_STEP == 0) {
      // Hermes visualization.
      if(HERMES_VISUALIZATION) {
        Mach_number.reinit();
        pressure.reinit();
        entropy.reinit();
        pressure_view.show(&pressure);
        entropy_production_view.show(&entropy);
        Mach_number_view.show(&Mach_number);
        s5.show(&prev_c);
        /*
        s1.show(&prev_rho);
        s2.show(&prev_rho_v_x);
        s3.show(&prev_rho_v_y);
        s4.show(&prev_e);
        s5.show(&prev_c);
        */
      }
      // Output solution in VTK format.
      if(VTK_VISUALIZATION) {
        Linearizer lin;
        char filename[40];
        sprintf(filename, "w0-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_rho, filename, "w0", false);
        sprintf(filename, "w1-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_rho_v_x, filename, "w1", false);
        sprintf(filename, "w2-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_rho_v_y, filename, "w2", false);
        sprintf(filename, "w3-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_e, filename, "w3", false);
        sprintf(filename, "concentration-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_c, filename, "concentration", false);
      }
    }
  }
  pressure_view.close();
  entropy_production_view.close();
  Mach_number_view.close();
  s5.close();
  
  /*
  s1.close();
  s2.close();
  s3.close();
  s4.close();
  */

  return 0;
}
Exemplo n.º 14
0
int main(int argc, char* argv[])
{
  // Provide a possibility to change INITIAL_CONCENTRATION_STATE through an argument.
  if(argc > 1)
    INITIAL_CONCENTRATION_STATE = atoi(argv[1]);

  if(argc > 2)
    INIT_REF_NUM_FLOW = atoi(argv[2]);

  if(argc > 3)
    INIT_REF_NUM_CONCENTRATION = atoi(argv[3]);

  // Load the mesh.
  Mesh basemesh;
  H2DReader mloader;
  if(INITIAL_CONCENTRATION_STATE == 0)
    mloader.load("GAMM-channel-4-bnds.mesh", &basemesh);
  else
    mloader.load("channel-4-bnds.mesh", &basemesh);


  // Initialize the meshes.
  Mesh mesh_flow, mesh_concentration;
  mesh_flow.copy(&basemesh);
  mesh_concentration.copy(&basemesh);

  for(unsigned int i = 0; i < INIT_REF_NUM_CONCENTRATION; i++)
    mesh_concentration.refine_all_elements();

  for(unsigned int i = 0; i < INIT_REF_NUM_FLOW; i++)
    mesh_flow.refine_all_elements();

  // Initialize boundary condition types and spaces with default shapesets.
  BCTypes bc_types_euler;
  bc_types_euler.add_bc_neumann(Hermes::vector<int>(BDY_SOLID_WALL_TOP, BDY_SOLID_WALL_BOTTOM, BDY_INLET, BDY_OUTLET));

  BCTypes bc_types_concentration;
  BCValues bc_values_concentration;

  switch(INITIAL_CONCENTRATION_STATE) {
  case 0:
    bc_types_concentration.add_bc_neumann(Hermes::vector<int>(BDY_INLET, BDY_OUTLET, BDY_SOLID_WALL_TOP));
    bc_types_concentration.add_bc_dirichlet(Hermes::vector<int>(BDY_SOLID_WALL_BOTTOM));
    bc_values_concentration.add_const(Hermes::vector<int>(BDY_SOLID_WALL_BOTTOM), CONCENTRATION_EXT);
    break;
  case 1:
    bc_types_concentration.add_bc_neumann(Hermes::vector<int>(BDY_INLET, BDY_OUTLET, BDY_SOLID_WALL_TOP));
    bc_types_concentration.add_bc_dirichlet(Hermes::vector<int>(BDY_SOLID_WALL_BOTTOM));
    bc_values_concentration.add_const(Hermes::vector<int>(BDY_SOLID_WALL_BOTTOM), CONCENTRATION_EXT);
    break;
  case 2:
    bc_types_concentration.add_bc_neumann(Hermes::vector<int>(BDY_SOLID_WALL_BOTTOM, BDY_OUTLET, BDY_SOLID_WALL_TOP));
    bc_types_concentration.add_bc_dirichlet(Hermes::vector<int>(BDY_INLET));
    bc_values_concentration.add_const(Hermes::vector<int>(BDY_INLET), CONCENTRATION_EXT);
    break;
  }

  L2Space space_rho(&mesh_flow, &bc_types_euler, P_INIT_FLOW);
  L2Space space_rho_v_x(&mesh_flow, &bc_types_euler, P_INIT_FLOW);
  L2Space space_rho_v_y(&mesh_flow, &bc_types_euler, P_INIT_FLOW);
  L2Space space_e(&mesh_flow, &bc_types_euler, P_INIT_FLOW);
  // Space for concentration.
  H1Space space_c(&mesh_concentration, &bc_types_concentration, &bc_values_concentration, P_INIT_CONCENTRATION);

  // Initialize solutions, set initial conditions.
  Solution sln_rho, sln_rho_v_x, sln_rho_v_y, sln_e, sln_c, prev_rho, prev_rho_v_x, prev_rho_v_y, prev_e, prev_c;
  sln_rho.set_exact(&mesh_flow, ic_density);
  sln_rho_v_x.set_exact(&mesh_flow, ic_density_vel_x);
  sln_rho_v_y.set_exact(&mesh_flow, ic_density_vel_y);
  sln_e.set_exact(&mesh_flow, ic_energy);
  sln_c.set_exact(&mesh_concentration, ic_concentration);
  prev_rho.set_exact(&mesh_flow, ic_density);
  prev_rho_v_x.set_exact(&mesh_flow, ic_density_vel_x);
  prev_rho_v_y.set_exact(&mesh_flow, ic_density_vel_y);
  prev_e.set_exact(&mesh_flow, ic_energy);
  prev_c.set_exact(&mesh_concentration, ic_concentration);

  // Initialize weak formulation.
  WeakForm wf(5);

  // Bilinear forms coming from time discretization by explicit Euler's method.
  wf.add_matrix_form(0, 0, callback(bilinear_form_time));
  wf.add_matrix_form(1, 1, callback(bilinear_form_time));
  wf.add_matrix_form(2, 2, callback(bilinear_form_time));
  wf.add_matrix_form(3, 3, callback(bilinear_form_time));
  wf.add_matrix_form(4, 4, callback(bilinear_form_time));

  // Volumetric linear forms.
  // Linear forms coming from the linearization by taking the Eulerian fluxes' Jacobian matrices 
  // from the previous time step.
  // Unnecessary for FVM.
  if(P_INIT_FLOW.order_h > 0 || P_INIT_FLOW.order_v > 0) {
    // First flux.
    wf.add_vector_form(0, callback(linear_form_0_1), HERMES_ANY, Hermes::vector<MeshFunction*>(&prev_rho_v_x));
    
    wf.add_vector_form(1, callback(linear_form_1_0_first_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(1, callback(linear_form_1_1_first_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(1, callback(linear_form_1_2_first_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(1, callback(linear_form_1_3_first_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(2, callback(linear_form_2_0_first_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(2, callback(linear_form_2_1_first_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(2, callback(linear_form_2_2_first_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(2, callback(linear_form_2_3_first_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(3, callback(linear_form_3_0_first_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(3, callback(linear_form_3_1_first_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(3, callback(linear_form_3_2_first_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(3, callback(linear_form_3_3_first_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    // Second flux.
    wf.add_vector_form(0, callback(linear_form_0_2), HERMES_ANY, Hermes::vector<MeshFunction*>(&prev_rho_v_y));
    
    wf.add_vector_form(1, callback(linear_form_1_0_second_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(1, callback(linear_form_1_1_second_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(1, callback(linear_form_1_2_second_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(1, callback(linear_form_1_3_second_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(2, callback(linear_form_2_0_second_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(2, callback(linear_form_2_1_second_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(2, callback(linear_form_2_2_second_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y));
    wf.add_vector_form(2, callback(linear_form_2_3_second_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(3, callback(linear_form_3_0_second_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(3, callback(linear_form_3_1_second_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(3, callback(linear_form_3_2_second_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
    wf.add_vector_form(3, callback(linear_form_3_3_second_flux), HERMES_ANY, 
                       Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  }

  // Volumetric linear forms coming from the time discretization.
  wf.add_vector_form(0, linear_form_time, linear_form_order, HERMES_ANY, &prev_rho);
  wf.add_vector_form(1, linear_form_time, linear_form_order, HERMES_ANY, &prev_rho_v_x);
  wf.add_vector_form(2, linear_form_time, linear_form_order, HERMES_ANY, &prev_rho_v_y);
  wf.add_vector_form(3, linear_form_time, linear_form_order, HERMES_ANY, &prev_e);
  wf.add_vector_form(4, callback(linear_form_time_concentration), HERMES_ANY, &prev_c);

  // Surface linear forms - inner edges coming from the DG formulation.
  wf.add_vector_form_surf(0, linear_form_interface_0, linear_form_order, H2D_DG_INNER_EDGE, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(1, linear_form_interface_1, linear_form_order, H2D_DG_INNER_EDGE, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(2, linear_form_interface_2, linear_form_order, H2D_DG_INNER_EDGE, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(3, linear_form_interface_3, linear_form_order, H2D_DG_INNER_EDGE, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));


  // Surface linear forms - inlet / outlet edges.
  wf.add_vector_form_surf(0, bdy_flux_inlet_outlet_comp_0, linear_form_order, BDY_INLET, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(1, bdy_flux_inlet_outlet_comp_1, linear_form_order, BDY_INLET, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(2, bdy_flux_inlet_outlet_comp_2, linear_form_order, BDY_INLET, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(3, bdy_flux_inlet_outlet_comp_3, linear_form_order, BDY_INLET, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  
  wf.add_vector_form_surf(0, bdy_flux_inlet_outlet_comp_0, linear_form_order, BDY_OUTLET, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(1, bdy_flux_inlet_outlet_comp_1, linear_form_order, BDY_OUTLET, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(2, bdy_flux_inlet_outlet_comp_2, linear_form_order, BDY_OUTLET, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(3, bdy_flux_inlet_outlet_comp_3, linear_form_order, BDY_OUTLET, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  
  // Surface linear forms - Solid wall edges.
  wf.add_vector_form_surf(0, bdy_flux_solid_wall_comp_0, linear_form_order, BDY_SOLID_WALL_TOP, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(1, bdy_flux_solid_wall_comp_1, linear_form_order, BDY_SOLID_WALL_TOP, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(2, bdy_flux_solid_wall_comp_2, linear_form_order, BDY_SOLID_WALL_TOP, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(3, bdy_flux_solid_wall_comp_3, linear_form_order, BDY_SOLID_WALL_TOP, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));

  wf.add_vector_form_surf(0, bdy_flux_solid_wall_comp_0, linear_form_order, BDY_SOLID_WALL_BOTTOM, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(1, bdy_flux_solid_wall_comp_1, linear_form_order, BDY_SOLID_WALL_BOTTOM, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(2, bdy_flux_solid_wall_comp_2, linear_form_order, BDY_SOLID_WALL_BOTTOM, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
  wf.add_vector_form_surf(3, bdy_flux_solid_wall_comp_3, linear_form_order, BDY_SOLID_WALL_BOTTOM, 
                          Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));

  // Forms for concentration.
  wf.add_vector_form(4, callback(linear_form_concentration_grad_grad), HERMES_ANY, &prev_c);
  
  wf.add_vector_form(4, callback(linear_form_concentration_convective), HERMES_ANY, 
                          Hermes::vector<MeshFunction*>(&prev_c, &prev_rho, &prev_rho_v_x, &prev_rho_v_y));

  wf.add_vector_form_surf(4, callback(linear_form_concentration_inlet_outlet), BDY_INLET, 
                          Hermes::vector<MeshFunction*>(&prev_c, &prev_rho, &prev_rho_v_x, &prev_rho_v_y));

  wf.add_vector_form_surf(4, callback(linear_form_concentration_inlet_outlet), BDY_OUTLET, 
                          Hermes::vector<MeshFunction*>(&prev_c, &prev_rho, &prev_rho_v_x, &prev_rho_v_y));

  wf.add_vector_form_surf(4, callback(linear_form_concentration_inner_edges), H2D_DG_INNER_EDGE, 
                          Hermes::vector<MeshFunction*>(&prev_c, &prev_rho, &prev_rho_v_x, &prev_rho_v_y));

  // Initialize the FE problem.
  bool is_linear = true;
  
  DiscreteProblem dp(&wf, Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c), is_linear);
  
  // Filters for visualization of pressure and the two components of velocity.
  /*
  SimpleFilter pressure(calc_pressure_func, Hermes::vector<MeshFunction*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e));
  SimpleFilter u(calc_u_func, Hermes::vector<MeshFunction*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e));
  SimpleFilter w(calc_w_func, Hermes::vector<MeshFunction*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e));
  SimpleFilter Mach_number(calc_Mach_func, Hermes::vector<MeshFunction*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e));
  SimpleFilter entropy_estimate(calc_entropy_estimate_func, Hermes::vector<MeshFunction*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e));

  ScalarView pressure_view("Pressure", new WinGeom(0, 0, 600, 300));
  ScalarView Mach_number_view("Mach number", new WinGeom(700, 0, 600, 300));
  ScalarView entropy_production_view("Entropy estimate", new WinGeom(0, 400, 600, 300));
  VectorView vview("Velocity", new WinGeom(700, 400, 600, 300));
  */

  ScalarView s1("w0", new WinGeom(0, 0, 600, 300));
  ScalarView s2("w1", new WinGeom(700, 0, 600, 300));
  ScalarView s3("w2", new WinGeom(0, 400, 600, 300));
  ScalarView s4("w3", new WinGeom(700, 400, 600, 300));
  ScalarView s5("Concentration", new WinGeom(350, 200, 600, 300));
  
  // Iteration number.
  int iteration = 0;
  
  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  // Output of the approximate time derivative.
  std::ofstream time_der_out("time_der");

  for(t = 0.0; t < 3.0; t += TAU) {
    info("---- Time step %d, time %3.5f.", iteration++, t);

    bool rhs_only = (iteration == 1 ? false : true);
    // Assemble stiffness matrix and rhs or just rhs.
    if (rhs_only == false) info("Assembling the stiffness matrix and right-hand side vector.");
    else info("Assembling the right-hand side vector (only).");
    dp.assemble(matrix, rhs, rhs_only);
        
    // Solve the matrix problem.
    info("Solving the matrix problem.");
    if(solver->solve())
      Solution::vector_to_solutions(solver->get_solution(), Hermes::vector<Space *>(&space_rho, &space_rho_v_x, 
      &space_rho_v_y, &space_e, &space_c), Hermes::vector<Solution *>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e, &sln_c));
    else
    error ("Matrix solver failed.\n");

    // Copy the solutions into the previous time level ones.
    prev_rho.copy(&sln_rho);
    prev_rho_v_x.copy(&sln_rho_v_x);
    prev_rho_v_y.copy(&sln_rho_v_y);
    prev_e.copy(&sln_e);
    prev_c.copy(&sln_c);

    // Visualization.
    /*
    pressure.reinit();
    u.reinit();
    w.reinit();
    Mach_number.reinit();
    entropy_estimate.reinit();
    pressure_view.show(&pressure);
    entropy_production_view.show(&entropy_estimate);
    Mach_number_view.show(&Mach_number);
    vview.show(&u, &w);
    */

    // Visualization.
    if((iteration - 1) % EVERY_NTH_STEP == 0) {
      // Hermes visualization.
      if(HERMES_VISUALIZATION) {
        s1.show(&prev_rho);
        s2.show(&prev_rho_v_x);
        s3.show(&prev_rho_v_y);
        s4.show(&prev_e);
        s5.show(&prev_c);
      }
      // Output solution in VTK format.
      if(VTK_OUTPUT) {
        Linearizer lin;
        char filename[40];
        sprintf(filename, "w0-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_rho, filename, "w0", false);
        sprintf(filename, "w1-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_rho_v_x, filename, "w1", false);
        sprintf(filename, "w2-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_rho_v_y, filename, "w2", false);
        sprintf(filename, "w3-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_e, filename, "w3", false);
        sprintf(filename, "concentration-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_c, filename, "concentration", false);
      }
    }


  }
  
  s1.close();
  s2.close();
  s3.close();
  s4.close();
  s5.close();
  time_der_out.close();
  return 0;
}
Exemplo n.º 15
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("channel.mesh", &mesh);

  // Perform initial mesh refinements.
  for (int i = 0; i < INIT_REF_NUM; i++) 
    mesh.refine_all_elements(0);
  
  // Initialize boundary condition types and spaces with default shapesets.
  L2Space<double> space_rho(&mesh, P_INIT);
  L2Space<double> space_rho_v_x(&mesh, P_INIT);
  L2Space<double> space_rho_v_y(&mesh, P_INIT);
  L2Space<double> space_e(&mesh, P_INIT);
  int ndof = Space<double>::get_num_dofs(Hermes::vector<Space<double>*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e));
  info("ndof: %d", ndof);

  // Initialize solutions, set initial conditions.
  InitialSolutionEulerDensity prev_rho(&mesh, RHO_INIT);
  InitialSolutionEulerDensityVelX prev_rho_v_x(&mesh, RHO_INIT * V1_INIT);
  InitialSolutionEulerDensityVelY prev_rho_v_y(&mesh, RHO_INIT * V2_INIT);
  InitialSolutionEulerDensityEnergy prev_e(&mesh, QuantityCalculator::calc_energy(RHO_INIT, RHO_INIT * V1_INIT, RHO_INIT * V2_INIT, PRESSURE_INIT, KAPPA));

  // Numerical flux.
  OsherSolomonNumericalFlux num_flux(KAPPA);

  // Initialize weak formulation.
  EulerEquationsWeakFormSemiImplicitMultiComponentTwoInflows wf(&num_flux, KAPPA, RHO_LEFT, V1_LEFT, V2_LEFT, PRESSURE_LEFT, RHO_TOP, V1_TOP, V2_TOP, PRESSURE_TOP, BDY_SOLID_WALL, BDY_INLET_LEFT, BDY_INLET_TOP, BDY_OUTLET,
    &prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, (P_INIT == 0));

  // Initialize the FE problem.
  DiscreteProblem<double> dp(&wf, Hermes::vector<Space<double>*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e));

  // If the FE problem is in fact a FV problem.
  if(P_INIT == 0) 
    dp.set_fvm();  

  // Filters for visualization of Mach number, pressure and entropy.
  MachNumberFilter Mach_number(Hermes::vector<MeshFunction<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA);
  PressureFilter pressure(Hermes::vector<MeshFunction<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA);

  ScalarView<double> pressure_view("Pressure", new WinGeom(0, 0, 600, 300));
  ScalarView<double> Mach_number_view("Mach number", new WinGeom(700, 0, 600, 300));

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix<double>* matrix = create_matrix<double>(matrix_solver_type);
  Vector<double>* rhs = create_vector<double>(matrix_solver_type);
  LinearSolver<double>* solver = create_linear_solver<double>(matrix_solver_type, matrix, rhs);

  // Set up CFL calculation class.
  CFLCalculation CFL(CFL_NUMBER, KAPPA);

  int iteration = 0; double t = 0;
  for(t = 0.0; t < 3.0; t += time_step)
  {
    info("---- Time step %d, time %3.5f.", iteration++, t);

    // Set the current time step.
    wf.set_time_step(time_step);

    // Assemble the stiffness matrix and rhs.
    info("Assembling the stiffness matrix and right-hand side vector.");
    dp.assemble(matrix, rhs);

    std::ofstream out("out");
    for(int i = 0; i < matrix->get_size(); i++)
      for(int j = 0; j < matrix->get_size(); j++)
        out << matrix->get(i, j) << std::endl;
    out.close();

    dp.get_last_profiling_output(std::cout);

    // Solve the matrix problem.
    info("Solving the matrix problem.");
    if(solver->solve())
      if(!SHOCK_CAPTURING)
        Solution<double>::vector_to_solutions(solver->get_sln_vector(), Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x, 
          &space_rho_v_y, &space_e), Hermes::vector<Solution<double> *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
      else
        {      
          FluxLimiter flux_limiter(FluxLimiter::Kuzmin, solver->get_sln_vector(), Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x, 
            &space_rho_v_y, &space_e));

          flux_limiter.limit_second_orders_according_to_detector();

          flux_limiter.limit_according_to_detector();

          flux_limiter.get_limited_solutions(Hermes::vector<Solution<double> *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
        }
    else
      error ("Matrix solver failed.\n");

    CFL.calculate_semi_implicit(Hermes::vector<Solution<double> *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), &mesh, time_step);

    // Visualization.

    if((iteration - 1) % EVERY_NTH_STEP == 0) 
    {
      // Hermes visualization.
      if(HERMES_VISUALIZATION) 
      {
        Mach_number.reinit();
        pressure.reinit();
        pressure_view.show(&pressure);
        Mach_number_view.show(&Mach_number);
      }
      // Output solution in VTK format.
      if(VTK_VISUALIZATION) 
      {
        pressure.reinit();
        Mach_number.reinit();
        Linearizer<double> lin;
        char filename[40];
        sprintf(filename, "pressure-3D-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&pressure, filename, "Pressure", true);
        sprintf(filename, "Mach number-3D-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&Mach_number, filename, "MachNumber", true);
      }
    }
  }

  pressure_view.close();
  Mach_number_view.close();

  return 0;
}
Exemplo n.º 16
0
int main() {
  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Create coarse mesh, set Dirichlet BC, enumerate basis functions.
  Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ);
  info("N_dof = %d.", Space::get_num_dofs(space));

  // Initialize the weak formulation.
  WeakForm wf;
  wf.add_matrix_form(jacobian);
  wf.add_vector_form(residual);

  double elem_errors[MAX_ELEM_NUM];      // This array decides what 
                                         // elements will be refined.
  ElemPtr2 ref_elem_pairs[MAX_ELEM_NUM]; // To store element pairs from the 
                                         // FTR solution. Decides how 
                                         // elements will be hp-refined. 
  for (int i=0; i < MAX_ELEM_NUM; i++) {
    ref_elem_pairs[i][0] = new Element();
    ref_elem_pairs[i][1] = new Element();
  }

  // DOF and CPU convergence graphs.
  SimpleGraph graph_dof_exact, graph_cpu_exact;

  // Adaptivity loop:
  int as = 1;
  bool done = false;
  do
  {
    info("---- Adaptivity step %d:", as);

    // Initialize the FE problem.
    bool is_linear = false;
    DiscreteProblem *dp_coarse = new DiscreteProblem(&wf, space, is_linear);
    
    // Newton's loop on coarse mesh.
    // Fill vector coeff_vec using dof and coeffs arrays in elements.
    double *coeff_vec_coarse = new double[Space::get_num_dofs(space)];
    get_coeff_vector(space, coeff_vec_coarse);

    // Set up the solver, matrix, and rhs according to the solver selection.
    SparseMatrix* matrix_coarse = create_matrix(matrix_solver);
    Vector* rhs_coarse = create_vector(matrix_solver);
    Solver* solver_coarse = create_linear_solver(matrix_solver, matrix_coarse, rhs_coarse);

    int it = 1;
    while (1) {
      // Obtain the number of degrees of freedom.
      int ndof_coarse = Space::get_num_dofs(space);

      // Assemble the Jacobian matrix and residual vector.
      dp_coarse->assemble(matrix_coarse, rhs_coarse);

      // Calculate the l2-norm of residual vector.
    double res_l2_norm = get_l2_norm(rhs_coarse);

    // Info for user.
    info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

      // If l2 norm of the residual vector is within tolerance, then quit.
      // NOTE: at least one full iteration forced
      //       here because sometimes the initial
      //       residual on fine mesh is too small.
    if(res_l2_norm < NEWTON_TOL_COARSE && it > 1) break;

      // Multiply the residual vector with -1 since the matrix 
      // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
      for(int i=0; i<ndof_coarse; i++) rhs_coarse->set(i, -rhs_coarse->get(i));

      // Solve the linear system.
      if(!solver_coarse->solve())
      error ("Matrix solver failed.\n");

      // Add \deltaY^{n+1} to Y^n.
      for (int i = 0; i < ndof_coarse; i++) coeff_vec_coarse[i] += solver_coarse->get_solution()[i];

      // If the maximum number of iteration has been reached, then quit.
      if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
      
      // Copy coefficients from vector y to elements.
      set_coeff_vector(coeff_vec_coarse, space);
      
      it++;
    }
    
    // Cleanup.
    delete matrix_coarse;
    delete rhs_coarse;
    delete solver_coarse;
    delete [] coeff_vec_coarse;
    delete dp_coarse;

    // For every element perform its fast trial refinement (FTR),
    // calculate the norm of the difference between the FTR
    // solution and the coarse space solution, and store the
    // error in the elem_errors[] array.
    int n_elem = space->get_n_active_elem();
    for (int i=0; i < n_elem; i++) {

      info("=== Starting FTR of Elem [%d].", i);

      // Replicate coarse space including solution.
      Space *space_ref_local = space->replicate();

      // Perform FTR of element 'i'
      space_ref_local->reference_refinement(i, 1);
      info("Elem [%d]: fine space created (%d DOF).", 
             i, space_ref_local->assign_dofs());

      // Initialize the FE problem. 
      bool is_linear = false;
      DiscreteProblem* dp = new DiscreteProblem(&wf, space_ref_local, is_linear);

      // Set up the solver, matrix, and rhs according to the solver selection.
      SparseMatrix* matrix = create_matrix(matrix_solver);
      Vector* rhs = create_vector(matrix_solver);
      Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

      // Newton's loop on the FTR space.
      // Fill vector coeff_vec using dof and coeffs arrays in elements.
      double *coeff_vec = new double[Space::get_num_dofs(space_ref_local)];
      get_coeff_vector(space_ref_local, coeff_vec);
      memset(coeff_vec, 0, Space::get_num_dofs(space_ref_local)*sizeof(double));

      int it = 1;
      while (1) {
        // Obtain the number of degrees of freedom.
        int ndof = Space::get_num_dofs(space_ref_local);

        // Assemble the Jacobian matrix and residual vector.
        dp->assemble(matrix, rhs);

        // Calculate the l2-norm of residual vector.
      double res_l2_norm = get_l2_norm(rhs);

        // Info for user.
      info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space_ref_local), res_l2_norm);

        // If l2 norm of the residual vector is within tolerance, then quit.
        // NOTE: at least one full iteration forced
        //       here because sometimes the initial
        //       residual on fine mesh is too small.
      if(res_l2_norm < NEWTON_TOL_REF && it > 1) break;

        // Multiply the residual vector with -1 since the matrix 
        // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
        for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

        // Solve the linear system.
        if(!solver->solve())
        error ("Matrix solver failed.\n");

        // Add \deltaY^{n+1} to Y^n.
        for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

        // If the maximum number of iteration has been reached, then quit.
        if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
        
        // Copy coefficients from vector y to elements.
        set_coeff_vector(coeff_vec, space_ref_local);

        it++;
      }
      
      // Cleanup.
      delete matrix;
      delete rhs;
      delete solver;
      delete dp;
      delete [] coeff_vec;

      // Print FTR solution (enumerated). 
      Linearizer *lxx = new Linearizer(space_ref_local);
      char out_filename[255];
      sprintf(out_filename, "solution_ref_%d.gp", i);
      lxx->plot_solution(out_filename);
      delete lxx;

      // Calculate norm of the difference between the coarse space 
      // and FTR solutions.
      // NOTE: later we want to look at the difference in some quantity 
      // of interest rather than error in global norm.
      double err_est_array[MAX_ELEM_NUM];
      elem_errors[i] = calc_err_est(NORM, space, space_ref_local, 
                       err_est_array) * 100;
      info("Elem [%d]: absolute error (est) = %g%%", i, elem_errors[i]);

      // Copy the reference element pair for element 'i'.
      // into the ref_elem_pairs[i][] array
      Iterator *I = new Iterator(space);
      Iterator *I_ref = new Iterator(space_ref_local);
      Element *e, *e_ref;
      while (1) {
        e = I->next_active_element();
        e_ref = I_ref->next_active_element();
        if (e->id == i) {
  	  e_ref->copy_into(ref_elem_pairs[e->id][0]);
          // coarse element 'e' was split in space.
          if (e->level != e_ref->level) {
            e_ref = I_ref->next_active_element();
            e_ref->copy_into(ref_elem_pairs[e->id][1]);
          }
          break;
        }
      }

      delete I;
      delete I_ref;
      delete space_ref_local;
    }  

    // Time measurement.
    cpu_time.tick();

    // If exact solution available, also calculate exact error.
    if (EXACT_SOL_PROVIDED) {
      // Calculate element errors wrt. exact solution.
      double err_exact_rel = calc_err_exact(NORM, 
         space, exact_sol, NEQ, A, B) * 100;
     
      // Info for user.
      info("Relative error (exact) = %g %%", err_exact_rel);

      // Add entry to DOF and CPU convergence graphs.
      graph_dof_exact.add_values(Space::get_num_dofs(space), err_exact_rel);
      graph_cpu_exact.add_values(cpu_time.accumulated(), err_exact_rel);
    }

    // Calculate max FTR error.
    double max_ftr_error = 0;
    for (int i=0; i < space->get_n_active_elem(); i++) {
      if (elem_errors[i] > max_ftr_error) max_ftr_error = elem_errors[i];
    }
    info("Max FTR error = %g%%.", max_ftr_error);

    // Decide whether the max. FTR error is sufficiently small.
    if(max_ftr_error < TOL_ERR_FTR) break;

    // debug
    //if (as == 4) break;

    // Returns updated coarse space with the last solution on it. 
    adapt(NORM, ADAPT_TYPE, THRESHOLD, elem_errors,
          space, ref_elem_pairs);

    // Plot spaces, results, and errors.
    adapt_plotting(space, ref_elem_pairs,
                 NORM, EXACT_SOL_PROVIDED, exact_sol);

    as++;
  }
  while (done == false);

  info("Total running time: %g s", cpu_time.accumulated());
  
  // Save convergence graphs.
  graph_dof_exact.save("conv_dof_exact.dat");
  graph_cpu_exact.save("conv_cpu_exact.dat");

  return 0;
}
Exemplo n.º 17
0
int main() {
  // Create coarse mesh, set Dirichlet BC, enumerate 
  // basis functions
  Mesh *mesh = new Mesh(A, B, N_elem, P_init, N_eq);
  mesh->set_bc_left_dirichlet(0, Val_dir_left);
  mesh->set_bc_right_dirichlet(0, Val_dir_right);
  mesh->assign_dofs();

  // Create discrete problem on coarse mesh
  DiscreteProblem *dp = new DiscreteProblem();
  dp->add_matrix_form(0, 0, jacobian);
  dp->add_vector_form(0, residual);

  // Convergence graph wrt. the number of degrees of freedom
  // (goal-oriented adaptivity)
  GnuplotGraph graph_ftr;
  graph_ftr.set_log_y();
  graph_ftr.set_captions("Convergence History", "Degrees of Freedom", "QOI error");
  graph_ftr.add_row("QOI error - FTR (exact)", "k", "-", "o");
  graph_ftr.add_row("QOI error - FTR (est)", "k", "--");

  // Main adaptivity loop
  int adapt_iterations = 1;
  double ftr_errors[MAX_ELEM_NUM];      // This array decides what 
                                         // elements will be refined.
  ElemPtr2 ref_ftr_pairs[MAX_ELEM_NUM]; // To store element pairs from the 
                                         // FTR solution. Decides how 
                                         // elements will be hp-refined. 
  for (int i=0; i < MAX_ELEM_NUM; i++) {
    ref_ftr_pairs[i][0] = new Element();
    ref_ftr_pairs[i][1] = new Element();
  }
  while(1) {
    printf("============ Adaptivity step %d ============\n", adapt_iterations); 

    printf("N_dof = %d\n", mesh->get_n_dof());
 
    // Newton's loop on coarse mesh
    int success;
    if(JFNK == 0) {
      newton(dp, mesh, NULL, NEWTON_TOL_COARSE, NEWTON_MAXITER);
    }
    else {
      jfnk_cg(dp, mesh, MATRIX_SOLVER_TOL, MATRIX_SOLVER_MAXITER,
              JFNK_EPSILON, NEWTON_TOL_COARSE, NEWTON_MAXITER);
    }
    // For every element perform its fast trial refinement (FTR),
    // calculate the norm of the difference between the FTR
    // solution and the coarse mesh solution, and store the
    // error in the ftr_errors[] array.
    int n_elem = mesh->get_n_active_elem();
    double max_qoi_err_est = 0;
    for (int i=0; i < n_elem; i++) {

      printf("=== Starting FTR of Elem [%d]\n", i);

      // Replicate coarse mesh including solution.
      Mesh *mesh_ref_local = mesh->replicate();

      // Perform FTR of element 'i'
      mesh_ref_local->reference_refinement(i, 1);
      printf("Elem [%d]: fine mesh created (%d DOF).\n", 
             i, mesh_ref_local->assign_dofs());

      // Newton's loop on the FTR mesh
      if(JFNK == 0) {
        newton(dp, mesh_ref_local, NULL, NEWTON_TOL_COARSE, NEWTON_MAXITER);
      }
      else {
        jfnk_cg(dp, mesh_ref_local, MATRIX_SOLVER_TOL, MATRIX_SOLVER_MAXITER, 
                JFNK_EPSILON, NEWTON_TOL_REF, NEWTON_MAXITER);
      }

      // Print FTR solution (enumerated) 
      Linearizer *lxx = new Linearizer(mesh_ref_local);
      char out_filename[255];
      sprintf(out_filename, "solution_ref_%d.gp", i);
      lxx->plot_solution(out_filename);
      delete lxx;

      // Calculate FTR errors for refinement purposes
      if (GOAL_ORIENTED == 1) {
        // Use quantity of interest.
        double qoi_est = quantity_of_interest(mesh, X_QOI);
        double qoi_ref_est = quantity_of_interest(mesh_ref_local, X_QOI);
        ftr_errors[i] = fabs(qoi_ref_est - qoi_est);
      }
      else {
        // Use global norm
        double err_est_array[MAX_ELEM_NUM];
        ftr_errors[i] = calc_error_estimate(NORM, mesh, mesh_ref_local, 
                                            err_est_array);
      }

      // Calculating maximum of QOI FTR error for plotting purposes
      if (GOAL_ORIENTED == 1) {
        if (ftr_errors[i] > max_qoi_err_est) 
	  max_qoi_err_est = ftr_errors[i];
      }
      else {
        double qoi_est = quantity_of_interest(mesh, X_QOI);
        double qoi_ref_est = quantity_of_interest(mesh_ref_local, X_QOI);
        double err_est = fabs(qoi_ref_est - qoi_est);
        if (err_est > max_qoi_err_est) 
	  max_qoi_err_est = err_est;
      }

      // Copy the reference element pair for element 'i'
      // into the ref_ftr_pairs[i][] array
      Iterator *I = new Iterator(mesh);
      Iterator *I_ref = new Iterator(mesh_ref_local);
      Element *e, *e_ref;
      while (1) {
        e = I->next_active_element();
        e_ref = I_ref->next_active_element();
        if (e->id == i) {
  	  e_ref->copy_into(ref_ftr_pairs[e->id][0]);
          // coarse element 'e' was split in space
          if (e->level != e_ref->level) {
            e_ref = I_ref->next_active_element();
            e_ref->copy_into(ref_ftr_pairs[e->id][1]);
          }
          break;
        }
      }

      delete I;
      delete I_ref;
      delete mesh_ref_local;
    }  

    // Add entries to convergence graphs
    if (EXACT_SOL_PROVIDED) {
      double qoi_est = quantity_of_interest(mesh, X_QOI);
      double u[MAX_EQN_NUM], dudx[MAX_EQN_NUM];
      exact_sol(X_QOI, u, dudx);
      double err_qoi_exact = fabs(u[0] - qoi_est);
      // plotting error in quantity of interest wrt. exact value
      graph_ftr.add_values(0, mesh->get_n_dof(), err_qoi_exact);
    }
    graph_ftr.add_values(1, mesh->get_n_dof(), max_qoi_err_est);

    // Decide whether the max. FTR error in the quantity of interest 
    // is sufficiently small
    if(max_qoi_err_est < TOL_ERR_QOI) break;

    // debug
    if (adapt_iterations == 3) break;

    // Returns updated coarse mesh with the last solution on it. 
    adapt(NORM, ADAPT_TYPE, THRESHOLD, ftr_errors,
          mesh, ref_ftr_pairs);

    adapt_iterations++;
  }

  // Plot meshes, results, and errors
  adapt_plotting(mesh, ref_ftr_pairs,
                 NORM, EXACT_SOL_PROVIDED, exact_sol);

  // Save convergence graph
  graph_ftr.save("conv_dof.gp");

  printf("Done.\n");
  return 1;
}
Exemplo n.º 18
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("motor.mesh", &mesh);

  // Enter boundary markers.
  BCTypes bc_types;
  bc_types.add_bc_dirichlet(Hermes::vector<int>(OUTER_BDY, STATOR_BDY));

  // Enter Dirichlet boundary values.
  BCValues bc_values;
  bc_values.add_const(STATOR_BDY, VOLTAGE);
  bc_values.add_const(OUTER_BDY, 0.0);

  // Create an H1 space with default shapeset.
  H1Space space(&mesh, &bc_types, &bc_values, P_INIT);

  // Initialize the weak formulation.
  int adapt_order_increase = 1;
  double adapt_rel_error_tol = 1e1;
  WeakForm wf;
  if (ADAPTIVE_QUADRATURE) {
    info("Adaptive quadrature ON.");    
    wf.add_matrix_form(biform1, HERMES_SYM, MATERIAL_1, 
                       Hermes::vector<MeshFunction*>(), 
                       adapt_order_increase, adapt_rel_error_tol);
    wf.add_matrix_form(biform2, HERMES_SYM, MATERIAL_2, 
                       Hermes::vector<MeshFunction*>(), 
                       adapt_order_increase, adapt_rel_error_tol);
  }
  else {
    info("Adaptive quadrature OFF.");    
    wf.add_matrix_form(callback(biform1), HERMES_SYM, MATERIAL_1);
    wf.add_matrix_form(callback(biform2), HERMES_SYM, MATERIAL_2);
  }

  // Initialize coarse and reference mesh solution.
  Solution sln, ref_sln;
  
  // Initialize refinement selector.
  H1ProjBasedSelector selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);

  // Initialize views.
  ScalarView sview("Solution", new WinGeom(0, 0, 410, 600));
  sview.fix_scale_width(50);
  sview.show_mesh(false);
  OrderView  oview("Polynomial orders", new WinGeom(420, 0, 400, 600));
  
  // DOF and CPU convergence graphs initialization.
  SimpleGraph graph_dof, graph_cpu;
  
  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Adaptivity loop:
  int as = 1; 
  bool done = false;
  do
  {
    info("---- Adaptivity step %d:", as);

    // Construct globally refined reference mesh and setup reference space.
    Space* ref_space = construct_refined_space(&space);

    // Initialize matrix solver.
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

    // Assemble reference problem.
    info("Solving on reference mesh.");
    bool is_linear = true;
    DiscreteProblem* dp = new DiscreteProblem(&wf, ref_space, is_linear);
    dp->assemble(matrix, rhs);

    // Time measurement.
    cpu_time.tick();
    
    // Solve the linear system of the reference problem. 
    // If successful, obtain the solution.
    if(solver->solve()) Solution::vector_to_solution(solver->get_solution(), ref_space, &ref_sln);
    else error ("Matrix solver failed.\n");

    // Project the fine mesh solution onto the coarse mesh.
    info("Projecting reference solution on coarse mesh.");
    OGProjection::project_global(&space, &ref_sln, &sln, matrix_solver); 

    // Time measurement.
    cpu_time.tick();
   
    // VTK output.
    if (VTK_OUTPUT) {
      // Output solution in VTK format.
      Linearizer lin;
      char* title = new char[100];
      sprintf(title, "sln-%d.vtk", as);
      lin.save_solution_vtk(&sln, title, "Potential", false);
      info("Solution in VTK format saved to file %s.", title);

      // Output mesh and element orders in VTK format.
      Orderizer ord;
      sprintf(title, "ord-%d.vtk", as);
      ord.save_orders_vtk(&space, title);
      info("Element orders in VTK format saved to file %s.", title);
    }

    // View the coarse mesh solution and polynomial orders.
    if (HERMES_VISUALIZATION) {
      sview.show(&sln);
      oview.show(&space);
    }

    // Skip visualization time.
    cpu_time.tick(HERMES_SKIP);

    // Calculate element errors and total error estimate.
    info("Calculating error estimate."); 
    Adapt* adaptivity = new Adapt(&space);
    bool solutions_for_adapt = true;
    // In the following function, the Boolean parameter "solutions_for_adapt" determines whether 
    // the calculated errors are intended for use with adaptivity (this may not be the case, for example,
    // when error wrt. an exact solution is calculated). The default value is solutions_for_adapt = true, 
    // The last parameter "error_flags" determine whether the total and element errors are treated as 
    // absolute or relative. Its default value is error_flags = HERMES_TOTAL_ERROR_REL | HERMES_ELEMENT_ERROR_REL.
    // In subsequent examples and benchmarks, these two parameters will be often used with 
    // their default values, and thus they will not be present in the code explicitly.
    double err_est_rel = adaptivity->calc_err_est(&sln, &ref_sln, solutions_for_adapt, 
                         HERMES_TOTAL_ERROR_REL | HERMES_ELEMENT_ERROR_REL) * 100;

    // Report results.
    info("ndof_coarse: %d, ndof_fine: %d, err_est_rel: %g%%", 
      Space::get_num_dofs(&space), Space::get_num_dofs(ref_space), err_est_rel);

    // Time measurement.
    cpu_time.tick();

    // Add entry to DOF and CPU convergence graphs.
    graph_dof.add_values(Space::get_num_dofs(&space), err_est_rel);
    graph_dof.save("conv_dof_est.dat");
    graph_cpu.add_values(cpu_time.accumulated(), err_est_rel);
    graph_cpu.save("conv_cpu_est.dat");

    // If err_est too large, adapt the mesh.
    if (err_est_rel < ERR_STOP) done = true;
    else 
    {
      info("Adapting coarse mesh.");
      done = adaptivity->adapt(&selector, THRESHOLD, STRATEGY, MESH_REGULARITY);
      
      // Increase the counter of performed adaptivity steps.
      if (done == false)  as++;
    }
    if (Space::get_num_dofs(&space) >= NDOF_STOP) done = true;

    // Clean up.
    delete solver;
    delete matrix;
    delete rhs;
    delete adaptivity;
    if(done == false) delete ref_space->get_mesh();
    delete ref_space;
    delete dp;
    
  }
  while (done == false);
  
  verbose("Total running time: %g s", cpu_time.accumulated());

  // Show the reference solution - the final result.
  sview.set_title("Fine mesh solution");
  sview.show_mesh(false);
  sview.show(&ref_sln);
  
  // Wait for all views to be closed.
  View::wait();

  return 0;
}
Exemplo n.º 19
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh mesh;
  MeshReaderH2DXML mloader;
  mloader.load("domain-arcs.xml", &mesh);

  mesh.refine_towards_boundary(BDY_SOLID_WALL_PROFILE, INIT_REF_NUM_BOUNDARY_ANISO, true, true);
  mesh.refine_towards_vertex(0, INIT_REF_NUM_VERTEX, true);

  MeshView m;
  m.show(&mesh);
  m.wait_for_close();

  // Initialize boundary condition types and spaces with default shapesets.
  L2Space<double>space_rho(&mesh, P_INIT);
  L2Space<double>space_rho_v_x(&mesh, P_INIT);
  L2Space<double>space_rho_v_y(&mesh, P_INIT);
  L2Space<double>space_e(&mesh, P_INIT);
  int ndof = Space<double>::get_num_dofs(Hermes::vector<const Space<double>*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e));
  info("Initial coarse ndof: %d", ndof);

  // Initialize solutions, set initial conditions.
  ConstantSolution<double> sln_rho(&mesh, RHO_EXT);
  ConstantSolution<double> sln_rho_v_x(&mesh, RHO_EXT * V1_EXT);
  ConstantSolution<double> sln_rho_v_y(&mesh, RHO_EXT * V2_EXT);
  ConstantSolution<double> sln_e(&mesh, QuantityCalculator::calc_energy(RHO_EXT, RHO_EXT * V1_EXT, RHO_EXT * V2_EXT, P_EXT, KAPPA));

  ConstantSolution<double> prev_rho(&mesh, RHO_EXT);
  ConstantSolution<double> prev_rho_v_x(&mesh, RHO_EXT * V1_EXT);
  ConstantSolution<double> prev_rho_v_y(&mesh, RHO_EXT * V2_EXT);
  ConstantSolution<double> prev_e(&mesh, QuantityCalculator::calc_energy(RHO_EXT, RHO_EXT * V1_EXT, RHO_EXT * V2_EXT, P_EXT, KAPPA));

  Solution<double> rsln_rho, rsln_rho_v_x, rsln_rho_v_y, rsln_e;

  // Numerical flux.
  VijayasundaramNumericalFlux num_flux(KAPPA);
  
  // Initialize weak formulation.
  EulerEquationsWeakFormSemiImplicitMultiComponent wf(&num_flux, KAPPA, RHO_EXT, V1_EXT, V2_EXT, P_EXT, BDY_SOLID_WALL, BDY_SOLID_WALL_PROFILE, 
    BDY_INLET, BDY_OUTLET, &prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e);

  // Filters for visualization of Mach number, pressure and entropy.
  MachNumberFilter Mach_number(Hermes::vector<MeshFunction<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA);
  PressureFilter pressure(Hermes::vector<MeshFunction<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA);
  EntropyFilter entropy(Hermes::vector<MeshFunction<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA, RHO_EXT, P_EXT);

  ScalarView pressure_view("Pressure", new WinGeom(0, 0, 600, 300));
  ScalarView Mach_number_view("Mach number", new WinGeom(700, 0, 600, 300));
  ScalarView entropy_production_view("Entropy estimate", new WinGeom(0, 400, 600, 300));
  OrderView space_view("Space", new WinGeom(700, 400, 600, 300));
  
  // Initialize refinement selector.
  L2ProjBasedSelector<double> selector(CAND_LIST, CONV_EXP, MAX_P_ORDER);
  selector.set_error_weights(1.0, 1.0, 1.0);

  // Set up CFL calculation class.
  CFLCalculation CFL(CFL_NUMBER, KAPPA);

  // Look for a saved solution on the disk.
  Continuity<double> continuity(Continuity<double>::onlyTime);
  int iteration = 0; double t = 0;
  bool loaded_now = false;

  if(REUSE_SOLUTION && continuity.have_record_available())
  {
    continuity.get_last_record()->load_mesh(&mesh);
    continuity.get_last_record()->load_spaces(Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x, 
      &space_rho_v_y, &space_e), Hermes::vector<SpaceType>(HERMES_L2_SPACE, HERMES_L2_SPACE, HERMES_L2_SPACE, HERMES_L2_SPACE), Hermes::vector<Mesh *>(&mesh, &mesh, 
      &mesh, &mesh));
    continuity.get_last_record()->load_time_step_length(time_step);
    t = continuity.get_last_record()->get_time() + time_step;
    iteration = continuity.get_num() * EVERY_NTH_STEP + 1;
    loaded_now = true;
  }

  // Time stepping loop.
  for(; t < 5.0; t += time_step)
  {
    CFL.set_number(CFL_NUMBER + (t/5.0) * 10.0);
    info("---- Time step %d, time %3.5f.", iteration++, t);

    // Periodic global derefinements.
    if (iteration > 1 && iteration % UNREF_FREQ == 0 && REFINEMENT_COUNT > 0) 
    {
      info("Global mesh derefinement.");
      REFINEMENT_COUNT = 0;
      
      space_rho.unrefine_all_mesh_elements(true);
      
      space_rho.adjust_element_order(-1, P_INIT);
      space_rho_v_x.copy_orders(&space_rho);
      space_rho_v_y.copy_orders(&space_rho);
      space_e.copy_orders(&space_rho);
    }

    // Adaptivity loop:
    int as = 1; 
    int ndofs_prev = 0;
    bool done = false;
    do
    {
      info("---- Adaptivity step %d:", as);

      // Construct globally refined reference mesh and setup reference space.
      int order_increase = 1;

      Hermes::vector<Space<double> *>* ref_spaces = Space<double>::construct_refined_spaces(Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x, 
        &space_rho_v_y, &space_e), order_increase);
      Hermes::vector<const Space<double> *> ref_spaces_const((*ref_spaces)[0], (*ref_spaces)[1], 
        (*ref_spaces)[2], (*ref_spaces)[3]);

      if(ndofs_prev != 0)
        if(Space<double>::get_num_dofs(ref_spaces_const) == ndofs_prev)
          selector.set_error_weights(2.0 * selector.get_error_weight_h(), 1.0, 1.0);
        else
          selector.set_error_weights(1.0, 1.0, 1.0);

      ndofs_prev = Space<double>::get_num_dofs(ref_spaces_const);

      // Project the previous time level solution onto the new fine mesh.
      info("Projecting the previous time level solution onto the new fine mesh.");
      if(loaded_now)
      {
        loaded_now = false;

        continuity.get_last_record()->load_solutions(Hermes::vector<Solution<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), 
          Hermes::vector<Space<double> *>((*ref_spaces)[0], (*ref_spaces)[1], (*ref_spaces)[2], (*ref_spaces)[3]));
      }
      else
      {
      OGProjection<double>::project_global(ref_spaces_const, Hermes::vector<Solution<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), 
        Hermes::vector<Solution<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), matrix_solver, Hermes::vector<Hermes::Hermes2D::ProjNormType>());
        if(iteration > std::max((int)(continuity.get_num() * EVERY_NTH_STEP + 2), 1) && as > 1)
        {
          delete rsln_rho.get_mesh();
          delete rsln_rho.get_space();
          rsln_rho.own_mesh = false;
          delete rsln_rho_v_x.get_mesh();
          delete rsln_rho_v_x.get_space();
          rsln_rho_v_x.own_mesh = false;
          delete rsln_rho_v_y.get_mesh();
          delete rsln_rho_v_y.get_space();
          rsln_rho_v_y.own_mesh = false;
          delete rsln_e.get_mesh();
          delete rsln_e.get_space();
          rsln_e.own_mesh = false;
        }
      }

      // Report NDOFs.
      info("ndof_coarse: %d, ndof_fine: %d.", 
        Space<double>::get_num_dofs(Hermes::vector<const Space<double> *>(&space_rho, &space_rho_v_x, 
        &space_rho_v_y, &space_e)), Space<double>::get_num_dofs(ref_spaces_const));

      // Assemble the reference problem.
      info("Solving on reference mesh.");
      DiscreteProblem<double> dp(&wf, ref_spaces_const);

      SparseMatrix<double>* matrix = create_matrix<double>(matrix_solver);
      Vector<double>* rhs = create_vector<double>(matrix_solver);
      LinearSolver<double>* solver = create_linear_solver<double>(matrix_solver, matrix, rhs);

      wf.set_time_step(time_step);

      // Assemble the stiffness matrix and rhs.
      info("Assembling the stiffness matrix and right-hand side vector.");
      dp.assemble(matrix, rhs);

      // Solve the matrix problem.
      info("Solving the matrix problem.");
      if(solver->solve())
        if(!SHOCK_CAPTURING)
          Solution<double>::vector_to_solutions(solver->get_sln_vector(), ref_spaces_const, 
          Hermes::vector<Solution<double>*>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e));
        else
        {      
          FluxLimiter flux_limiter(FluxLimiter::Kuzmin, solver->get_sln_vector(), ref_spaces_const, true);
          
          flux_limiter.limit_second_orders_according_to_detector(Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x, 
            &space_rho_v_y, &space_e));
          
          flux_limiter.limit_according_to_detector(Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x, 
            &space_rho_v_y, &space_e));

          flux_limiter.get_limited_solutions(Hermes::vector<Solution<double>*>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e));
        }
      else
        error ("Matrix solver failed.\n");
      
      // Project the fine mesh solution onto the coarse mesh.
      info("Projecting reference solution on coarse mesh.");
      OGProjection<double>::project_global(Hermes::vector<const Space<double> *>(&space_rho, &space_rho_v_x, 
        &space_rho_v_y, &space_e), Hermes::vector<Solution<double>*>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e), 
        Hermes::vector<Solution<double>*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e), matrix_solver, 
        Hermes::vector<ProjNormType>(HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM)); 

      // Calculate element errors and total error estimate.
      info("Calculating error estimate.");
      Adapt<double>* adaptivity = new Adapt<double>(Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x, 
        &space_rho_v_y, &space_e), Hermes::vector<ProjNormType>(HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM));
      double err_est_rel_total = adaptivity->calc_err_est(Hermes::vector<Solution<double>*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e),
        Hermes::vector<Solution<double>*>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e)) * 100;

      CFL.calculate_semi_implicit(Hermes::vector<Solution<double> *>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e), (*ref_spaces)[0]->get_mesh(), time_step);

      // Report results.
      info("err_est_rel: %g%%", err_est_rel_total);

      // If err_est too large, adapt the mesh.
      if (err_est_rel_total < ERR_STOP)
        done = true;
      else
      {
        info("Adapting coarse mesh.");
        if (Space<double>::get_num_dofs(Hermes::vector<const Space<double> *>(&space_rho, &space_rho_v_x, 
          &space_rho_v_y, &space_e)) >= NDOF_STOP) 
          done = true;
        else
        {
          REFINEMENT_COUNT++;
          done = adaptivity->adapt(Hermes::vector<RefinementSelectors::Selector<double> *>(&selector, &selector, &selector, &selector), 
          THRESHOLD, STRATEGY, MESH_REGULARITY);
        }

        if(!done)
          as++;
      }

      // Visualization and saving on disk.
      if(done && (iteration - 1) % EVERY_NTH_STEP == 0 && iteration > 1)
      {
        // Hermes visualization.
        if(HERMES_VISUALIZATION) 
        {
          Mach_number.reinit();
          pressure.reinit();
          entropy.reinit();
          pressure_view.show(&pressure);
          entropy_production_view.show(&entropy);
          Mach_number_view.show(&Mach_number);
          pressure_view.save_numbered_screenshot("Pressure-%u.bmp", iteration - 1, true);
          Mach_number_view.save_numbered_screenshot("Mach-%u.bmp", iteration - 1, true);
        }
        // Output solution in VTK format.
        if(VTK_VISUALIZATION) 
        {
          pressure.reinit();
          Mach_number.reinit();
          Linearizer lin;
          char filename[40];
          sprintf(filename, "Pressure-%i.vtk", iteration - 1);
          lin.save_solution_vtk(&pressure, filename, "Pressure", false);
          sprintf(filename, "Mach number-%i.vtk", iteration - 1);
          lin.save_solution_vtk(&Mach_number, filename, "MachNumber", false);
        }
        // Save a current state on the disk.
        if(iteration > 1)
        {
          continuity.add_record(t);
          continuity.get_last_record()->save_mesh(&mesh);
          continuity.get_last_record()->save_spaces(Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x, 
            &space_rho_v_y, &space_e));
          continuity.get_last_record()->save_solutions(Hermes::vector<Solution<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));
          continuity.get_last_record()->save_time_step_length(time_step);
        }
      }

      // Clean up.
      delete solver;
      delete matrix;
      delete rhs;
      delete adaptivity;
    }
    while (done == false);

    // Copy the solutions into the previous time level ones.
    prev_rho.copy(&rsln_rho);
    prev_rho_v_x.copy(&rsln_rho_v_x);
    prev_rho_v_y.copy(&rsln_rho_v_y);
    prev_e.copy(&rsln_e);
    
    delete rsln_rho.get_mesh();
    delete rsln_rho.get_space();
    rsln_rho.own_mesh = false;
    delete rsln_rho_v_x.get_mesh();
    delete rsln_rho_v_x.get_space();
    rsln_rho_v_x.own_mesh = false;
    delete rsln_rho_v_y.get_mesh();
    delete rsln_rho_v_y.get_space();
    rsln_rho_v_y.own_mesh = false;
    delete rsln_e.get_mesh();
    delete rsln_e.get_space();
    rsln_e.own_mesh = false;
  }

  pressure_view.close();
  entropy_production_view.close();
  Mach_number_view.close();

  return 0;
}
Exemplo n.º 20
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("GAMM-channel.mesh", &mesh);

  // Perform initial mesh refinements.
  for (int i = 0; i < INIT_REF_NUM; i++) 
    mesh.refine_all_elements(0, true);
  mesh.refine_towards_boundary(BDY_SOLID_WALL_BOTTOM, INIT_REF_NUM_BOUNDARY_ANISO, true, false, true);
  mesh.refine_towards_boundary(BDY_SOLID_WALL_BOTTOM, INIT_REF_NUM_BOUNDARY_ISO, false, false, true);

  // Initialize boundary condition types and spaces with default shapesets.
  L2Space space_rho(&mesh, P_INIT);
  L2Space space_rho_v_x(&mesh, P_INIT);
  L2Space space_rho_v_y(&mesh,P_INIT);
  L2Space space_e(&mesh, P_INIT);
  int ndof = Space::get_num_dofs(Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e));
  info("ndof: %d", ndof);

  // Initialize solutions, set initial conditions.
  InitialSolutionEulerDensity sln_rho(&mesh, RHO_EXT);
  InitialSolutionEulerDensityVelX sln_rho_v_x(&mesh, RHO_EXT * V1_EXT);
  InitialSolutionEulerDensityVelY sln_rho_v_y(&mesh, RHO_EXT * V2_EXT);
  InitialSolutionEulerDensityEnergy sln_e(&mesh, QuantityCalculator::calc_energy(RHO_EXT, RHO_EXT * V1_EXT, RHO_EXT * V2_EXT, P_EXT, KAPPA));

  InitialSolutionEulerDensity prev_rho(&mesh, RHO_EXT);
  InitialSolutionEulerDensityVelX prev_rho_v_x(&mesh, RHO_EXT * V1_EXT);
  InitialSolutionEulerDensityVelY prev_rho_v_y(&mesh, RHO_EXT * V2_EXT);
  InitialSolutionEulerDensityEnergy prev_e(&mesh, QuantityCalculator::calc_energy(RHO_EXT, RHO_EXT * V1_EXT, RHO_EXT * V2_EXT, P_EXT, KAPPA));

  Solution rsln_rho, rsln_rho_v_x, rsln_rho_v_y, rsln_e;
  
  // Numerical flux.
  OsherSolomonNumericalFlux num_flux(KAPPA);

  // Initialize weak formulation.
  EulerEquationsWeakFormImplicitMultiComponent wf(&num_flux, KAPPA, RHO_EXT, V1_EXT, V2_EXT, P_EXT, BDY_SOLID_WALL_BOTTOM, BDY_SOLID_WALL_TOP, 
    BDY_INLET, BDY_OUTLET, &prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, PRECONDITIONING);
  
  wf.set_time_step(time_step);

  // Filters for visualization of Mach number, pressure and entropy.
  MachNumberFilter Mach_number(Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA);
  PressureFilter pressure(Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA);
  EntropyFilter entropy(Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA, RHO_EXT, P_EXT);

  ScalarView pressure_view("Pressure", new WinGeom(0, 0, 600, 300));
  ScalarView Mach_number_view("Mach number", new WinGeom(700, 0, 600, 300));
  ScalarView entropy_production_view("Entropy estimate", new WinGeom(0, 400, 600, 300));

  /*
  ScalarView s1("1", new WinGeom(0, 0, 600, 300));
  ScalarView s2("2", new WinGeom(700, 0, 600, 300));
  ScalarView s3("3", new WinGeom(0, 400, 600, 300));
  ScalarView s4("4", new WinGeom(700, 400, 600, 300));
  */

  // Initialize refinement selector.
  L2ProjBasedSelector selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);

  // Select preconditioner.
  RCP<Precond> pc = rcp(new IfpackPrecond("point-relax"));

  int iteration = 0; double t = 0;
  for(t = 0.0; t < 3.0; t += time_step) {
    info("---- Time step %d, time %3.5f.", iteration++, t);

    // Periodic global derefinements.
    if (iteration > 1 && iteration % UNREF_FREQ == 0 && REFINEMENT_COUNT > 0) {
      REFINEMENT_COUNT = 0;
      info("Global mesh derefinement.");
      mesh.unrefine_all_elements();
      space_rho.adjust_element_order(-1, P_INIT);
      space_rho_v_x.adjust_element_order(-1, P_INIT);
      space_rho_v_y.adjust_element_order(-1, P_INIT);
      space_e.adjust_element_order(-1, P_INIT);
    }

    // Adaptivity loop:
    int as = 1; 
    bool done = false;
    do {
      info("---- Adaptivity step %d:", as);

      // Construct globally refined reference mesh and setup reference space.
      // Global polynomial order increase;
      int order_increase = 1;
      Hermes::vector<Space *>* ref_spaces = Space::construct_refined_spaces(Hermes::vector<Space *>(&space_rho, &space_rho_v_x, 
      &space_rho_v_y, &space_e), order_increase);
      
      // Report NDOFs.
      info("ndof_coarse: %d, ndof_fine: %d.", 
        Space::get_num_dofs(Hermes::vector<Space *>(&space_rho, &space_rho_v_x, 
        &space_rho_v_y, &space_e)), Space::get_num_dofs(*ref_spaces));

      // Project the previous time level solution onto the new fine mesh
      // in order to obtain initial vector for NOX. 
      info("Projecting initial solution on the FE mesh.");
      scalar* coeff_vec = new scalar[Space::get_num_dofs(*ref_spaces)];
      OGProjection::project_global(*ref_spaces, Hermes::vector<MeshFunction *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), coeff_vec);
      
      // Initialize the FE problem.
      bool is_linear = false;
      DiscreteProblem dp(&wf, *ref_spaces, is_linear);
  
      // Initialize NOX solver.
      NoxSolver solver(&dp, NOX_MESSAGE_TYPE);
      solver.set_ls_tolerance(NOX_LINEAR_TOLERANCE);
      solver.disable_abs_resid();
      solver.set_conv_rel_resid(NOX_NONLINEAR_TOLERANCE);

      if(PRECONDITIONING)
        solver.set_precond(pc);

      info("Assembling by DiscreteProblem, solving by NOX.");

      solver.set_init_sln(coeff_vec);
      scalar* solution_vector = NULL;

      if (solver.solve()) {
        solution_vector = solver.get_solution();
        Solution::vector_to_solutions(solution_vector, *ref_spaces, 
          Hermes::vector<Solution *>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e));
      }
      else
        error("NOX failed.");
      
      info("Number of nonlin iterations: %d (norm of residual: %g)", 
        solver.get_num_iters(), solver.get_residual());
      info("Total number of iterations in linsolver: %d (achieved tolerance in the last step: %g)", 
        solver.get_num_lin_iters(), solver.get_achieved_tol());
      
      if(SHOCK_CAPTURING) {
        DiscontinuityDetector discontinuity_detector(*ref_spaces, 
						Hermes::vector<Solution *>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e));

        std::set<int> discontinuous_elements = discontinuity_detector.get_discontinuous_element_ids(DISCONTINUITY_DETECTOR_PARAM);

        FluxLimiter flux_limiter(solution_vector, *ref_spaces,
						Hermes::vector<Solution *>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e));

        flux_limiter.limit_according_to_detector(discontinuous_elements);
      }

      // Project the fine mesh solution onto the coarse mesh.
      info("Projecting reference solution on coarse mesh.");
      OGProjection::project_global(Hermes::vector<Space *>(&space_rho, &space_rho_v_x, 
      &space_rho_v_y, &space_e), Hermes::vector<Solution *>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e), 
                     Hermes::vector<Solution *>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e), matrix_solver, 
                     Hermes::vector<ProjNormType>(HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM)); 

      // Calculate element errors and total error estimate.
      info("Calculating error estimate.");
      Adapt* adaptivity = new Adapt(Hermes::vector<Space *>(&space_rho, &space_rho_v_x, 
      &space_rho_v_y, &space_e), Hermes::vector<ProjNormType>(HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM));
      double err_est_rel_total = adaptivity->calc_err_est(Hermes::vector<Solution *>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e),
							  Hermes::vector<Solution *>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e)) * 100;

      // Report results.
      info("err_est_rel: %g%%", err_est_rel_total);

      // If err_est too large, adapt the mesh.
      if (err_est_rel_total < ERR_STOP) 
        done = true;
      else {
        info("Adapting coarse mesh.");
        done = adaptivity->adapt(Hermes::vector<RefinementSelectors::Selector *>(&selector, &selector, &selector, &selector), 
                                 THRESHOLD, STRATEGY, MESH_REGULARITY);

        REFINEMENT_COUNT++;
        if (Space::get_num_dofs(Hermes::vector<Space *>(&space_rho, &space_rho_v_x, 
          &space_rho_v_y, &space_e)) >= NDOF_STOP) 
          done = true;
        else
          // Increase the counter of performed adaptivity steps.
          as++;
      }

      // Clean up.
      delete adaptivity;
      if(!done)
        for(unsigned int i = 0; i < ref_spaces->size(); i++)
          delete (*ref_spaces)[i]->get_mesh();
      for(unsigned int i = 0; i < ref_spaces->size(); i++)
        delete (*ref_spaces)[i];
    }
    while (done == false);

    // Copy the solutions into the previous time level ones.
    prev_rho.copy(&rsln_rho);
    prev_rho_v_x.copy(&rsln_rho_v_x);
    prev_rho_v_y.copy(&rsln_rho_v_y);
    prev_e.copy(&rsln_e);

    // Visualization.
    if((iteration - 1) % EVERY_NTH_STEP == 0) {
      // Hermes visualization.
      if(HERMES_VISUALIZATION) {
        Mach_number.reinit();
        pressure.reinit();
        entropy.reinit();
        pressure_view.show(&pressure);
        entropy_production_view.show(&entropy);
        Mach_number_view.show(&Mach_number);
        /*
        s1.show(&prev_rho);
        s2.show(&prev_rho_v_x);
        s3.show(&prev_rho_v_y);
        s4.show(&prev_e);
        */
      }
      // Output solution in VTK format.
      if(VTK_VISUALIZATION) {
        pressure.reinit();
        Mach_number.reinit();
        Linearizer lin;
        char filename[40];
        sprintf(filename, "pressure-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&pressure, filename, "Pressure", false);
        sprintf(filename, "pressure-3D-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&pressure, filename, "Pressure", true);
        sprintf(filename, "Mach number-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&Mach_number, filename, "MachNumber", false);
        sprintf(filename, "Mach number-3D-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&Mach_number, filename, "MachNumber", true);
      }
    }
  }
  
  pressure_view.close();
  entropy_production_view.close();
  Mach_number_view.close();

  /*
  s1.close();
  s2.close();
  s3.close();
  s4.close();
  */

  return 0;
}
Exemplo n.º 21
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh basemesh;
  H2DReader mloader;
  mloader.load("GAMM-channel.mesh", &basemesh);

  // Initialize the meshes.
  Mesh mesh_flow, mesh_concentration;
  mesh_flow.copy(&basemesh);
  mesh_concentration.copy(&basemesh);

  for(unsigned int i = 0; i < INIT_REF_NUM_CONCENTRATION; i++)
    mesh_concentration.refine_all_elements();

  mesh_concentration.refine_towards_boundary(BDY_DIRICHLET_CONCENTRATION, INIT_REF_NUM_CONCENTRATION_BDY);
  mesh_flow.refine_towards_boundary(BDY_DIRICHLET_CONCENTRATION, INIT_REF_NUM_CONCENTRATION_BDY);

  for(unsigned int i = 0; i < INIT_REF_NUM_FLOW; i++)
    mesh_flow.refine_all_elements();

  // Initialize boundary condition types and spaces with default shapesets.
  // For the concentration.
  EssentialBCs bcs_concentration;
  
  bcs_concentration.add_boundary_condition(new ConcentrationTimedepEssentialBC(BDY_DIRICHLET_CONCENTRATION, CONCENTRATION_EXT, CONCENTRATION_EXT_STARTUP_TIME));
  bcs_concentration.add_boundary_condition(new ConcentrationTimedepEssentialBC(BDY_SOLID_WALL_TOP, 0.0, CONCENTRATION_EXT_STARTUP_TIME));
  
  L2Space space_rho(&mesh_flow, P_INIT_FLOW);
  L2Space space_rho_v_x(&mesh_flow, P_INIT_FLOW);
  L2Space space_rho_v_y(&mesh_flow, P_INIT_FLOW);
  L2Space space_e(&mesh_flow, P_INIT_FLOW);
  // Space for concentration.
  H1Space space_c(&mesh_concentration, &bcs_concentration, P_INIT_CONCENTRATION);

  int ndof = Space::get_num_dofs(Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c));
  info("ndof: %d", ndof);

  // Initialize solutions, set initial conditions.
  InitialSolutionEulerDensity prev_rho(&mesh_flow, RHO_EXT);
  InitialSolutionEulerDensityVelX prev_rho_v_x(&mesh_flow, RHO_EXT * V1_EXT);
  InitialSolutionEulerDensityVelY prev_rho_v_y(&mesh_flow, RHO_EXT * V2_EXT);
  InitialSolutionEulerDensityEnergy prev_e(&mesh_flow, QuantityCalculator::calc_energy(RHO_EXT, RHO_EXT * V1_EXT, RHO_EXT * V2_EXT, P_EXT, KAPPA));
  InitialSolutionConcentration prev_c(&mesh_concentration, 0.0);

  // Numerical flux.
  OsherSolomonNumericalFlux num_flux(KAPPA);

  // Initialize weak formulation.
  EulerEquationsWeakFormSemiImplicitCoupled wf(&num_flux, KAPPA, RHO_EXT, V1_EXT, V2_EXT, P_EXT, BDY_SOLID_WALL_BOTTOM,
    BDY_SOLID_WALL_TOP, BDY_INLET, BDY_OUTLET, BDY_NATURAL_CONCENTRATION, &prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, &prev_c, EPSILON, (P_INIT_FLOW == 0));
  
  wf.set_time_step(time_step);

  // Initialize the FE problem.
  DiscreteProblem dp(&wf, Hermes::vector<Space*>(&space_rho, &space_rho_v_x, &space_rho_v_y, &space_e, &space_c));

  // If the FE problem is in fact a FV problem.
  //if(P_INIT == 0) dp.set_fvm();  

  // Filters for visualization of Mach number, pressure and entropy.
  MachNumberFilter Mach_number(Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA);
  PressureFilter pressure(Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA);
  EntropyFilter entropy(Hermes::vector<MeshFunction*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA, RHO_EXT, P_EXT);

  /*
  ScalarView pressure_view("Pressure", new WinGeom(0, 0, 600, 300));
  ScalarView Mach_number_view("Mach number", new WinGeom(700, 0, 600, 300));
  ScalarView entropy_production_view("Entropy estimate", new WinGeom(0, 400, 600, 300));
  ScalarView s5("Concentration", new WinGeom(700, 400, 600, 300));
  */
  
  ScalarView s1("1", new WinGeom(0, 0, 600, 300));
  ScalarView s2("2", new WinGeom(700, 0, 600, 300));
  ScalarView s3("3", new WinGeom(0, 400, 600, 300));
  ScalarView s4("4", new WinGeom(700, 400, 600, 300));
  ScalarView s5("Concentration", new WinGeom(350, 200, 600, 300));

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  // Set up CFL calculation class.
  CFLCalculation CFL(CFL_NUMBER, KAPPA);

  // Set up Advection-Diffusion-Equation stability calculation class.
  ADEStabilityCalculation ADES(ADVECTION_STABILITY_CONSTANT, DIFFUSION_STABILITY_CONSTANT, EPSILON);

  int iteration = 0; double t = 0;
  for(t = 0.0; t < 100.0; t += time_step) {
    info("---- Time step %d, time %3.5f.", iteration++, t);

    // Set the current time step.
    wf.set_time_step(time_step);
    Space::update_essential_bc_values(&space_c, t);

    // Assemble stiffness matrix and rhs.
    info("Assembling the stiffness matrix and right-hand side vector.");
    dp.assemble(matrix, rhs);

    // Solve the matrix problem.
    info("Solving the matrix problem.");
    scalar* solution_vector = NULL;
    if(solver->solve()) {
      solution_vector = solver->get_solution();
      Solution::vector_to_solutions(solution_vector, Hermes::vector<Space *>(&space_rho, &space_rho_v_x, 
      &space_rho_v_y, &space_e, &space_c), Hermes::vector<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e, &prev_c));
    }
    else
    error ("Matrix solver failed.\n");

    if(SHOCK_CAPTURING) {
      DiscontinuityDetector discontinuity_detector(Hermes::vector<Space *>(&space_rho, &space_rho_v_x, 
        &space_rho_v_y, &space_e), Hermes::vector<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));

      std::set<int> discontinuous_elements = discontinuity_detector.get_discontinuous_element_ids(DISCONTINUITY_DETECTOR_PARAM);

      FluxLimiter flux_limiter(solution_vector, Hermes::vector<Space *>(&space_rho, &space_rho_v_x, 
        &space_rho_v_y, &space_e), Hermes::vector<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e));

      flux_limiter.limit_according_to_detector(discontinuous_elements);
    }

    util_time_step = time_step;

    CFL.calculate_semi_implicit(Hermes::vector<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), &mesh_flow, util_time_step);

    time_step = util_time_step;

    ADES.calculate(Hermes::vector<Solution *>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y), &mesh_concentration, util_time_step);

    if(util_time_step < time_step)
      time_step = util_time_step;

    // Visualization.
    if((iteration - 1) % EVERY_NTH_STEP == 0) {
      // Hermes visualization.
      if(HERMES_VISUALIZATION) {
        /*
        Mach_number.reinit();
        pressure.reinit();
        entropy.reinit();
        pressure_view.show(&pressure);
        entropy_production_view.show(&entropy);
        Mach_number_view.show(&Mach_number);
        s5.show(&prev_c);
        */
        s1.show(&prev_rho);
        s2.show(&prev_rho_v_x);
        s3.show(&prev_rho_v_y);
        s4.show(&prev_e);
        s5.show(&prev_c);
        /*
        s1.save_numbered_screenshot("density%i.bmp", iteration, true);
        s2.save_numbered_screenshot("density_v_x%i.bmp", iteration, true);
        s3.save_numbered_screenshot("density_v_y%i.bmp", iteration, true);
        s4.save_numbered_screenshot("energy%i.bmp", iteration, true);
        s5.save_numbered_screenshot("concentration%i.bmp", iteration, true);
        */
        //s5.wait_for_close();
        
      }
      // Output solution in VTK format.
      if(VTK_VISUALIZATION) {
        pressure.reinit();
        Mach_number.reinit();
        Linearizer lin;
        char filename[40];
        sprintf(filename, "pressure-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&pressure, filename, "Pressure", false);
        sprintf(filename, "pressure-3D-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&pressure, filename, "Pressure", true);
        sprintf(filename, "Mach number-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&Mach_number, filename, "MachNumber", false);
        sprintf(filename, "Mach number-3D-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&Mach_number, filename, "MachNumber", true);
        sprintf(filename, "Concentration-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_c, filename, "Concentration", true);
        sprintf(filename, "Concentration-3D-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&prev_c, filename, "Concentration", true);
 
      }
    }
  }
  
  /*
  pressure_view.close();
  entropy_production_view.close();
  Mach_number_view.close();
  s5.close();
  */
  
  s1.close();
  s2.close();
  s3.close();
  s4.close();
  s5.close();

  return 0;
}
Exemplo n.º 22
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh mesh;
  if (USE_XML_FORMAT == true)
  {
    MeshReaderH2DXML mloader;  
    info("Reading mesh in XML format.");
    mloader.load("domain.xml", &mesh);
  }
  else 
  {
    MeshReaderH2D mloader;
    info("Reading mesh in original format.");
    mloader.load("domain.mesh", &mesh);
  }

  // Perform initial mesh refinements.
  for(int i=0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();

  // Initialize boundary conditions
  DefaultEssentialBCConst<double> bc_essential("Bottom", T1);
  EssentialBCs<double> bcs(&bc_essential);

  // Create an H1 space with default shapeset.
  H1Space<double> space(&mesh, &bcs, P_INIT);
  int ndof = space.get_num_dofs();
  info("ndof = %d", ndof);

  // Initialize the weak formulation.
  CustomWeakFormPoissonNewton wf(LAMBDA, ALPHA, T0, "Heat_flux");

  // Initialize the FE problem.
  DiscreteProblem<double> dp(&wf, &space);

  // Initial coefficient vector for the Newton's method.  
  double* coeff_vec = new double[ndof];
  memset(coeff_vec, 0, ndof*sizeof(double));

  // Initialize Newton solver.
  NewtonSolver<double> newton(&dp, matrix_solver);

  // Perform Newton's iteration.
  try
  {
    newton.solve(coeff_vec);
  }
  catch(Hermes::Exceptions::Exception e)
  {
    e.printMsg();
    error("Newton's iteration failed.");
  }

  // Translate the resulting coefficient vector into a Solution.
  Solution<double> sln;
  Solution<double>::vector_to_solution(newton.get_sln_vector(), &space, &sln);

  // VTK output.
  if (VTK_VISUALIZATION) 
  {
    // Output solution in VTK format.
    Linearizer lin;
    bool mode_3D = true;
    lin.save_solution_vtk(&sln, "sln.vtk", "Temperature", mode_3D);
    info("Solution in VTK format saved to file %s.", "sln.vtk");

    // Output mesh and element orders in VTK format.
    Orderizer ord;
    ord.save_orders_vtk(&space, "ord.vtk");
    info("Element orders in VTK format saved to file %s.", "ord.vtk");
  }

  // Visualize the solution.
  if (HERMES_VISUALIZATION) 
  {
    ScalarView view("Solution", new WinGeom(0, 0, 440, 350));
    // Hermes uses adaptive FEM to approximate higher-order FE solutions with linear
    // triangles for OpenGL. The second parameter of View::show() sets the error 
    // tolerance for that. Options are HERMES_EPS_LOW, HERMES_EPS_NORMAL (default), 
    // HERMES_EPS_HIGH and HERMES_EPS_VERYHIGH. The size of the graphics file grows 
    // considerably with more accurate representation, so use it wisely.
    view.show(&sln, HERMES_EPS_HIGH);
    View::wait();
  }

  // Clean up.
  delete [] coeff_vec;

  return 0;
}
Exemplo n.º 23
0
int main(int argc, char* argv[])
{  
  // Load the mesh.
  Mesh mesh, basemesh;
  MeshReaderH2D mloader;
  mloader.load("domain.mesh", &basemesh);
  /*  MeshView meshview("mesh", new WinGeom(0, 0, 500, 400));
  meshview.show(&basemesh);
  View::wait();*/

  // Perform initial mesh refinements (optional).
  for (int i=0; i < INIT_REF_NUM; i++) basemesh.refine_all_elements();
  mesh.copy(&basemesh);


  // Initialize boundary conditions.
  DefaultEssentialBCConst<double>  bc_essential(BDY_IN, 0.0);
  EssentialBCs<double>  bcs(&bc_essential);

  // Create an H1 space with default shapeset.
  H1Space<double> space(&mesh, &bcs, P_INIT);	

  // Initialize solution of lower & higher order
  Solution<double>  low_sln, ref_sln, high_sln, sln;
  PrevSolution u_prev_time;

  // Previous time level solution (initialized by the initial condition).
  CustomInitialCondition initial_condition(&mesh);  

  // Initialize the weak formulation.
  CustomWeakFormMassmatrix  massmatrix(time_step);
  CustomWeakFormConvection  convection;

  // Initialize views.
  ScalarView sview("Solution", new WinGeom(0, 500, 500, 400));
  OrderView mview("mesh", new WinGeom(0, 0, 500, 400));
  OrderView ref_mview("ref_mesh", new WinGeom(500, 0, 500, 400));
  char title[100];

  // Output solution in VTK format.
  Linearizer lin;
  Orderizer ord;
  bool mode_3D = true;

  // Create a refinement selector.
  H1ProjBasedSelector<double> selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);

  //Initialize
  UMFPackMatrix<double> * mass_matrix = new UMFPackMatrix<double> ;   //M_c/tau
  UMFPackMatrix<double> * conv_matrix = new UMFPackMatrix<double> ;   //K
  double* u_L = NULL; 
  double* u_H =NULL;
  double* ref_sln_double =NULL;


  int ref_ndof, ndof; double err_est_rel_total;
  Adapt<double> adaptivity(&space, HERMES_L2_NORM);

  OGProjection<double> ogProjection;	
  Lumped_Projection lumpedProjection;	
  Low_Order lowOrder(theta);
  High_Order highOrd(theta);
  Flux_Correction fluxCorrection(theta);
  Regularity_Estimator regEst(EPS_smooth);

  DiscreteProblem<double> dp_mass(&massmatrix, &space);
  DiscreteProblem<double> dp_convection(&convection, &space); 

  // Time stepping loop:
  double current_time = 0.0; 
  int ts = 1;

  do
  { 
    Hermes::Mixins::Loggable::Static::info("Time step %d, time %3.5f", ts, current_time);
    Hermes::Hermes2D::Hermes2DApi.set_integral_param_value(Hermes::Hermes2D::numThreads,1);  


    // Periodic global derefinement. 
    if ((ts > 1 && ts % UNREF_FREQ == 0)||(space.get_num_dofs() >= NDOF_STOP)) 
    { 
      Hermes::Mixins::Loggable::Static::info("Global mesh derefinement.");
      switch (UNREF_METHOD) {
      case 1: mesh.copy(&basemesh);
        space.set_uniform_order(P_INIT);
        break;
      case 2: mesh.unrefine_all_elements();
        space.set_uniform_order(P_INIT);
        break;
      case 3: mesh.unrefine_all_elements();
        space.adjust_element_order(-1, -1, P_INIT, P_INIT);
        break;
      default: Exceptions::Exception("Wrong global derefinement method.");
      }      
    }

    bool done = false; int as = 1;	

    do 
    {
      Hermes::Mixins::Loggable::Static::info("Time step %i, adap_step %i", ts, as);			
      ndof = space.get_num_dofs(); 

      //Unrefinement step
      /*	if(as==1)
      {
      double* coeff_vec_smooth = new double[ndof];	
      if(ts==1)		
      ogProjection.project_global(&space,&initial_condition, coeff_vec_smooth,  HERMES_L2_NORM);	
      else		
      ogProjection.project_global(&space,&u_prev_time, coeff_vec_smooth,  HERMES_L2_NORM);										  
      Solution<double>::vector_to_solution(coeff_vec_smooth, &space, &low_sln);
      // Calculate element errors and total error estimate.
      if(ts==1)
      err_est_rel_total = adaptivity.calc_err_est(&low_sln, &initial_condition) * 100; 
      else 
      err_est_rel_total = adaptivity.calc_err_est(&low_sln, &u_prev_time) * 100;  
      adaptivity.unrefine(THRESHOLD_UNREF);		
      delete [] coeff_vec_smooth; 
      // Visualize the solution.
      if(HERMES_VISUALIZATION)
      {
      sprintf(title, "unrefined Mesh: Time %3.2f,timestep %i", current_time,ts);
      mview.set_title(title); 
      mview.show(&space);
      }
      }	*/

      ndof = space.get_num_dofs();  	    		
      double* coeff_vec_smooth = new double[ndof];
      int* smooth_elem_ref;	

      //smoothness-check for projected data		
      Hermes::Mixins::Loggable::Static::info("Projecting...");
      if(ts==1)
        ogProjection.project_global(&space,&initial_condition, coeff_vec_smooth, HERMES_L2_NORM);		
      else
        ogProjection.project_global(&space,&u_prev_time, coeff_vec_smooth, HERMES_L2_NORM);			

      Hermes::Mixins::Loggable::Static::info("Calling get_smooth_elems()...");
      smooth_elem_ref = regEst.get_smooth_elems(&space,coeff_vec_smooth);
      // Construct reference mesh and setup reference space.
      Mesh* ref_mesh = new Mesh;
      ref_mesh->copy(space.get_mesh());
      Space<double>::ReferenceSpaceCreator ref_space_creator(&space, ref_mesh, 0);
      Space<double>* ref_space = ref_space_creator.create_ref_space();

      HPAdapt * adapting = new HPAdapt(ref_space, HERMES_L2_NORM);	

      // increase p in smooth regions, h refine in non-smooth regions 
      Hermes::Mixins::Loggable::Static::info("Calling adapt_smooth()...");
      if(adapting->adapt_smooth(smooth_elem_ref, P_MAX)==false) 
        throw Exceptions::Exception("reference space couldn't be constructed");							

      delete adapting;
      delete [] coeff_vec_smooth; 	 


      ref_ndof = ref_space->get_num_dofs();

      Hermes::Mixins::Loggable::Static::info("Visualization...");
      if(HERMES_VISUALIZATION) 
      {
        sprintf(title, "Ref_Mesh: Time %3.2f,timestep %i,as=%i,", current_time,ts,as);
        ref_mview.set_title(title);
        ref_mview.show(ref_space);
      }


      dp_mass.set_space(ref_space);
      dp_convection.set_space(ref_space);
      fluxCorrection.init(ref_space);	

      double* coeff_vec = new double[ref_ndof];
      double* coeff_vec_2 = new double[ref_ndof];
      double* limited_flux = new double[ref_ndof];	


      dp_mass.assemble(mass_matrix); 										//M_c/tau
      dp_convection.assemble(conv_matrix, NULL,true);		//K

      //----------------------MassLumping  & Artificial Diffusion --------------------------------------------------------------------	
      UMFPackMatrix<double>* lumped_matrix = fluxCorrection.massLumping(mass_matrix); // M_L/tau
      UMFPackMatrix<double>* diffusion = fluxCorrection.artificialDiffusion(conv_matrix);	

      //-----------------Assembling of matrices ---------------------------------------------------------------------	
      lowOrder.assemble_Low_Order(conv_matrix,diffusion,lumped_matrix);	
      highOrd.assemble_High_Order(conv_matrix,mass_matrix);

      mass_matrix->multiply_with_Scalar(time_step);  // massmatrix = M_C
      lumped_matrix->multiply_with_Scalar(time_step);  // M_L


      //--------- Project the previous timestep solution on the FE space (FCT is applied )----------------			
      // coeff_vec : FCT -Projection, coeff_vec_2: L2 Projection (ogProjection)	
      if(ts==1)
        fluxCorrection.project_FCT(&initial_condition, coeff_vec, coeff_vec_2,mass_matrix,lumped_matrix,time_step,&ogProjection,&lumpedProjection, &regEst);	
      else		
        fluxCorrection.project_FCT(&u_prev_time, coeff_vec, coeff_vec_2,mass_matrix,lumped_matrix,time_step,&ogProjection,&lumpedProjection, &regEst);			
      //------------------------- lower order solution------------					
      u_L = lowOrder.solve_Low_Order(lumped_matrix, coeff_vec,time_step);								
      //-------------high order solution (standard galerkin) ------				
      u_H = highOrd.solve_High_Order(coeff_vec);		
      //------------------------------Assemble antidiffusive fluxes and limit these-----------------------------------	
      fluxCorrection.antidiffusiveFlux(mass_matrix,lumped_matrix,conv_matrix,diffusion,u_H, u_L,coeff_vec, limited_flux,time_step,&regEst);
      //-------------Compute final solution ---------------			
      ref_sln_double = lowOrder.explicit_Correction(limited_flux);
      Solution<double> ::vector_to_solution(ref_sln_double, ref_space, &ref_sln);	

      // Project the fine mesh solution onto the coarse mesh.
      ogProjection.project_global(&space, &ref_sln, &sln, HERMES_L2_NORM); 
      // Calculate element errors and total error estimate.
      err_est_rel_total = adaptivity.calc_err_est(&sln, &ref_sln) * 100;
      // Report results.
      Hermes::Mixins::Loggable::Static::info("ndof_coarse: %d, ndof_fine: %d, err_est_rel: %g%%", ndof,ref_ndof, err_est_rel_total);				
      // If err_est_rel too large, adapt the mesh.
      if((err_est_rel_total < ERR_STOP)||(as>=ADAPSTEP_MAX)) done = true;
      else
      {
        done = adaptivity.adapt(&selector, THRESHOLD, STRATEGY, MESH_REGULARITY);
        // Increase the counter of performed adaptivity steps.
        if(done == false)  as++;
      }
      if(space.get_num_dofs() >= NDOF_STOP)
        done = true;

      if(done) 
      {  
        u_prev_time.copy(&ref_sln);
        u_prev_time.set_own_mesh(ref_mesh); //ref_mesh can be deleted
      }

      // Visualize the solution and mesh.
      if(HERMES_VISUALIZATION)
      {
        sprintf(title, "Ref-Loesung: Time %3.2f,timestep %i,as=%i,", current_time,ts,as);
        sview.set_title(title);
        sview.show(&ref_sln);
        sprintf(title, "Mesh: Time %3.2f,timestep %i,as=%i,", current_time,ts,as);
        mview.set_title(title);
        mview.show(&space);
      }

      if((VTK_VISUALIZATION) &&((done==true)&&(ts  % VTK_FREQ == 0)))
      {
        // Output solution in VTK format.
        char filename[40];
        sprintf(filename, "solution-%i.vtk", ts );
        lin.save_solution_vtk(&u_prev_time, filename, "solution", mode_3D);  
        sprintf(filename, "ref_space_order-%i.vtk", ts);
        ord.save_orders_vtk(ref_space, filename);
        sprintf(filename, "ref_mesh-%i.vtk", ts );
        ord.save_mesh_vtk(ref_space, filename);       
      } 

      // Clean up.
      delete lumped_matrix; 
      delete diffusion;
      delete [] coeff_vec_2;
      delete [] coeff_vec; 
      delete [] limited_flux; 
      delete ref_mesh; 
      delete ref_space; 
    }
    while (done == false);

    // Update global time.
    current_time += time_step;
    // Increase time step counter
    ts++;
  }
  while (current_time < T_FINAL); 

  // Visualize the solution.
  if(VTK_VISUALIZATION) {
    lin.save_solution_vtk(&u_prev_time, "end_solution.vtk", "solution", mode_3D);
    ord.save_mesh_vtk(&space, "end_mesh");
    ord.save_orders_vtk(&space, "end_order.vtk");
  }

  delete mass_matrix;  
  delete conv_matrix;

  // Wait for the view to be closed.
  View::wait();
  return 0;
}
Exemplo n.º 24
0
int main(int argc, char* argv[])
{
  // Load the mesh.
  Mesh mesh;
  MeshReaderH2D mloader;
  mloader.load("channel.mesh", &mesh);

  // Perform initial mesh refinements.
  for (int i = 0; i < INIT_REF_NUM; i++) 
    mesh.refine_all_elements(0, true);
  
  // Initialize boundary condition types and spaces with default shapesets.
  L2Space<double> space_rho(&mesh, P_INIT);
  L2Space<double> space_rho_v_x(&mesh, P_INIT);
  L2Space<double> space_rho_v_y(&mesh, P_INIT);
  L2Space<double> space_e(&mesh, P_INIT);

  // Initialize solutions, set initial conditions.
  ConstantSolution<double> sln_rho(&mesh, RHO_INIT);
  ConstantSolution<double> sln_rho_v_x(&mesh, RHO_INIT * V1_INIT);
  ConstantSolution<double> sln_rho_v_y(&mesh, RHO_INIT * V2_INIT);
  ConstantSolution<double> sln_e(&mesh, QuantityCalculator::calc_energy(RHO_INIT, RHO_INIT * V1_INIT, RHO_INIT * V2_INIT, PRESSURE_INIT, KAPPA));

  ConstantSolution<double> prev_rho(&mesh, RHO_INIT);
  ConstantSolution<double> prev_rho_v_x(&mesh, RHO_INIT * V1_INIT);
  ConstantSolution<double> prev_rho_v_y(&mesh, RHO_INIT * V2_INIT);
  ConstantSolution<double> prev_e(&mesh, QuantityCalculator::calc_energy(RHO_INIT, RHO_INIT * V1_INIT, RHO_INIT * V2_INIT, PRESSURE_INIT, KAPPA));

  Solution<double> rsln_rho, rsln_rho_v_x, rsln_rho_v_y, rsln_e;

  // Numerical flux.
  OsherSolomonNumericalFlux num_flux(KAPPA);

  // For saving to the disk.
  Continuity<double> continuity(Continuity<double>::onlyNumber);

  // Initialize weak formulation.
  EulerEquationsWeakFormSemiImplicitMultiComponentTwoInflows wf(&num_flux, KAPPA, RHO_LEFT, V1_LEFT, V2_LEFT, PRESSURE_LEFT, RHO_TOP, V1_TOP, V2_TOP, PRESSURE_TOP, BDY_SOLID_WALL, BDY_INLET_LEFT, BDY_INLET_TOP, BDY_OUTLET,
    &prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e);

  // Filters for visualization of Mach number, pressure and entropy.
  MachNumberFilter Mach_number(Hermes::vector<MeshFunction<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA);
  PressureFilter pressure(Hermes::vector<MeshFunction<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA);
  EntropyFilter entropy(Hermes::vector<MeshFunction<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), KAPPA, RHO_INIT, P_INIT);

  ScalarView pressure_view("Pressure", new WinGeom(0, 0, 600, 300));
  ScalarView Mach_number_view("Mach number", new WinGeom(700, 0, 600, 300));
  ScalarView entropy_production_view("Entropy estimate", new WinGeom(0, 400, 600, 300));

  // Initialize refinement selector.
  L2ProjBasedSelector<double> selector(CAND_LIST, CONV_EXP, MAX_P_ORDER);
  selector.set_error_weights(1.0, 1.0, 1.0);

  // Set up CFL calculation class.
  CFLCalculation CFL(CFL_NUMBER, KAPPA);

  // Time stepping loop.
  int iteration = 0; double t = 0;
  for(; t < 4.0; t += time_step)
  {
    info("---- Time step %d, time %3.5f.", iteration++, t);

    // Periodic global derefinements.
    if (iteration > 1 && iteration % UNREF_FREQ == 0 && REFINEMENT_COUNT > 0) 
    {
      info("Global mesh derefinement.");
      REFINEMENT_COUNT = 0;
      
      space_rho.unrefine_all_mesh_elements(true);
      
      space_rho.adjust_element_order(-1, P_INIT);
      space_rho_v_x.copy_orders(&space_rho);
      space_rho_v_y.copy_orders(&space_rho);
      space_e.copy_orders(&space_rho);
    }

    // Adaptivity loop:
    int as = 1; 
    int ndofs_prev = 0;
    bool done = false;
    do
    {
      info("---- Adaptivity step %d:", as);

      // Construct globally refined reference mesh and setup reference space.
      int order_increase = 1;

      Hermes::vector<Space<double> *>* ref_spaces = Space<double>::construct_refined_spaces(Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x, 
        &space_rho_v_y, &space_e), order_increase);

      if(ndofs_prev != 0)
        if(Space<double>::get_num_dofs(*ref_spaces) == ndofs_prev)
          selector.set_error_weights(2.0 * selector.get_error_weight_h(), 1.0, 1.0);
        else
          selector.set_error_weights(1.0, 1.0, 1.0);

      ndofs_prev = Space<double>::get_num_dofs(*ref_spaces);

      // Project the previous time level solution onto the new fine mesh.
      info("Projecting the previous time level solution onto the new fine mesh.");
      OGProjection<double>::project_global(*ref_spaces, Hermes::vector<Solution<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), 
        Hermes::vector<Solution<double>*>(&prev_rho, &prev_rho_v_x, &prev_rho_v_y, &prev_e), matrix_solver_type, Hermes::vector<Hermes::Hermes2D::ProjNormType>(), iteration > 1);

      // Report NDOFs.
      info("ndof_coarse: %d, ndof_fine: %d.", 
        Space<double>::get_num_dofs(Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x, 
        &space_rho_v_y, &space_e)), Space<double>::get_num_dofs(*ref_spaces));

      // Assemble the reference problem.
      info("Solving on reference mesh.");
      DiscreteProblem<double> dp(&wf, *ref_spaces);

      SparseMatrix<double>* matrix = create_matrix<double>(matrix_solver_type);
      Vector<double>* rhs = create_vector<double>(matrix_solver_type);
      LinearSolver<double>* solver = create_linear_solver<double>(matrix_solver_type, matrix, rhs);

    wf.set_time_step(time_step);

    dp.assemble(matrix, rhs);
    
    // Solve the matrix problem.
    info("Solving the matrix problem.");
    if(solver->solve())
      if(!SHOCK_CAPTURING)
          Solution<double>::vector_to_solutions(solver->get_sln_vector(), *ref_spaces, 
          Hermes::vector<Solution<double>*>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e));
      else
        {      
          FluxLimiter flux_limiter(FluxLimiter::Kuzmin, solver->get_sln_vector(), *ref_spaces, true);
          
          flux_limiter.limit_second_orders_according_to_detector(Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x, 
            &space_rho_v_y, &space_e));

          flux_limiter.limit_according_to_detector(Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x, 
            &space_rho_v_y, &space_e));

          flux_limiter.get_limited_solutions(Hermes::vector<Solution<double>*>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e));
        }
    else
      error ("Matrix solver failed.\n");

      // Project the fine mesh solution onto the coarse mesh.
      info("Projecting reference solution on coarse mesh.");
      OGProjection<double>::project_global(Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x, 
        &space_rho_v_y, &space_e), Hermes::vector<Solution<double>*>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e), 
        Hermes::vector<Solution<double>*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e), matrix_solver_type, 
        Hermes::vector<ProjNormType>(HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM)); 

      // Calculate element errors and total error estimate.
      info("Calculating error estimate.");
      Adapt<double>* adaptivity = new Adapt<double>(Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x, 
        &space_rho_v_y, &space_e), Hermes::vector<ProjNormType>(HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM, HERMES_L2_NORM));
      double err_est_rel_total = adaptivity->calc_err_est(Hermes::vector<Solution<double>*>(&sln_rho, &sln_rho_v_x, &sln_rho_v_y, &sln_e),
        Hermes::vector<Solution<double>*>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e)) * 100;

      CFL.calculate_semi_implicit(Hermes::vector<Solution<double> *>(&rsln_rho, &rsln_rho_v_x, &rsln_rho_v_y, &rsln_e), (*ref_spaces)[0]->get_mesh(), time_step);

      // Report results.
      info("err_est_rel: %g%%", err_est_rel_total);

      // If err_est too large, adapt the mesh.
      if (err_est_rel_total < ERR_STOP)
        done = true;
      else
      {
        info("Adapting coarse mesh.");
        done = adaptivity->adapt(Hermes::vector<RefinementSelectors::Selector<double> *>(&selector, &selector, &selector, &selector), 
          THRESHOLD, STRATEGY, MESH_REGULARITY);

        REFINEMENT_COUNT++;
        if (Space<double>::get_num_dofs(Hermes::vector<Space<double> *>(&space_rho, &space_rho_v_x, 
          &space_rho_v_y, &space_e)) >= NDOF_STOP) 
          done = true;
        else
          as++;
      }

      // Clean up.
      delete solver;
      delete matrix;
      delete rhs;
      delete adaptivity;
      if(!done)
        for(unsigned int i = 0; i < ref_spaces->size(); i++)
          delete (*ref_spaces)[i];
    }
    while (done == false);

    // Copy the solutions into the previous time level ones.
    prev_rho.copy(&rsln_rho);
    prev_rho_v_x.copy(&rsln_rho_v_x);
    prev_rho_v_y.copy(&rsln_rho_v_y);
    prev_e.copy(&rsln_e);
    
    delete rsln_rho.get_mesh();
    rsln_rho.own_mesh = false;
    delete rsln_rho_v_x.get_mesh();
    rsln_rho_v_x.own_mesh = false;
    delete rsln_rho_v_y.get_mesh();
    rsln_rho_v_y.own_mesh = false;
    delete rsln_e.get_mesh();
    rsln_e.own_mesh = false;

    // Visualization and saving on disk.
    if((iteration - 1) % EVERY_NTH_STEP == 0) 
    {
      continuity.add_record((unsigned int)(iteration - 1));
      continuity.get_last_record()->save_mesh(prev_rho.get_mesh());
      continuity.get_last_record()->save_space(prev_rho.get_space());
      continuity.get_last_record()->save_time_step_length(time_step);

      // Hermes visualization.
      if(HERMES_VISUALIZATION) 
      {
        Mach_number.reinit();
        pressure.reinit();
        entropy.reinit();
        pressure_view.show(&pressure, 1);
        entropy_production_view.show(&entropy, 1);
        Mach_number_view.show(&Mach_number, 1);

        pressure_view.save_numbered_screenshot("pressure %i.bmp", iteration);
        Mach_number_view.save_numbered_screenshot("Mach no %i.bmp", iteration);
      }
      // Output solution in VTK format.
      if(VTK_VISUALIZATION) 
      {
        pressure.reinit();
        Mach_number.reinit();
        entropy.reinit();
        Linearizer lin;
        char filename[40];
        sprintf(filename, "Pressure-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&pressure, filename, "Pressure", false);
        sprintf(filename, "Mach number-%i.vtk", iteration - 1);
        lin.save_solution_vtk(&Mach_number, filename, "MachNumber", false);
        if((iteration - 1) % (EVERY_NTH_STEP * EVERY_NTH_STEP) == 0) 
        {
          sprintf(filename, "Entropy-%i.vtk", iteration - 1);
          lin.save_solution_vtk(&entropy, filename, "Entropy", false);
        }
      }
    }
  }

  pressure_view.close();
  entropy_production_view.close();
  Mach_number_view.close();

  return 0;
}
Exemplo n.º 25
0
int main(int argc, char* argv[])
{
  // Instantiate a class with global functions.
  Hermes2D hermes2d;

  // Load the mesh.
  Mesh mesh;
  H2DReader mloader;
  mloader.load("motor.mesh", &mesh);

  // Initialize the weak formulation.
  CustomWeakFormPoisson wf("Motor", EPS_MOTOR, "Air", EPS_AIR);
  
  // Initialize boundary conditions
  DefaultEssentialBCConst bc_essential_out("Outer", 0.0);
  DefaultEssentialBCConst bc_essential_stator("Stator", VOLTAGE);
  EssentialBCs bcs(Hermes::vector<EssentialBoundaryCondition *>(&bc_essential_out, &bc_essential_stator));

  // Create an H1 space with default shapeset.
  H1Space space(&mesh, &bcs, P_INIT);

  // Initialize coarse and reference mesh solution.
  Solution sln, ref_sln;

  // Initialize refinement selector.
  H1ProjBasedSelector selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);

  // Initialize views.
  ScalarView sview("Solution", new WinGeom(0, 0, 410, 600));
  sview.fix_scale_width(50);
  sview.show_mesh(false);
  OrderView  oview("Polynomial orders", new WinGeom(420, 0, 400, 600));

  // DOF and CPU convergence graphs initialization.
  SimpleGraph graph_dof, graph_cpu;

  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Adaptivity loop:
  int as = 1;
  bool done = false;
  do
  {
    info("---- Adaptivity step %d:", as);

    // Construct globally refined reference mesh and setup reference space.
    Space* ref_space = Space::construct_refined_space(&space);
    int ndof_ref = Space::get_num_dofs(ref_space);

    // Initialize matrix solver.
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

    // Initialize reference problem.
    info("Solving on reference mesh.");
    DiscreteProblem* dp = new DiscreteProblem(&wf, ref_space);

    // Time measurement.
    cpu_time.tick();

    // Initial coefficient vector for the Newton's method.  
    scalar* coeff_vec = new scalar[ndof_ref];
    memset(coeff_vec, 0, ndof_ref * sizeof(scalar));

    // Perform Newton's iteration.
    if (!hermes2d.solve_newton(coeff_vec, dp, solver, matrix, rhs)) error("Newton's iteration failed.");

    // Translate the resulting coefficient vector into the Solution sln.
    Solution::vector_to_solution(coeff_vec, ref_space, &ref_sln);

    // Project the fine mesh solution onto the coarse mesh.
    info("Projecting reference solution on coarse mesh.");
    OGProjection::project_global(&space, &ref_sln, &sln, matrix_solver);

    // Time measurement.
    cpu_time.tick();

    // VTK output.
    if (VTK_VISUALIZATION) {
      // Output solution in VTK format.
      Linearizer lin;
      char* title = new char[100];
      sprintf(title, "sln-%d.vtk", as);
      lin.save_solution_vtk(&sln, title, "Potential", false);
      info("Solution in VTK format saved to file %s.", title);

      // Output mesh and element orders in VTK format.
      Orderizer ord;
      sprintf(title, "ord-%d.vtk", as);
      ord.save_orders_vtk(&space, title);
      info("Element orders in VTK format saved to file %s.", title);
    }

    // View the coarse mesh solution and polynomial orders.
    if (HERMES_VISUALIZATION) {
      sview.show(&sln);
      oview.show(&space);
    }

    // Skip visualization time.
    cpu_time.tick(HERMES_SKIP);

    // Calculate element errors and total error estimate.
    info("Calculating error estimate.");
    Adapt* adaptivity = new Adapt(&space);
    bool solutions_for_adapt = true;
    // In the following function, the Boolean parameter "solutions_for_adapt" determines whether
    // the calculated errors are intended for use with adaptivity (this may not be the case, for example,
    // when error wrt. an exact solution is calculated). The default value is solutions_for_adapt = true,
    // The last parameter "error_flags" determine whether the total and element errors are treated as
    // absolute or relative. Its default value is error_flags = HERMES_TOTAL_ERROR_REL | HERMES_ELEMENT_ERROR_REL.
    // In subsequent examples and benchmarks, these two parameters will be often used with
    // their default values, and thus they will not be present in the code explicitly.
    double err_est_rel = adaptivity->calc_err_est(&sln, &ref_sln, solutions_for_adapt,
                         HERMES_TOTAL_ERROR_REL | HERMES_ELEMENT_ERROR_REL) * 100;

    // Report results.
    info("ndof_coarse: %d, ndof_fine: %d, err_est_rel: %g%%",
      Space::get_num_dofs(&space), Space::get_num_dofs(ref_space), err_est_rel);

    // Time measurement.
    cpu_time.tick();

    // Add entry to DOF and CPU convergence graphs.
    graph_dof.add_values(Space::get_num_dofs(&space), err_est_rel);
    graph_dof.save("conv_dof_est.dat");
    graph_cpu.add_values(cpu_time.accumulated(), err_est_rel);
    graph_cpu.save("conv_cpu_est.dat");

    // If err_est too large, adapt the mesh.
    if (err_est_rel < ERR_STOP) done = true;
    else
    {
      info("Adapting coarse mesh.");
      done = adaptivity->adapt(&selector, THRESHOLD, STRATEGY, MESH_REGULARITY);

      // Increase the counter of performed adaptivity steps.
      if (done == false)  as++;
    }
    if (Space::get_num_dofs(&space) >= NDOF_STOP) done = true;

    // Clean up.
    delete [] coeff_vec;
    delete solver;
    delete matrix;
    delete rhs;
    delete adaptivity;
    if(done == false) delete ref_space->get_mesh();
    delete ref_space;
    delete dp;

  }
  while (done == false);

  verbose("Total running time: %g s", cpu_time.accumulated());

  // Show the reference solution - the final result.
  sview.set_title("Fine mesh solution");
  sview.show_mesh(false);
  sview.show(&ref_sln);

  // Wait for all views to be closed.
  View::wait();

  return 0;
}