Exemplo n.º 1
0
/**
 * Calculate detector efficiency given a formula, the efficiency at the elastic line,
 * and a vector with energies.
 *  Efficiency = f(Ei-DeltaE) / f(Ei)
 * Hope all compilers supports the NRVO (otherwise will copy the output vector)
 * @param eff0 :: calculated eff0
 * @param formula :: formula to calculate efficiency (parsed from IDF)
 * @param xIn :: Energy bins vector (X axis)
 * @return a vector with the efficiencies
 */
MantidVec DetectorEfficiencyCorUser::calculateEfficiency(double eff0,
		const std::string& formula, const MantidVec& xIn) {

	MantidVec effOut(xIn.size() - 1); // x are bins and have more one value than y

	try {
		double e;
		mu::Parser p;
		p.DefineVar("e", &e);
		p.SetExpr(formula);

		// copied from Jaques Ollivier Code
		bool conditionForEnergy = std::min( std::abs( *std::min_element(xIn.begin(), xIn.end()) ) , m_Ei) < m_Ei;

		MantidVec::const_iterator xIn_it = xIn.begin(); // DeltaE
		MantidVec::iterator effOut_it = effOut.begin();
		for (; effOut_it != effOut.end(); ++xIn_it, ++effOut_it) {
			if (conditionForEnergy ) {
        // cppcheck cannot see that this is used by reference by muparser
        e =  std::fabs(m_Ei + *xIn_it);
			}
			else {
        // cppcheck cannot see that this is used by reference by muparser
        // cppcheck-suppress unreadVariable
				e =  std::fabs(m_Ei - *xIn_it);
			}
			double eff = p.Eval();
			*effOut_it = eff / eff0;
		}
		return effOut;
	} catch (mu::Parser::exception_type &e) {
		throw Kernel::Exception::InstrumentDefinitionError(
				"Error calculating formula from string. Muparser error message is: "
						+ e.GetMsg());
	}

}
Exemplo n.º 2
0
/** Calculates Sn as estimator of scale for given vector
  *
  * This method implements a naive calculation of Sn, as defined by Rousseeuw and Croux (http://dx.doi.org/10.2307%2F2291267).
  * In contrast to standard deviation, this is more robust towards outliers.
  *
  * @param begin :: Beginning of vector.
  * @param end :: End of vector.
  * @return Sn of supplied data.
  */
double PoldiPeakSearch::getSn(MantidVec::const_iterator begin, MantidVec::const_iterator end) const
{
    size_t numberOfPoints = std::distance(begin, end);
    MantidVec absoluteDifferenceMedians(numberOfPoints);

    PARALLEL_FOR_NO_WSP_CHECK()
    for(int i = 0; i < static_cast<int>(numberOfPoints); ++i) {
        double currentValue = *(begin + i);
        MantidVec temp;
        temp.reserve(numberOfPoints - 1);
        for(int j = 0; j < static_cast<int>(numberOfPoints); ++j) {
            if(j != i) {
                temp.push_back(fabs(*(begin + j) - currentValue));
            }
        }
        std::sort(temp.begin(), temp.end());

        absoluteDifferenceMedians[i] = getMedianFromSortedVector(temp.begin(), temp.end());
    }

    std::sort(absoluteDifferenceMedians.begin(), absoluteDifferenceMedians.end());

    return 1.1926 * getMedianFromSortedVector(absoluteDifferenceMedians.begin(), absoluteDifferenceMedians.end());
}
Exemplo n.º 3
0
/** Retrieves a vector with all counts that belong to the background
  *
  * In this method, a vector is assembled which contains all count data that is
  *considered to be background.
  * Whether a point is considered background depends on its distance to the
  *given peak positions.
  *
  * @param peakPositions :: Peak positions.
  * @param correlationCounts :: Vector with the complete correlation spectrum.
  * @return Vector only with counts that belong to the background.
  */
MantidVec PoldiPeakSearch::getBackground(
    std::list<MantidVec::const_iterator> peakPositions,
    const MantidVec &correlationCounts) const {
  size_t backgroundPoints =
      getNumberOfBackgroundPoints(peakPositions, correlationCounts);

  MantidVec background;
  background.reserve(backgroundPoints);

  for (MantidVec::const_iterator point = correlationCounts.begin() + 1;
       point != correlationCounts.end() - 1; ++point) {
    if (distanceToPeaksGreaterThanMinimum(peakPositions, point)) {
      background.push_back(*point);
    }
  }

  return background;
}
Exemplo n.º 4
0
/** Write data in SLOG format
  */
void SaveGSS::writeSLOGdata(const int bank, const bool MultiplyByBinWidth,
                            std::stringstream &out, const MantidVec &X,
                            const MantidVec &Y, const MantidVec &E) const {
  const size_t datasize = Y.size();
  double bc1 = X.front(); // minimum TOF in microseconds
  if (bc1 <= 0.) {
    throw std::runtime_error(
        "Cannot write out logarithmic data starting at zero");
  }
  double bc2 = 0.5 * (*(X.rbegin()) +
                      *(X.rbegin() + 1));      // maximum TOF (in microseconds?)
  double bc3 = (*(X.begin() + 1) - bc1) / bc1; // deltaT/T

  g_log.debug() << "SaveGSS(): Min TOF = " << bc1 << std::endl;

  writeBankLine(out, "SLOG", bank, datasize);
  out << std::fixed << " " << std::setprecision(0) << std::setw(10) << bc1
      << std::fixed << " " << std::setprecision(0) << std::setw(10) << bc2
      << std::fixed << " " << std::setprecision(7) << std::setw(10) << bc3
      << std::fixed << " 0 FXYE" << std::endl;

  for (size_t i = 0; i < datasize; i++) {
    double y = Y[i];
    double e = E[i];
    if (MultiplyByBinWidth) {
      // Multiple by bin width as
      double delta = X[i + 1] - X[i];
      y *= delta;
      e *= delta;
    }
    e = fixErrorValue(e);

    out << "  " << std::fixed << std::setprecision(9) << std::setw(20)
        << 0.5 * (X[i] + X[i + 1]) << "  " << std::fixed << std::setprecision(9)
        << std::setw(20) << y << "  " << std::fixed << std::setprecision(9)
        << std::setw(20) << e << std::setw(12) << " "
        << "\n"; // let it flush its own buffer
  }
  out << std::flush;

  return;
}
Exemplo n.º 5
0
    /**
    * Copy over the metadata from the input matrix workspace to output MDEventWorkspace
    * @param mdEventWS :: The output MDEventWorkspace where metadata are copied to. The source of the metadata is the input matrix workspace
    *
    */
    void ConvertToMD::copyMetaData(API::IMDEventWorkspace_sptr &mdEventWS) const
    {


      // found detector which is not a monitor to get proper bin boundaries.
      size_t spectra_index(0);
      bool   dector_found(false);
      for(size_t i=0;i<m_InWS2D->getNumberHistograms(); ++i)
      {
        try
        {
          auto det=m_InWS2D->getDetector(i);
          if (!det->isMonitor())
          {
            spectra_index=i;
            dector_found = true;
            g_log.debug()<<"Using spectra N "<<i<< " as the source of the bin boundaries for the resolution corrections \n"; 
            break;
          }
        }
        catch(...)
        {}
      }
      if (!dector_found)
        g_log.warning()<<"No detectors in the workspace are associated with spectra. Using spectrum 0 trying to retrieve the bin boundaries \n"; 

      // retrieve representative bin boundaries
      MantidVec binBoundaries = m_InWS2D->readX(spectra_index);
      // check if the boundaries transformation is necessary
      if (m_Convertor->getUnitConversionHelper().isUnitConverted())
      {

        if( !dynamic_cast<DataObjects::EventWorkspace *>(m_InWS2D.get()))
        {
          g_log.information()<<" ConvertToMD converts input workspace units, but the bin boundaries are copied from the first workspace spectra. The resolution estimates can be incorrect if unit conversion depends on spectra number.\n";

          UnitsConversionHelper &unitConv = m_Convertor->getUnitConversionHelper();
          unitConv.updateConversion(spectra_index);
          for(size_t i=0;i<binBoundaries.size();i++)
          {
            binBoundaries[i] =unitConv.convertUnits(binBoundaries[i]);
          }
        }
        // sort bin boundaries in case if unit transformation have swapped them.
        if (binBoundaries[0]>binBoundaries[binBoundaries.size()-1])
        {
           g_log.information()<<"Bin boundaries are not arranged monotonously. Sorting performed\n"; 
           std::sort(binBoundaries.begin(),binBoundaries.end());
        }
      }

      // Replacement for SpectraDetectorMap::createIDGroupsMap using the ISpectrum objects instead
      auto mapping = boost::make_shared<det2group_map>();
      for ( size_t i = 0; i < m_InWS2D->getNumberHistograms(); ++i )
      {
        const auto& dets = m_InWS2D->getSpectrum(i)->getDetectorIDs();
        if(!dets.empty())
        {
          std::vector<detid_t> id_vector;
          std::copy(dets.begin(), dets.end(), std::back_inserter(id_vector));
          mapping->insert(std::make_pair(id_vector.front(), id_vector));
        }
      }

      uint16_t nexpts = mdEventWS->getNumExperimentInfo();
      for(uint16_t i = 0; i < nexpts; ++i)
      {
        ExperimentInfo_sptr expt = mdEventWS->getExperimentInfo(i);
        expt->mutableRun().storeHistogramBinBoundaries(binBoundaries);
        expt->cacheDetectorGroupings(*mapping);
      }


    }
Exemplo n.º 6
0
/** Corrects a spectra for the detector efficiency calculated from detector information
Gets the detector information and uses this to calculate its efficiency
*  @param spectraIn :: index of the spectrum to get the efficiency for
*  @throw invalid_argument if the shape of a detector is isn't a cylinder aligned along one axis
*  @throw runtime_error if the SpectraDetectorMap has not been filled
*  @throw NotFoundError if the detector or its gas pressure or wall thickness were not found
*/
void DetectorEfficiencyCor::correctForEfficiency(int64_t spectraIn)
{
  IDetector_const_sptr det = m_inputWS->getDetector(spectraIn);
  if( det->isMonitor() || det->isMasked() )
  {
    return;
  }

  MantidVec & yout = m_outputWS->dataY(spectraIn);
  MantidVec & eout = m_outputWS->dataE(spectraIn);
  // Need the original values so this is not a reference
  const MantidVec yValues = m_inputWS->readY(spectraIn);
  const MantidVec eValues = m_inputWS->readE(spectraIn);

  // get a pointer to the detectors that created the spectrum
  const std::set<detid_t> dets = m_inputWS->getSpectrum(spectraIn)->getDetectorIDs();

  std::set<detid_t>::const_iterator it = dets.begin();
  std::set<detid_t>::const_iterator iend = dets.end();
  if ( it == iend )
  {
    throw Exception::NotFoundError("No detectors found", spectraIn);
  }
  
  // Storage for the reciprocal wave vectors that are calculated as the 
  //correction proceeds
  std::vector<double> oneOverWaveVectors(yValues.size());
  for( ; it != iend ; ++it )
  {
    IDetector_const_sptr det_member = m_inputWS->getInstrument()->getDetector(*it);
    
    Parameter_sptr par = m_paraMap->get(det_member.get(),"3He(atm)");
    if ( !par )
    {
      throw Exception::NotFoundError("3He(atm)", spectraIn);
    }
    const double atms = par->value<double>();
    par = m_paraMap->get(det_member.get(),"wallT(m)");
    if ( !par )
    {
      throw Exception::NotFoundError("wallT(m)", spectraIn);
    }
    const double wallThickness = par->value<double>();
    double detRadius(0.0);
    V3D detAxis;
    getDetectorGeometry(det_member, detRadius, detAxis);

   // now get the sin of the angle, it's the magnitude of the cross product of unit vector along the detector tube axis and a unit vector directed from the sample to the detector centre
    V3D vectorFromSample = det_member->getPos() - m_samplePos;
    vectorFromSample.normalize();
    Quat rot = det_member->getRotation();
    // rotate the original cylinder object axis to get the detector axis in the actual instrument
    rot.rotate(detAxis); 
    detAxis.normalize();
    // Scalar product is quicker than cross product
    double cosTheta = detAxis.scalar_prod(vectorFromSample);
    double sinTheta = std::sqrt(1.0 - cosTheta*cosTheta);
    // Detector constant
    const double det_const = g_helium_prefactor*(detRadius - wallThickness)*atms/sinTheta;

    MantidVec::const_iterator yinItr = yValues.begin();
    MantidVec::const_iterator einItr = eValues.begin();
    MantidVec::iterator youtItr = yout.begin();
    MantidVec::iterator eoutItr = eout.begin();
    MantidVec::const_iterator xItr = m_inputWS->readX(spectraIn).begin();
    std::vector<double>::iterator wavItr = oneOverWaveVectors.begin();

    for( ; youtItr != yout.end(); ++youtItr, ++eoutItr)
    {
      if( it == dets.begin() )
      {
        *youtItr = 0.0;
        *eoutItr = 0.0;
        *wavItr = calculateOneOverK(*xItr, *(xItr + 1 ));
      }
      const double oneOverWave = *wavItr;
      const double factor = 1.0/detectorEfficiency(det_const*oneOverWave);
      *youtItr += (*yinItr)*factor;
      *eoutItr += (*einItr)*factor;
      ++yinItr; ++einItr;
      ++xItr; ++wavItr;
    }
  }
}
Exemplo n.º 7
0
/** Subtracts a constant from the data values in the given workspace
 *  @param Y :: The vector from which to subtract
 *  @param value :: The value to subtract from each data point
 */
void IQTransform::subtractBackgroundValue(MantidVec& Y, const double value)
{
  g_log.debug() << "Subtracting the background value " << value << " from the input workspace.\n";
  std::transform(Y.begin(),Y.end(),Y.begin(),std::bind2nd(std::minus<double>(),value));
}
Exemplo n.º 8
0
void PoldiPeakSearch::exec() {
  g_log.information() << "PoldiPeakSearch:" << std::endl;

  Workspace2D_sptr correlationWorkspace = getProperty("InputWorkspace");
  MantidVec correlationQValues = correlationWorkspace->readX(0);
  MantidVec correlatedCounts = correlationWorkspace->readY(0);
  g_log.information() << "   Auto-correlation data read." << std::endl;

  Unit_sptr xUnit = correlationWorkspace->getAxis(0)->unit();

  if (xUnit->caption() == "") {
    g_log.information()
        << "   Workspace does not have unit, defaulting to MomentumTransfer."
        << std::endl;

    xUnit = UnitFactory::Instance().create("MomentumTransfer");
  } else {
    g_log.information() << "   Unit of workspace is " << xUnit->caption() << "."
                        << std::endl;
  }

  setMinimumDistance(getProperty("MinimumPeakSeparation"));
  setMinimumPeakHeight(getProperty("MinimumPeakHeight"));
  setMaximumPeakNumber(getProperty("MaximumPeakNumber"));

  if (m_doubleMinimumDistance > static_cast<int>(correlatedCounts.size())) {
    throw(std::runtime_error("MinimumPeakSeparation is smaller than number of "
                             "spectrum points - no peaks possible."));
  }

  g_log.information() << "   Parameters set." << std::endl;

  MantidVec summedNeighborCounts = getNeighborSums(correlatedCounts);
  g_log.information() << "   Neighboring counts summed, contains "
                      << summedNeighborCounts.size() << " data points."
                      << std::endl;

  std::list<MantidVec::const_iterator> peakPositionsSummed =
      findPeaks(summedNeighborCounts.begin(), summedNeighborCounts.end());
  g_log.information() << "   Peaks detected in summed spectrum: "
                      << peakPositionsSummed.size() << std::endl;

  /* This step is required because peaks are actually searched in the
   * "sum-of-neighbors"-spectrum.
   * The mapping removes the offset from the peak position which results from
   * different beginning
   * of this vector compared to the original correlation counts.
   */
  std::list<MantidVec::const_iterator> peakPositionsCorrelation =
      mapPeakPositionsToCorrelationData(peakPositionsSummed,
                                        summedNeighborCounts.begin(),
                                        correlatedCounts.begin());
  g_log.information() << "   Peak positions transformed to original spectrum."
                      << std::endl;

  /* Since intensities are required for filtering, they are extracted from the
   * original count data,
   * along with the Q-values.
   */
  std::vector<PoldiPeak_sptr> peakCoordinates =
      getPeaks(correlatedCounts.begin(), correlatedCounts.end(),
               peakPositionsCorrelation, correlationQValues, xUnit);
  g_log.information()
      << "   Extracted peak positions in Q and intensity guesses." << std::endl;

  UncertainValue backgroundWithSigma =
      getBackgroundWithSigma(peakPositionsCorrelation, correlatedCounts);
  g_log.information() << "   Calculated average background and deviation: "
                      << UncertainValueIO::toString(backgroundWithSigma)
                      << std::endl;

  if ((*getProperty("MinimumPeakHeight")).isDefault()) {
    setMinimumPeakHeight(minimumPeakHeightFromBackground(backgroundWithSigma));
  }

  std::vector<PoldiPeak_sptr> intensityFilteredPeaks(peakCoordinates.size());
  auto newEnd = std::remove_copy_if(
      peakCoordinates.begin(), peakCoordinates.end(),
      intensityFilteredPeaks.begin(),
      boost::bind(&PoldiPeakSearch::isLessThanMinimum, this, _1));
  intensityFilteredPeaks.resize(
      std::distance(intensityFilteredPeaks.begin(), newEnd));

  g_log.information() << "   Peaks above minimum intensity ("
                      << m_minimumPeakHeight
                      << "): " << intensityFilteredPeaks.size() << std::endl;

  std::sort(intensityFilteredPeaks.begin(), intensityFilteredPeaks.end(),
            boost::bind<bool>(&PoldiPeak::greaterThan, _1, _2,
                              &PoldiPeak::intensity));

  for (std::vector<PoldiPeak_sptr>::const_iterator peak =
           intensityFilteredPeaks.begin();
       peak != intensityFilteredPeaks.end(); ++peak) {
    m_peaks->addPeak(*peak);
  }

  /* The derived background error is set as error in the workspace containing
   * correlation data, so it may be used as weights for peak fitting later on.
   */
  setErrorsOnWorkspace(correlationWorkspace, backgroundWithSigma.error());

  setProperty("OutputWorkspace", m_peaks->asTableWorkspace());
}
Exemplo n.º 9
0
void LoadDaveGrp::exec()
{
  const std::string filename = this->getProperty("Filename");

  int yLength = 0;

  MantidVec *xAxis = new MantidVec();
  MantidVec *yAxis = new MantidVec();

  std::vector<MantidVec *> data;
  std::vector<MantidVec *> errors;

  this->ifile.open(filename.c_str());
  if (this->ifile.is_open())
  {
    // Size of x axis
    this->getAxisLength(this->xLength);
    // Size of y axis
    this->getAxisLength(yLength);
    // This is also the number of groups (spectra)
    this->nGroups = yLength;
    // Read in the x axis values
    this->getAxisValues(xAxis, static_cast<std::size_t>(this->xLength));
    // Read in the y axis values
    this->getAxisValues(yAxis, static_cast<std::size_t>(yLength));
    // Read in the data
    this->getData(data, errors);
  }
  this->ifile.close();

  // Scale the x-axis if it is in micro-eV to get it to meV
  const bool isUeV = this->getProperty("IsMicroEV");
  if (isUeV)
  {
    MantidVec::iterator iter;
    for (iter = xAxis->begin(); iter != xAxis->end(); ++iter)
    {
      *iter /= 1000.0;
    }
  }

  // Create workspace
  API::MatrixWorkspace_sptr outputWorkspace = \
      boost::dynamic_pointer_cast<API::MatrixWorkspace>\
      (API::WorkspaceFactory::Instance().create("Workspace2D", this->nGroups,
      this->xLength, yLength));
  // Force the workspace to be a distribution
  outputWorkspace->isDistribution(true);

  // Set the x-axis units
  outputWorkspace->getAxis(0)->unit() = Kernel::UnitFactory::Instance().create(this->getProperty("XAxisUnits"));

  API::Axis* const verticalAxis = new API::NumericAxis(yLength);
  // Set the y-axis units
  verticalAxis->unit() = Kernel::UnitFactory::Instance().create(this->getProperty("YAxisUnits"));

  outputWorkspace->replaceAxis(1, verticalAxis);

  for(int i = 0; i < this->nGroups; i++)
  {
    outputWorkspace->dataX(i) = *xAxis;
    outputWorkspace->dataY(i) = *data[i];
    outputWorkspace->dataE(i) = *errors[i];
    verticalAxis->setValue(i, yAxis->at(i));

    delete data[i];
    delete errors[i];
  }

  delete xAxis;
  delete yAxis;

  outputWorkspace->mutableRun().addProperty("Filename",filename);
  this->setProperty("OutputWorkspace", outputWorkspace);
}
Exemplo n.º 10
0
/** Finds the index in an ordered vector which follows the given value
 *  @param value :: The value to search for
 *  @param vec ::   The vector to search
 *  @return The index (will give vec.size()+1 if the value is past the end of the vector)
 */
int RemoveBins::findIndex(const double& value, const MantidVec& vec)
{
  MantidVec::const_iterator pos = std::lower_bound(vec.begin(),vec.end(),value);
  return static_cast<int>(pos-vec.begin());
}
Exemplo n.º 11
0
	/**
	* Loads data from a selection of the FITS files into the workspace
	* @param workspace The workspace to insert data into
	* @param yVals Reference to a pre-allocated vector to hold data values for the workspace
	* @param eVals Reference to a pre-allocated vector to hold error values for the workspace
	* @param bufferAny Pointer to an allocated memory region which will hold a files worth of data
	* @param x Vector holding the X bin values
	* @param spectraCount Number of data points in each file
	* @param bitsPerPixel Number of bits used to represent one data point 
	* @param binChunkStartIndex Index for the first file to be processed in this chunk 
	*/
	void LoadFITS::loadChunkOfBinsFromFile(MatrixWorkspace_sptr &workspace, vector<vector<double> > &yVals, vector<vector<double> > &eVals, void *&bufferAny, MantidVecPtr &x, size_t spectraCount, int bitsPerPixel, size_t binChunkStartIndex)
	{
		size_t binsThisChunk = m_binChunkSize;
		if((binChunkStartIndex + m_binChunkSize) > m_allHeaderInfo.size())
		{
			// No need to do extra processing if number of bins to process is lower than m_binChunkSize
			// Also used to prevent out of bounds error where a greater number of elements have been reserved.
			binsThisChunk = static_cast<size_t>(m_allHeaderInfo.size() - binChunkStartIndex);
		}       

		uint8_t *buffer8 = NULL;
		uint16_t *buffer16 = NULL;
		uint32_t *buffer32 = NULL;
		
		// create pointer of correct data type to void pointer of the buffer:
		buffer8 = static_cast<uint8_t*>(bufferAny);
		buffer16 = static_cast<uint16_t*>(bufferAny);
		buffer32 = static_cast<uint32_t*>(bufferAny);
		
		for(size_t i=binChunkStartIndex; i < binChunkStartIndex+binsThisChunk ; ++i)
		{      
			// Read Data
			bool fileErr = false;
			FILE * currFile = fopen ( m_allHeaderInfo[i].filePath.c_str(), "rb" );
			if (currFile==NULL) fileErr = true;    

			size_t result = 0;
			if(!fileErr)
			{
				fseek (currFile , FIXED_HEADER_SIZE , SEEK_CUR);
				result = fread(bufferAny, bitsPerPixel/8, spectraCount, currFile);
			}

			if (result != spectraCount) fileErr = true;			

			if(fileErr)
			{
				throw std::runtime_error("Error reading file; possibly invalid data.");	
			}

			for(size_t j=0; j<spectraCount;++j)
			{
				double val = 0;
				if(bitsPerPixel == 8) val = static_cast<double>(buffer8[j]);
				if(bitsPerPixel == 16) val = static_cast<double>(buffer16[j]);
				if(bitsPerPixel == 32) val = static_cast<double>(buffer32[j]);

				yVals[j][i-binChunkStartIndex] = val;
				eVals[j][i-binChunkStartIndex] = sqrt(val);
			}				
			
			// Clear memory associated with the file load
			fclose (currFile);
		}

		// Now load chunk into workspace 
		PARALLEL_FOR1(workspace)
		for (int64_t wi = 0; wi < static_cast<int64_t>(spectraCount); ++wi)
		{
			workspace->setX(wi, x);
			MantidVec *currY = &workspace->dataY(wi);
			MantidVec *currE = &workspace->dataE(wi);
			
			std::copy(yVals[wi].begin(), yVals[wi].end()-(m_binChunkSize-binsThisChunk), currY->begin()+binChunkStartIndex );
			std::copy(eVals[wi].begin(), eVals[wi].end()-(m_binChunkSize-binsThisChunk), currE->begin()+binChunkStartIndex );

			// I expect this will be wanted once IDF is in a more useful state.
			//workspace->getSpectrum(wi)->setDetectorID(detid_t(wi));
			//workspace->getSpectrum(wi)->setSpectrumNo(specid_t(wi+1));
		}           
	}