Exemplo n.º 1
0
// This is the marker algorithm from "Simple and Efficient Construction of
// Static Single Assignment Form"
// The simple, non-marker algorithm places phi nodes at any join
// Here, we place markers, and only place phi nodes if they end up necessary.
// They are only necessary if they break a cycle (IE we recursively visit
// ourselves again), or we discover, while getting the value of the operands,
// that there are two or more definitions needing to be merged.
// This still will leave non-minimal form in the case of irreducible control
// flow, where phi nodes may be in cycles with themselves, but unnecessary.
MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(BasicBlock *BB) {
  // Single predecessor case, just recurse, we can only have one definition.
  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
    return getPreviousDefFromEnd(Pred);
  } else if (VisitedBlocks.count(BB)) {
    // We hit our node again, meaning we had a cycle, we must insert a phi
    // node to break it so we have an operand. The only case this will
    // insert useless phis is if we have irreducible control flow.
    return MSSA->createMemoryPhi(BB);
  } else if (VisitedBlocks.insert(BB).second) {
    // Mark us visited so we can detect a cycle
    SmallVector<MemoryAccess *, 8> PhiOps;

    // Recurse to get the values in our predecessors for placement of a
    // potential phi node. This will insert phi nodes if we cycle in order to
    // break the cycle and have an operand.
    for (auto *Pred : predecessors(BB))
      PhiOps.push_back(getPreviousDefFromEnd(Pred));

    // Now try to simplify the ops to avoid placing a phi.
    // This may return null if we never created a phi yet, that's okay
    MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
    bool PHIExistsButNeedsUpdate = false;
    // See if the existing phi operands match what we need.
    // Unlike normal SSA, we only allow one phi node per block, so we can't just
    // create a new one.
    if (Phi && Phi->getNumOperands() != 0)
      if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
        PHIExistsButNeedsUpdate = true;
      }

    // See if we can avoid the phi by simplifying it.
    auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
    // If we couldn't simplify, we may have to create a phi
    if (Result == Phi) {
      if (!Phi)
        Phi = MSSA->createMemoryPhi(BB);

      // These will have been filled in by the recursive read we did above.
      if (PHIExistsButNeedsUpdate) {
        std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin());
        std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
      } else {
        unsigned i = 0;
        for (auto *Pred : predecessors(BB))
          Phi->addIncoming(PhiOps[i++], Pred);
      }

      Result = Phi;
    }
    if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Result))
      InsertedPHIs.push_back(MP);
    // Set ourselves up for the next variable by resetting visited state.
    VisitedBlocks.erase(BB);
    return Result;
  }
  llvm_unreachable("Should have hit one of the three cases above");
}
Exemplo n.º 2
0
// This is the marker algorithm from "Simple and Efficient Construction of
// Static Single Assignment Form"
// The simple, non-marker algorithm places phi nodes at any join
// Here, we place markers, and only place phi nodes if they end up necessary.
// They are only necessary if they break a cycle (IE we recursively visit
// ourselves again), or we discover, while getting the value of the operands,
// that there are two or more definitions needing to be merged.
// This still will leave non-minimal form in the case of irreducible control
// flow, where phi nodes may be in cycles with themselves, but unnecessary.
MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
    BasicBlock *BB,
    DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
  // First, do a cache lookup. Without this cache, certain CFG structures
  // (like a series of if statements) take exponential time to visit.
  auto Cached = CachedPreviousDef.find(BB);
  if (Cached != CachedPreviousDef.end()) {
    return Cached->second;
  }

  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
    // Single predecessor case, just recurse, we can only have one definition.
    MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
    CachedPreviousDef.insert({BB, Result});
    return Result;
  }

  if (VisitedBlocks.count(BB)) {
    // We hit our node again, meaning we had a cycle, we must insert a phi
    // node to break it so we have an operand. The only case this will
    // insert useless phis is if we have irreducible control flow.
    MemoryAccess *Result = MSSA->createMemoryPhi(BB);
    CachedPreviousDef.insert({BB, Result});
    return Result;
  }

  if (VisitedBlocks.insert(BB).second) {
    // Mark us visited so we can detect a cycle
    SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;

    // Recurse to get the values in our predecessors for placement of a
    // potential phi node. This will insert phi nodes if we cycle in order to
    // break the cycle and have an operand.
    for (auto *Pred : predecessors(BB))
      PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef));

    // Now try to simplify the ops to avoid placing a phi.
    // This may return null if we never created a phi yet, that's okay
    MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));

    // See if we can avoid the phi by simplifying it.
    auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
    // If we couldn't simplify, we may have to create a phi
    if (Result == Phi) {
      if (!Phi)
        Phi = MSSA->createMemoryPhi(BB);

      // See if the existing phi operands match what we need.
      // Unlike normal SSA, we only allow one phi node per block, so we can't just
      // create a new one.
      if (Phi->getNumOperands() != 0) {
        // FIXME: Figure out whether this is dead code and if so remove it.
        if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
          // These will have been filled in by the recursive read we did above.
          std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin());
          std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
        }
      } else {
        unsigned i = 0;
        for (auto *Pred : predecessors(BB))
          Phi->addIncoming(&*PhiOps[i++], Pred);
        InsertedPHIs.push_back(Phi);
      }
      Result = Phi;
    }

    // Set ourselves up for the next variable by resetting visited state.
    VisitedBlocks.erase(BB);
    CachedPreviousDef.insert({BB, Result});
    return Result;
  }
  llvm_unreachable("Should have hit one of the three cases above");
}