void Optimizer::FitFirstPrincipalComponents(mat& alpha,
	mat& beta,
	mat& rho,
	mat& lamda,
	InputPtr input,
	ModelPtr model,
	MeshPtr mesh,
	ShapePtr shape,
	TexturePtr texture,
	const cv::Mat& ready)
{


	mat alpha_gradient = mat(PrincipalNum, 1, fill::zeros);
	mat alpha_hessian_inv = mat(PrincipalNum, PrincipalNum, fill::zeros);

	mat beta_gradient = mat(PrincipalNum, 1, fill::zeros);
	mat rho_gradient = mat(RhoNum, 1, fill::zeros);
	mat lamda_gradient = mat(LamdaNum, 1, fill::zeros);

	vec step(RhoNum, 1);
	step.rows(0, 2).fill(0.00000006);
	step.rows(3, 5).fill(0.0002);
	step.rows(6, 6).fill(2.0);
	mat step_mat = diagmat(step);



	// down sampled version
	cv::Mat down_sampled;
	pyrDown(ready, down_sampled, Size(IMAGE_WIDTH / 2, IMAGE_HEIGHT / 2));
	input = make_shared<InputImage>(down_sampled);
	model->SetSize(IMAGE_WIDTH / 2, IMAGE_HEIGHT / 2);
	rho[FOCAL] /= 2;


	//SetStartingValue(rho, lamda);
	double para_num = 10;
	double weight = 1.0 / 900;

	int counter = 0;
	while (counter < 1000)
	{

		Alpha alpha_para(alpha, input, model, mesh, shape, texture);
		Beta beta_para(beta, model, mesh, shape, texture);
		Rho rho_para(rho, input, model, mesh, shape, texture);
		Lamda lamda_para(lamda, model, mesh, shape, texture);


		if (counter == 0 || counter % 1000 == 0)
		{
			Face3dModel face3d_model(shape, texture);
			mesh = face3d_model.Construction(alpha, beta);
			TwoPassZbuffer(rho, lamda, mesh, model);
			model->EnableIterator();
			model->InitialRandomGenerator();

			//GenerateRandomPoints(model, HessianRandomNum);
			//for (int i = 0; i < para_num; ++i)
			//{
			//	double variance = shape->GetVariance(i);

			//	mat alpha1 = alpha;
			//	alpha1[i] -= H;
			//	Alpha alpha_para1(alpha1, input, model, mesh, shape, texture);
			//	double first_derivative1 = weight * ComputeIntensityGradient(input, &alpha_para1, i) + 2 * alpha1[i] / variance;

			//	mat alpha2 = alpha;
			//	alpha2[i] += H;
			//	Alpha alpha_para2(alpha2, input, model, mesh, shape, texture);
			//	double first_derivative2 = weight * ComputeIntensityGradient(input, &alpha_para2, i) + 2 * alpha2[i] / variance;

			//	double second_derivative = (first_derivative2 - first_derivative1) / (2 * H);
			//	alpha_hessian_inv(i, i) = 1 / (second_derivative + 2 / variance);
			//}
		}



		// Generate random points  
		GenerateRandomPoints(model, GradientRandomNum);
		double function_value = 0;
		function_value = ComputeCost(input, model, alpha_para);
		ofstream cost;
		cost.open("first_cost", ios::app);
		cost << function_value << "\n";
		cost.close();



		for (int i = 0; i < para_num; ++i)
		{
			double variance = shape->GetVariance(i);
			alpha_gradient[i] = weight * ComputeIntensityGradient(input, &alpha_para, i) + 2 * alpha[i] / variance;
		}


		//for (int i = 0; i < 10; ++i)
		//{
		//	double variance = texture->GetVariance(i);
		//	beta_gradient[i] = weight *ComputeIntensityGradient(input, &beta_para, i) + 2 * beta[i] / variance;
		//}


		//for (int i = 0; i < RhoNum; ++i)
		//{
		//	double first_derivative1 = 1.0 / 1000*ComputeIntensityGradient(input, &rho_para, i);
		//	//double variance = rho_para.GetVariance(i);
		//	//double mean = rho_para.GetMean(i);
		//	rho_gradient[i] = first_derivative1;// +2 * (rho[i] - mean) / variance;
		//}

		//for (int i = 0; i < LamdaNum-7; ++i)
		//{
		//	double first_derivative1 = 1.0 / 1000 * ComputeIntensityGradient(input, &lamda_para, i);
		//	//double variance = lamda_para.GetVariance(i);
		//	//double mean = lamda_para.GetMean(i);
		//	lamda_gradient[i] = first_derivative1; //+2 * (lamda[i] - mean) / variance;
		//}

		alpha -= alpha_para.Step*alpha_gradient;

		//beta -= beta_para.Step*beta_gradient;
		//rho -= step_mat*rho_gradient;   
		//lamda -= lamda_para.Step*lamda_gradient;  
		//alpha -= 0.00008*alpha_hessian_inv*alpha_gradient;


		++counter;
	}

	// restore original version
	input= make_shared<InputImage>(ready);
	model->SetSize(IMAGE_WIDTH, IMAGE_HEIGHT);
	rho[FOCAL] *= 2;

	Face3dModel face3d_model(shape, texture);
	mesh = face3d_model.Construction(alpha, beta);
	VisualizeResult(rho, lamda, input, mesh, "first");
}
void Optimizer::FitIllumination(mat& alpha, 
	mat& beta, 
	mat& rho, 
	mat& lamda, 
	InputPtr input, 
	ModelPtr model,
	MeshPtr mesh,
	ShapePtr shape, 
	TexturePtr texture, 
	const cv::Mat& ready)
{


	mat lamda_gradient=mat(LamdaNum, 1,fill::zeros);
	mat lamda_hessian_inv = mat(LamdaNum, LamdaNum, fill::zeros);


	Face3dModel face3d_model(shape, texture);
	mesh = face3d_model.Construction(alpha, beta);
	//VisualizeResult(rho, lamda, input, mesh, 0);
	TwoPassZbuffer(rho, lamda, mesh, model);
	model->EnableIterator();
	model->InitialRandomGenerator();

	// down sampled version
	cv::Mat down_sampled;
	pyrDown(ready, down_sampled, Size(IMAGE_WIDTH / 2, IMAGE_HEIGHT / 2));
	input = make_shared<InputImage>(down_sampled);
	model->SetSize(IMAGE_WIDTH / 2, IMAGE_HEIGHT / 2);
	rho[FOCAL] /= 2;

	double weight = 1.0 / 1000;
	int counter = 0;

	while (counter < 500)
	{

		Alpha alpha_para(alpha, input, model, mesh, shape, texture);
		Beta beta_para(beta, model, mesh, shape, texture);
		Rho rho_para(rho, input, model, mesh, shape, texture);
		Lamda lamda_para(lamda, model, mesh, shape, texture);

		// Generate random points  
		//if (counter == 0 || counter % 1000 == 0)
		//{
		//	GenerateRandomPoints(model, HessianRandomNum);

		//	for (int i = 0; i < LamdaNum - 7; ++i)
		//	{
		//		mat lamda1 = lamda;
		//		lamda1[i] -= H;
		//		Lamda lamda_para1(lamda1, model, mesh, shape, texture);
		//		double first_derivative1 = weight*ComputeIntensityGradient(input, &lamda_para1, i);


		//		mat lamda2 = lamda;
		//		lamda2[i] += H;
		//		Lamda lamda_para2(lamda2, model, mesh, shape, texture);
		//		double first_derivative2 = weight* ComputeIntensityGradient(input, &lamda_para2, i);
		//		double second_derivative = (first_derivative2 - first_derivative1) / (2 * H);

		//		lamda_hessian_inv(i, i) = 1 / second_derivative;

		//	}


		//}
	
		GenerateRandomPoints(model, GradientRandomNum);

		//double function_value = 0;
		//function_value = ComputeCost(input, model, alpha_para);
		//ofstream cost;
		//cost.open("illumination_cost", ios::app);
		//cost << function_value << "\n";
		//cost.close();


		for (int i = 0; i < LamdaNum; ++i)
		{		 
			lamda_gradient[i] = weight*ComputeIntensityGradient(input, &lamda_para, i);
		}

		lamda -= lamda_para.Step*lamda_gradient;
		//lamda -= 0.5*lamda_hessian_inv*lamda_gradient;
		++counter;
	}

	// restore original version
	input= make_shared<InputImage>(ready);
	model->SetSize(IMAGE_WIDTH, IMAGE_HEIGHT);
	rho[FOCAL] *= 2;

	VisualizeResult(rho, lamda, input, mesh, "illumination");

}