void NFRuleSet::format(double number, UnicodeString& toAppendTo, int32_t pos, UErrorCode& status) const { NFRule *rule = findDoubleRule(number); if (rule) { // else error, but can't report it NFRuleSet* ncThis = (NFRuleSet*)this; if (ncThis->fRecursionCount++ >= RECURSION_LIMIT) { // stop recursion ncThis->fRecursionCount = 0; } else { rule->doFormat(number, toAppendTo, pos, status); ncThis->fRecursionCount--; } } }
/** * If this is a >>> substitution, match only against ruleToUse. * Otherwise, use the superclass function. * @param text The string to parse * @param parsePosition Ignored on entry, updated on exit to point to * the first unmatched character. * @param baseValue The partial parse result prior to calling this * routine. */ UBool ModulusSubstitution::doParse(const UnicodeString& text, ParsePosition& parsePosition, double baseValue, double upperBound, UBool lenientParse, Formattable& result) const { // if this isn't a >>> substitution, we can just use the // inherited parse() routine to do the parsing if (ruleToUse == NULL) { return NFSubstitution::doParse(text, parsePosition, baseValue, upperBound, lenientParse, result); // but if it IS a >>> substitution, we have to do it here: we // use the specific rule's doParse() method, and then we have to // do some of the other work of NFRuleSet.parse() } else { ruleToUse->doParse(text, parsePosition, FALSE, upperBound, result); if (parsePosition.getIndex() != 0) { UErrorCode status = U_ZERO_ERROR; double tempResult = result.getDouble(status); tempResult = composeRuleValue(tempResult, baseValue); result.setDouble(tempResult); } return TRUE; } }
void NFRuleSet::setDecimalFormatSymbols(const DecimalFormatSymbols &newSymbols, UErrorCode& status) { for (uint32_t i = 0; i < rules.size(); ++i) { rules[i]->setDecimalFormatSymbols(newSymbols, status); } // Switch the fraction rules to mirror the DecimalFormatSymbols. for (int32_t nonNumericalIdx = IMPROPER_FRACTION_RULE_INDEX; nonNumericalIdx <= MASTER_RULE_INDEX; nonNumericalIdx++) { if (nonNumericalRules[nonNumericalIdx]) { for (uint32_t fIdx = 0; fIdx < fractionRules.size(); fIdx++) { NFRule *fractionRule = fractionRules[fIdx]; if (nonNumericalRules[nonNumericalIdx]->getBaseValue() == fractionRule->getBaseValue()) { setBestFractionRule(nonNumericalIdx, fractionRule, FALSE); } } } } for (uint32_t nnrIdx = 0; nnrIdx < NON_NUMERICAL_RULE_LENGTH; nnrIdx++) { NFRule *rule = nonNumericalRules[nnrIdx]; if (rule) { rule->setDecimalFormatSymbols(newSymbols, status); } } }
/** * If this is a >>> substitution, use ruleToUse to fill in * the substitution. Otherwise, just use the superclass function. * @param number The number being formatted * @toInsertInto The string to insert the result of this substitution * into * @param pos The position of the rule text in toInsertInto */ void ModulusSubstitution::doSubstitution(int64_t number, UnicodeString& toInsertInto, int32_t _pos) const { // if this isn't a >>> substitution, just use the inherited version // of this function (which uses either a rule set or a DecimalFormat // to format its substitution value) if (ruleToUse == NULL) { NFSubstitution::doSubstitution(number, toInsertInto, _pos); // a >>> substitution goes straight to a particular rule to // format the substitution value } else { int64_t numberToFormat = transformNumber(number); ruleToUse->doFormat(numberToFormat, toInsertInto, _pos + getPos()); } }
void NFRuleSet::appendRules(UnicodeString& result) const { uint32_t i; // the rule set name goes first... result.append(name); result.append(gColon); result.append(gLineFeed); // followed by the regular rules... for (i = 0; i < rules.size(); i++) { rules[i]->_appendRuleText(result); result.append(gLineFeed); } // followed by the special rules (if they exist) for (i = 0; i < NON_NUMERICAL_RULE_LENGTH; ++i) { NFRule *rule = nonNumericalRules[i]; if (nonNumericalRules[i]) { if (rule->getBaseValue() == NFRule::kImproperFractionRule || rule->getBaseValue() == NFRule::kProperFractionRule || rule->getBaseValue() == NFRule::kMasterRule) { for (uint32_t fIdx = 0; fIdx < fractionRules.size(); fIdx++) { NFRule *fractionRule = fractionRules[fIdx]; if (fractionRule->getBaseValue() == rule->getBaseValue()) { fractionRule->_appendRuleText(result); result.append(gLineFeed); } } } else { rule->_appendRuleText(result); result.append(gLineFeed); } } } }
NFRule * NFRuleSet::findNormalRule(int64_t number) const { // if this is a fraction rule set, use findFractionRuleSetRule() // to find the rule (we should only go into this clause if the // value is 0) if (fIsFractionRuleSet) { return findFractionRuleSetRule((double)number); } // if the number is negative, return the negative-number rule // (if there isn't one, pretend the number is positive) if (number < 0) { if (negativeNumberRule) { return negativeNumberRule; } else { number = -number; } } // we have to repeat the preceding two checks, even though we // do them in findRule(), because the version of format() that // takes a long bypasses findRule() and goes straight to this // function. This function does skip the fraction rules since // we know the value is an integer (it also skips the master // rule, since it's considered a fraction rule. Skipping the // master rule in this function is also how we avoid infinite // recursion) // {dlf} unfortunately this fails if there are no rules except // special rules. If there are no rules, use the master rule. // binary-search the rule list for the applicable rule // (a rule is used for all values from its base value to // the next rule's base value) int32_t hi = rules.size(); if (hi > 0) { int32_t lo = 0; while (lo < hi) { int32_t mid = (lo + hi) / 2; if (rules[mid]->getBaseValue() == number) { return rules[mid]; } else if (rules[mid]->getBaseValue() > number) { hi = mid; } else { lo = mid + 1; } } if (hi == 0) { // bad rule set, minimum base > 0 return NULL; // want to throw exception here } NFRule *result = rules[hi - 1]; // use shouldRollBack() to see whether we need to invoke the // rollback rule (see shouldRollBack()'s documentation for // an explanation of the rollback rule). If we do, roll back // one rule and return that one instead of the one we'd normally // return if (result->shouldRollBack((double)number)) { if (hi == 1) { // bad rule set, no prior rule to rollback to from this base return NULL; } result = rules[hi - 2]; } return result; } // else use the master rule return fractionRules[2]; }
void NFRuleSet::parseRules(UnicodeString& description, const RuleBasedNumberFormat* owner, UErrorCode& status) { // start by creating a Vector whose elements are Strings containing // the descriptions of the rules (one rule per element). The rules // are separated by semicolons (there's no escape facility: ALL // semicolons are rule delimiters) if (U_FAILURE(status)) { return; } // ensure we are starting with an empty rule list rules.deleteAll(); // dlf - the original code kept a separate description array for no reason, // so I got rid of it. The loop was too complex so I simplified it. UnicodeString currentDescription; int32_t oldP = 0; while (oldP < description.length()) { int32_t p = description.indexOf(gSemicolon, oldP); if (p == -1) { p = description.length(); } currentDescription.setTo(description, oldP, p - oldP); NFRule::makeRules(currentDescription, this, rules.last(), owner, rules, status); oldP = p + 1; } // for rules that didn't specify a base value, their base values // were initialized to 0. Make another pass through the list and // set all those rules' base values. We also remove any special // rules from the list and put them into their own member variables int64_t defaultBaseValue = 0; // (this isn't a for loop because we might be deleting items from // the vector-- we want to make sure we only increment i when // we _didn't_ delete aything from the vector) uint32_t i = 0; while (i < rules.size()) { NFRule* rule = rules[i]; switch (rule->getType()) { // if the rule's base value is 0, fill in a default // base value (this will be 1 plus the preceding // rule's base value for regular rule sets, and the // same as the preceding rule's base value in fraction // rule sets) case NFRule::kNoBase: rule->setBaseValue(defaultBaseValue, status); if (!isFractionRuleSet()) { ++defaultBaseValue; } ++i; break; // if it's the negative-number rule, copy it into its own // data member and delete it from the list case NFRule::kNegativeNumberRule: if (negativeNumberRule) { delete negativeNumberRule; } negativeNumberRule = rules.remove(i); break; // if it's the improper fraction rule, copy it into the // correct element of fractionRules case NFRule::kImproperFractionRule: if (fractionRules[0]) { delete fractionRules[0]; } fractionRules[0] = rules.remove(i); break; // if it's the proper fraction rule, copy it into the // correct element of fractionRules case NFRule::kProperFractionRule: if (fractionRules[1]) { delete fractionRules[1]; } fractionRules[1] = rules.remove(i); break; // if it's the master rule, copy it into the // correct element of fractionRules case NFRule::kMasterRule: if (fractionRules[2]) { delete fractionRules[2]; } fractionRules[2] = rules.remove(i); break; // if it's a regular rule that already knows its base value, // check to make sure the rules are in order, and update // the default base value for the next rule default: if (rule->getBaseValue() < defaultBaseValue) { // throw new IllegalArgumentException("Rules are not in order"); status = U_PARSE_ERROR; return; } defaultBaseValue = rule->getBaseValue(); if (!isFractionRuleSet()) { ++defaultBaseValue; } ++i; break; } } }