Exemplo n.º 1
0
int ON_ArcCurve::GetNurbForm( // returns 0: unable to create NURBS representation
                 //            with desired accuracy.
                 //         1: success - returned NURBS parameterization
                 //            matches the curve's to wthe desired accuracy
                 //         2: success - returned NURBS point locus matches
                 //            the curve's to the desired accuracy but, on
                 //            the interior of the curve's domain, the 
                 //            curve's parameterization and the NURBS
                 //            parameterization may not match to the 
                 //            desired accuracy.
      ON_NurbsCurve& c,
      double tolerance,
      const ON_Interval* subdomain  // OPTIONAL subdomain of arc
      ) const
{
  int rc = 0;
  if ( subdomain ) 
  {
    ON_ArcCurve trimmed_arc(*this);
    if ( trimmed_arc.Trim(*subdomain) ) 
    {
      rc = trimmed_arc.GetNurbForm( c, tolerance, NULL );
    }
  }
  else if ( m_t.IsIncreasing() && m_arc.IsValid() ) 
  {
    if ( NurbsCurveArc( m_arc, m_dim, c ) )
    {
      rc = 2;
      c.SetDomain( m_t[0], m_t[1] );
    }
  }
  return rc;
}
Exemplo n.º 2
0
int 
ON_CurveProxy::GetNurbForm( // returns 0: unable to create NURBS representation
                 //            with desired accuracy.
                 //         1: success - returned NURBS parameterization
                 //            matches the curve's to wthe desired accuracy
                 //         2: success - returned NURBS point locus matches
                 //            the curve's to the desired accuracy but, on
                 //            the interior of the curve's domain, the 
                 //            curve's parameterization and the NURBS
                 //            parameterization may not match to the 
                 //            desired accuracy.
      ON_NurbsCurve& nurbs,
      double tolerance,  // (>=0)
      const ON_Interval* sub_domain  // OPTIONAL subdomain of ON::ProxyCurve::Domain()
      ) const
{
  ON_BOOL32 rc = false;
  if ( m_real_curve ) 
  {
    ON_Interval scratch_domain = RealCurveInterval( sub_domain );
    rc = m_real_curve->GetNurbForm(nurbs,tolerance,&scratch_domain);
    if ( rc )
    {
      if ( m_bReversed )
        nurbs.Reverse();
      ON_Interval d = m_this_domain;
      if ( sub_domain )
        d.Intersection( *sub_domain );
      nurbs.SetDomain( d[0], d[1] );

      if ( nurbs.m_dim <= 3 && nurbs.m_dim >= 1 )
      {
        double t0 = Domain()[0];
        double t1 = Domain()[1];
        if ( 0 != sub_domain )
        {
          if ( t0 < sub_domain->Min() )
            t0 = sub_domain->Min();
          if ( sub_domain->Max() < t1 )
            t1 = sub_domain->Max();
        }
        // set ends of NURBS curve to be exactly on ends of proxy curve
        ON_3dPoint P0 = PointAt(t0);
        ON_3dPoint P1 = PointAt(t1);
        ON_3dPoint N0 = nurbs.PointAtStart();
        ON_3dPoint N1 = nurbs.PointAtEnd();
				
				// 22 September 2003, GBA.  The end tuning code below should only  be applied
				//					to clamped nurbs curves.  In particular it should not be used on
				//					periodic nurbs curves.  Fixes TRR#11502.
				ON_BOOL32 clamped = nurbs.IsClamped(2);
        if ( clamped && (P0 != N0 || P1 != N1) )
        {
          if ( 0==nurbs.m_is_rat )
          {
            nurbs.SetCV(0,P0);
            nurbs.SetCV(nurbs.m_cv_count-1,P1);
          }
          else
          {
            ON_4dPoint H0, H1;
            H0 = P0;
            H0.w = nurbs.Weight(0);
            H0.x *= H0.w;
            H0.y *= H0.w;
            H0.z *= H0.w;
            nurbs.SetCV(0,H0);

            H1 = P1;
            H1.w = nurbs.Weight(nurbs.m_cv_count-1);
            H1.x *= H1.w;
            H1.y *= H1.w;
            H1.z *= H1.w;
            nurbs.SetCV(nurbs.m_cv_count-1,H1);
          }
        }
      }
    }
  }
  return rc;
}
Exemplo n.º 3
0
extern "C" void
rt_hyp_brep(ON_Brep **b, const struct rt_db_internal *ip, const struct bn_tol *)
{
    struct rt_hyp_internal *eip;

    RT_CK_DB_INTERNAL(ip);
    eip = (struct rt_hyp_internal *)ip->idb_ptr;
    RT_HYP_CK_MAGIC(eip);

    point_t p1_origin, p2_origin;
    ON_3dPoint plane1_origin, plane2_origin;
    ON_3dVector plane_x_dir, plane_y_dir;

    //  First, find planes corresponding to the top and bottom faces - initially

    vect_t x_dir, y_dir;
    VMOVE(x_dir, eip->hyp_A);
    VCROSS(y_dir, eip->hyp_A, eip->hyp_Hi);
    VREVERSE(y_dir, y_dir);

    VMOVE(p1_origin, eip->hyp_Vi);
    plane1_origin = ON_3dPoint(p1_origin);
    plane_x_dir = ON_3dVector(x_dir);
    plane_y_dir = ON_3dVector(y_dir);
    const ON_Plane hyp_bottom_plane(plane1_origin, plane_x_dir, plane_y_dir);

    VADD2(p2_origin, eip->hyp_Vi, eip->hyp_Hi);
    plane2_origin = ON_3dPoint(p2_origin);
    const ON_Plane hyp_top_plane(plane2_origin, plane_x_dir, plane_y_dir);

    // Next, create ellipses in the planes corresponding to the edges of the hyp

    ON_Ellipse b_ell(hyp_bottom_plane, MAGNITUDE(eip->hyp_A), eip->hyp_b);
    ON_NurbsCurve* bcurve = ON_NurbsCurve::New();
    b_ell.GetNurbForm((*bcurve));
    bcurve->SetDomain(0.0, 1.0);

    ON_Ellipse t_ell(hyp_top_plane, MAGNITUDE(eip->hyp_A), eip->hyp_b);
    ON_NurbsCurve* tcurve = ON_NurbsCurve::New();
    t_ell.GetNurbForm((*tcurve));
    tcurve->SetDomain(0.0, 1.0);

    // Generate the bottom cap
    ON_SimpleArray<ON_Curve*> boundary;
    boundary.Append(ON_Curve::Cast(bcurve));
    ON_PlaneSurface* bp = new ON_PlaneSurface();
    bp->m_plane = hyp_bottom_plane;
    bp->SetDomain(0, -100.0, 100.0);
    bp->SetDomain(1, -100.0, 100.0);
    bp->SetExtents(0, bp->Domain(0));
    bp->SetExtents(1, bp->Domain(1));
    (*b)->m_S.Append(bp);
    const int bsi = (*b)->m_S.Count() - 1;
    ON_BrepFace& bface = (*b)->NewFace(bsi);
    (*b)->NewPlanarFaceLoop(bface.m_face_index, ON_BrepLoop::outer, boundary, true);
    const ON_BrepLoop* bloop = (*b)->m_L.Last();
    bp->SetDomain(0, bloop->m_pbox.m_min.x, bloop->m_pbox.m_max.x);
    bp->SetDomain(1, bloop->m_pbox.m_min.y, bloop->m_pbox.m_max.y);
    bp->SetExtents(0, bp->Domain(0));
    bp->SetExtents(1, bp->Domain(1));
    (*b)->FlipFace(bface);
    (*b)->SetTrimIsoFlags(bface);
    boundary.Empty();
    delete bcurve;

    // Generate the top cap
    boundary.Append(ON_Curve::Cast(tcurve));
    ON_PlaneSurface* tp = new ON_PlaneSurface();
    tp->m_plane = hyp_top_plane;
    tp->SetDomain(0, -100.0, 100.0);
    tp->SetDomain(1, -100.0, 100.0);
    tp->SetExtents(0, bp->Domain(0));
    tp->SetExtents(1, bp->Domain(1));
    (*b)->m_S.Append(tp);
    int tsi = (*b)->m_S.Count() - 1;
    ON_BrepFace& tface = (*b)->NewFace(tsi);
    (*b)->NewPlanarFaceLoop(tface.m_face_index, ON_BrepLoop::outer, boundary, true);
    ON_BrepLoop* tloop = (*b)->m_L.Last();
    tp->SetDomain(0, tloop->m_pbox.m_min.x, tloop->m_pbox.m_max.x);
    tp->SetDomain(1, tloop->m_pbox.m_min.y, tloop->m_pbox.m_max.y);
    tp->SetExtents(0, bp->Domain(0));
    tp->SetExtents(1, bp->Domain(1));
    (*b)->SetTrimIsoFlags(tface);
    delete tcurve;

    //  Now, the hard part.  Need an elliptical hyperbolic NURBS surface.
    //  First step is to create a nurbs curve.

    double MX = eip->hyp_b * eip->hyp_bnr;
    point_t ep1, ep2, ep3;
    VSET(ep1, -eip->hyp_b, 0, 0.5*MAGNITUDE(eip->hyp_Hi));
    VSET(ep2, -MX*eip->hyp_bnr, 0, 0);
    VSET(ep3, -eip->hyp_b, 0, -0.5*MAGNITUDE(eip->hyp_Hi));

    ON_3dPoint onp1 = ON_3dPoint(ep1);
    ON_3dPoint onp2 = ON_3dPoint(ep2);
    ON_3dPoint onp3 = ON_3dPoint(ep3);

    ON_3dPointArray cpts(3);
    cpts.Append(onp1);
    cpts.Append(onp2);
    cpts.Append(onp3);
    ON_BezierCurve *bezcurve = new ON_BezierCurve(cpts);
    bezcurve->MakeRational();
    bezcurve->SetWeight(1, bezcurve->Weight(0)/eip->hyp_bnr);

    ON_NurbsCurve* tnurbscurve = ON_NurbsCurve::New();
    bezcurve->GetNurbForm(*tnurbscurve);
    delete bezcurve;

    ON_3dPoint revpnt1 = ON_3dPoint(0, 0, -0.5*MAGNITUDE(eip->hyp_Hi));
    ON_3dPoint revpnt2 = ON_3dPoint(0, 0, 0.5*MAGNITUDE(eip->hyp_Hi));

    ON_Line revaxis = ON_Line(revpnt1, revpnt2);
    ON_RevSurface* hyp_surf = ON_RevSurface::New();
    hyp_surf->m_curve = tnurbscurve;
    hyp_surf->m_axis = revaxis;
    hyp_surf->m_angle = ON_Interval(0, 2*ON_PI);

    // Get the NURBS form of the surface
    ON_NurbsSurface *hypcurvedsurf = ON_NurbsSurface::New();
    hyp_surf->GetNurbForm(*hypcurvedsurf, 0.0);
    delete hyp_surf;

    for (int i = 0; i < hypcurvedsurf->CVCount(0); i++) {
	for (int j = 0; j < hypcurvedsurf->CVCount(1); j++) {
	    point_t cvpt;
	    ON_4dPoint ctrlpt;
	    hypcurvedsurf->GetCV(i, j, ctrlpt);

	    // Scale and shear
	    vect_t proj_ah;
	    vect_t proj_ax;
	    fastf_t factor;

	    VPROJECT(eip->hyp_A, eip->hyp_Hi, proj_ah, proj_ax);
	    VSET(cvpt, ctrlpt.x * MAGNITUDE(proj_ax)/eip->hyp_b, ctrlpt.y, ctrlpt.z);
	    factor = VDOT(eip->hyp_A, eip->hyp_Hi)>0 ? 1.0 : -1.0;
	    cvpt[2] += factor*cvpt[0]/MAGNITUDE(proj_ax)*MAGNITUDE(proj_ah) + 0.5*MAGNITUDE(eip->hyp_Hi)*ctrlpt.w;

	    // Rotate
	    vect_t Au, Bu, Hu;
	    mat_t R;
	    point_t new_cvpt;

	    VSCALE(Bu, y_dir, 1/MAGNITUDE(y_dir));
	    VSCALE(Hu, eip->hyp_Hi, 1/MAGNITUDE(eip->hyp_Hi));
	    VCROSS(Au, Bu, Hu);
	    VUNITIZE(Au);
	    MAT_IDN(R);
	    VMOVE(&R[0], Au);
	    VMOVE(&R[4], Bu);
	    VMOVE(&R[8], Hu);
	    VEC3X3MAT(new_cvpt, cvpt, R);
	    VMOVE(cvpt, new_cvpt);

	    // Translate
	    vect_t scale_v;
	    VSCALE(scale_v, eip->hyp_Vi, ctrlpt.w);
	    VADD2(cvpt, cvpt, scale_v);
	    ON_4dPoint newpt = ON_4dPoint(cvpt[0], cvpt[1], cvpt[2], ctrlpt.w);
	    hypcurvedsurf->SetCV(i, j, newpt);
	}
    }

    (*b)->m_S.Append(hypcurvedsurf);
    int surfindex = (*b)->m_S.Count();
    ON_BrepFace& face = (*b)->NewFace(surfindex - 1);
    (*b)->FlipFace(face);
    int faceindex = (*b)->m_F.Count();
    (*b)->NewOuterLoop(faceindex-1);

}