Exemplo n.º 1
0
void mexFunction(int nlhs, mxArray* plhs[], int nrhs, const mxArray* prhs[]) {
  // Usage:
  //   Constructors/Destructor:
  //    octree = octomapWrapper(resolution);  // constructor: new tree with
  //    specified resolution
  //    octree = octomapWrapper(filename);    // constructor: load from file
  //    octomapWrapper(octree);     // destructor
  //
  //   Queries:
  //    results = octomapWrapper(octree, 1, pts) // search
  //    leaf_nodes = octomapWrapper(octree, 2)  // getLeafNodes
  //
  //   Update tree:
  //    octomapWrapper(octree, 11, pts, occupied)   // updateNote(pts, occupied).
  //    pts is 3-by-n, occupied is 1-by-n logical
  //
  //   General operations:
  //    octomapWrapper(octree, 21, filename)    // save to file

  OcTree* tree = NULL;

  if (nrhs == 1) {
    if (mxIsNumeric(prhs[0])) {  // constructor w/ resolution
      if (nlhs > 0) {
        double resolution = mxGetScalar(prhs[0]);
        //        mexPrintf("Creating octree w/ resolution %f\n", resolution);
        tree = new OcTree(resolution);
        plhs[0] = createDrakeMexPointer((void*)tree, "OcTree");
      }
    } else if (mxIsChar(prhs[0])) {
      if (nlhs > 0) {
        char* filename = mxArrayToString(prhs[0]);
        //        mexPrintf("Loading octree from %s\n", filename);
        tree = new OcTree(filename);
        plhs[0] = createDrakeMexPointer((void*)tree, "OcTree");
        mxFree(filename);
      }
    } else {  // destructor.  note: assumes prhs[0] is a DrakeMexPointer (todo:
              // could check)
              //      mexPrintf("Deleting octree\n");
      destroyDrakeMexPointer<OcTree*>(prhs[0]);
    }
    return;
  }

  tree = (OcTree*)getDrakeMexPointer(prhs[0]);
  int COMMAND = (int)mxGetScalar(prhs[1]);

  switch (COMMAND) {
    case 1:  // search
    {
      mexPrintf("octree search\n");
      if (mxGetM(prhs[2]) != 3)
        mexErrMsgTxt("octomapWrapper: pts must be 3-by-n");
      int n = mxGetN(prhs[2]);
      double* pts = mxGetPrSafe(prhs[2]);
      if (nlhs > 0) {
        plhs[0] = mxCreateDoubleMatrix(1, n, mxREAL);
        double* presults = mxGetPrSafe(plhs[0]);
        for (int i = 0; i < n; i++) {
          OcTreeNode* result =
              tree->search(pts[3 * i], pts[3 * i + 1], pts[3 * i + 2]);
          if (result == NULL)
            presults[i] = -1.0;
          else
            presults[i] = result->getOccupancy();
        }
      }
    } break;
    case 2:  // get leaf nodes
    {
      //      mexPrintf("octree get leaf nodes\n");
      int N = tree->getNumLeafNodes();
      plhs[0] = mxCreateDoubleMatrix(3, N, mxREAL);
      double* leaf_xyz = mxGetPrSafe(plhs[0]);

      double* leaf_value = NULL, * leaf_size = NULL;
      if (nlhs > 1) {  // return value
        plhs[1] = mxCreateDoubleMatrix(1, N, mxREAL);
        leaf_value = mxGetPrSafe(plhs[1]);
      }
      if (nlhs > 2) {  // return size
        plhs[2] = mxCreateDoubleMatrix(1, N, mxREAL);
        leaf_size = mxGetPrSafe(plhs[2]);
      }

      for (OcTree::leaf_iterator leaf = tree->begin_leafs(),
                                 end = tree->end_leafs();
           leaf != end; ++leaf) {
        leaf_xyz[0] = leaf.getX();
        leaf_xyz[1] = leaf.getY();
        leaf_xyz[2] = leaf.getZ();
        leaf_xyz += 3;
        if (leaf_value) *leaf_value++ = leaf->getValue();
        if (leaf_size) *leaf_size++ = leaf.getSize();
      }
    } break;
    case 11:  // add occupied pts
    {
      //        mexPrintf("octree updateNode\n");
      if (mxGetM(prhs[2]) != 3)
        mexErrMsgTxt("octomapWrapper: pts must be 3-by-n");
      int n = mxGetN(prhs[2]);
      double* pts = mxGetPrSafe(prhs[2]);
      mxLogical* occupied = mxGetLogicals(prhs[3]);
      for (int i = 0; i < n; i++) {
        tree->updateNode(pts[3 * i], pts[3 * i + 1], pts[3 * i + 2],
                         occupied[i]);
      }
    } break;
    case 12:  // insert a scan of endpoints and sensor origin
    {
      // pointsA should be 3xN, originA is 3x1
      double* points = mxGetPrSafe(prhs[2]);
      double* originA = mxGetPrSafe(prhs[3]);
      int n = mxGetN(prhs[2]);
      point3d origin((float)originA[0], (float)originA[1], (float)originA[2]);
      Pointcloud pointCloud;
      for (int i = 0; i < n; i++) {
        point3d point((float)points[3 * i], (float)points[3 * i + 1],
                      (float)points[3 * i + 2]);
        pointCloud.push_back(point);
      }
      tree->insertPointCloud(pointCloud, origin);
    } break;
    case 21:  // save to file
    {
      char* filename = mxArrayToString(prhs[2]);
      //        mexPrintf("writing octree to %s\n", filename);
      tree->writeBinary(filename);
      mxFree(filename);
    } break;
    default:
      mexErrMsgTxt("octomapWrapper: Unknown command");
  }
}
Exemplo n.º 2
0
int main(int argc, char** argv) {


  //##############################################################     

  string btFilename = "";
  unsigned char maxDepth = 16;


  // test timing:
  timeval start;
  timeval stop;
  const unsigned char tree_depth(16);
  const unsigned int tree_max_val(32768);
  double time_it, time_depr;

  if (argc <= 1|| argc >3 || strcmp(argv[1], "-h") == 0){
    printUsage(argv[0]);
  }

  btFilename = std::string(argv[1]);
  if (argc > 2){
    maxDepth = (unsigned char)atoi(argv[2]);
  }
  maxDepth = std::min((unsigned char)16,maxDepth);

  if (maxDepth== 0)
    maxDepth = tree_depth;

  // iterate over empty tree:
  OcTree emptyTree(0.2);
  EXPECT_EQ(emptyTree.size(), 0);
  EXPECT_EQ(emptyTree.calcNumNodes(), 0);

  size_t iteratedNodes = 0;
  OcTree::tree_iterator t_it = emptyTree.begin_tree(maxDepth);
  OcTree::tree_iterator t_end = emptyTree.end_tree();
  EXPECT_TRUE (t_it == t_end);
  for( ; t_it != t_end; ++t_it){
    iteratedNodes++;
  }
  EXPECT_EQ(iteratedNodes, 0);


  for(OcTree::leaf_iterator l_it = emptyTree.begin_leafs(maxDepth), l_end=emptyTree.end_leafs(); l_it!= l_end; ++l_it){
    iteratedNodes++;
  }
  EXPECT_EQ(iteratedNodes, 0);





  cout << "\nReading OcTree file\n===========================\n";
  OcTree* tree = new OcTree(btFilename);
  if (tree->size()<= 1){
    std::cout << "Error reading file, exiting!\n";
    return 1;
  }

  size_t count;
  std::list<OcTreeVolume> list_depr;
  std::list<OcTreeVolume> list_iterator;

  /**
   * get number of nodes:
   */
  gettimeofday(&start, NULL);  // start timer
  size_t num_leafs_recurs = tree->getNumLeafNodes();
  gettimeofday(&stop, NULL);  // stop timer
  time_depr = timediff(start, stop);

  gettimeofday(&start, NULL);  // start timer
  size_t num_leafs_it = 0;
  for(OcTree::leaf_iterator it = tree->begin(), end=tree->end(); it!= end; ++it) {
    num_leafs_it++;
  }
  gettimeofday(&stop, NULL);  // stop timer
  time_it = timediff(start, stop);
  std::cout << "Number of leafs: " << num_leafs_it << " / " << num_leafs_recurs << ", times: "
        <<time_it << " / " << time_depr << "\n========================\n\n";


  /**
   * get all occupied leafs
   */
  point3d tree_center;
  tree_center(0) = tree_center(1) = tree_center(2)
              = (float) (((double) tree_max_val) * tree->getResolution());

  gettimeofday(&start, NULL);  // start timer
  getLeafNodesRecurs(list_depr,maxDepth,tree->getRoot(), 0, tree_center, tree_center, tree, true);
  gettimeofday(&stop, NULL);  // stop timer
  time_depr = timediff(start, stop);

  gettimeofday(&start, NULL);  // start timer
  for(OcTree::iterator it = tree->begin(maxDepth), end=tree->end(); it!= end; ++it){
    if(tree->isNodeOccupied(*it))
    {
      //count ++;
     list_iterator.push_back(OcTreeVolume(it.getCoordinate(), it.getSize()));
    }

  }
  gettimeofday(&stop, NULL);  // stop timer
  time_it = timediff(start, stop);

  std::cout << "Occupied lists traversed, times: "
      <<time_it << " / " << time_depr << "\n";
  compareResults(list_iterator, list_depr);
  std::cout << "========================\n\n";


  /**
   * get all free leafs
   */
  list_iterator.clear();
  list_depr.clear();
  gettimeofday(&start, NULL);  // start timer
  for(OcTree::leaf_iterator it = tree->begin(maxDepth), end=tree->end(); it!= end; ++it) {
    if(!tree->isNodeOccupied(*it))
      list_iterator.push_back(OcTreeVolume(it.getCoordinate(), it.getSize()));
  }
  gettimeofday(&stop, NULL);  // stop timer
  time_it = timediff(start, stop);

  gettimeofday(&start, NULL);  // start timer
  getLeafNodesRecurs(list_depr,maxDepth,tree->getRoot(), 0, tree_center, tree_center, tree, false);
  gettimeofday(&stop, NULL);  // stop timer
  time_depr = timediff(start, stop);

  std::cout << "Free lists traversed, times: "
      <<time_it << " / " << time_depr << "\n";
  compareResults(list_iterator, list_depr);
    std::cout << "========================\n\n";



  /**
   * get all volumes
   */
  list_iterator.clear();
  list_depr.clear();

  gettimeofday(&start, NULL);  // start timer
  getVoxelsRecurs(list_depr,maxDepth,tree->getRoot(), 0, tree_center, tree_center, tree->getResolution());
  gettimeofday(&stop, NULL);  // stop timer
  time_depr = timediff(start, stop);

  gettimeofday(&start, NULL);  // start timers
  for(OcTree::tree_iterator it = tree->begin_tree(maxDepth), end=tree->end_tree();
      it!= end; ++it){
      //count ++;
      //std::cout << it.getDepth() << " " << " "<<it.getCoordinate()<< std::endl;
     list_iterator.push_back(OcTreeVolume(it.getCoordinate(), it.getSize()));
  }
  gettimeofday(&stop, NULL);  // stop timer
  time_it = timediff(start, stop);

  list_iterator.sort(OcTreeVolumeSortPredicate);
  list_depr.sort(OcTreeVolumeSortPredicate);

  std::cout << "All inner lists traversed, times: "
      <<time_it << " / " << time_depr << "\n";
  compareResults(list_iterator, list_depr);
    std::cout << "========================\n\n";



    // traverse all leaf nodes, timing:
    gettimeofday(&start, NULL);  // start timers
    count = 0;
    for(OcTree::iterator it = tree->begin(maxDepth), end=tree->end();
        it!= end; ++it){
      // do something:
      // std::cout << it.getDepth() << " " << " "<<it.getCoordinate()<< std::endl;
      count++;
    }

    gettimeofday(&stop, NULL);  // stop timer
    time_it = timediff(start, stop);

    std::cout << "Time to traverse all leafs at max depth " <<(unsigned int)maxDepth <<" ("<<count<<" nodes): "<< time_it << " s\n\n";




  /**
   * bounding box tests
   */
  //tree->expand();
  // test complete tree (should be equal to no bbx)
  OcTreeKey bbxMinKey, bbxMaxKey;
  double temp_x,temp_y,temp_z;
  tree->getMetricMin(temp_x,temp_y,temp_z);
  octomap::point3d bbxMin(temp_x,temp_y,temp_z);

  tree->getMetricMax(temp_x,temp_y,temp_z);
  octomap::point3d bbxMax(temp_x,temp_y,temp_z);

  EXPECT_TRUE(tree->coordToKeyChecked(bbxMin, bbxMinKey));
  EXPECT_TRUE(tree->coordToKeyChecked(bbxMax, bbxMaxKey));

  OcTree::leaf_bbx_iterator it_bbx = tree->begin_leafs_bbx(bbxMinKey,bbxMaxKey);
  EXPECT_TRUE(it_bbx == tree->begin_leafs_bbx(bbxMinKey,bbxMaxKey));
  OcTree::leaf_bbx_iterator end_bbx = tree->end_leafs_bbx();
  EXPECT_TRUE(end_bbx == tree->end_leafs_bbx());

  OcTree::leaf_iterator it = tree->begin_leafs();
  EXPECT_TRUE(it == tree->begin_leafs());
  OcTree::leaf_iterator end = tree->end_leafs();
  EXPECT_TRUE(end == tree->end_leafs());


  for( ; it!= end && it_bbx != end_bbx; ++it, ++it_bbx){
    EXPECT_TRUE(it == it_bbx);
  }
  EXPECT_TRUE(it == end && it_bbx == end_bbx);


  // now test an actual bounding box:
  tree->expand(); // (currently only works properly for expanded tree (no multires)
  bbxMin = point3d(-1, -1, - 1);
  bbxMax = point3d(3, 2, 1);
  EXPECT_TRUE(tree->coordToKeyChecked(bbxMin, bbxMinKey));
  EXPECT_TRUE(tree->coordToKeyChecked(bbxMax, bbxMaxKey));

  typedef unordered_ns::unordered_map<OcTreeKey, double, OcTreeKey::KeyHash> KeyVolumeMap;

  KeyVolumeMap bbxVoxels;

  count = 0;
  for(OcTree::leaf_bbx_iterator it = tree->begin_leafs_bbx(bbxMinKey,bbxMaxKey), end=tree->end_leafs_bbx();
      it!= end; ++it)
  {
    count++;
    OcTreeKey currentKey = it.getKey();
    // leaf is actually a leaf:
    EXPECT_FALSE(it->hasChildren());

    // leaf exists in tree:
    OcTreeNode* node = tree->search(currentKey);
    EXPECT_TRUE(node);
    EXPECT_EQ(node, &(*it));
    // all leafs are actually in the bbx:
    for (unsigned i = 0; i < 3; ++i){
//      if (!(currentKey[i] >= bbxMinKey[i] && currentKey[i] <= bbxMaxKey[i])){
//        std::cout << "Key failed: " << i << " " << currentKey[i] << " "<< bbxMinKey[i] << " "<< bbxMaxKey[i]
//             << "size: "<< it.getSize()<< std::endl;
//      }
      EXPECT_TRUE(currentKey[i] >= bbxMinKey[i] && currentKey[i] <= bbxMaxKey[i]);
    }

    bbxVoxels.insert(std::pair<OcTreeKey,double>(currentKey, it.getSize()));
  }
  EXPECT_EQ(bbxVoxels.size(), count);
  std::cout << "Bounding box traversed ("<< count << " leaf nodes)\n\n";


  // compare with manual BBX check on all leafs:
  for(OcTree::leaf_iterator it = tree->begin(), end=tree->end(); it!= end; ++it) {
    OcTreeKey key = it.getKey();
    if (    key[0] >= bbxMinKey[0] && key[0] <= bbxMaxKey[0]
         && key[1] >= bbxMinKey[1] && key[1] <= bbxMaxKey[1]
         && key[2] >= bbxMinKey[2] && key[2] <= bbxMaxKey[2])
    {
      KeyVolumeMap::iterator bbxIt = bbxVoxels.find(key);
      EXPECT_FALSE(bbxIt == bbxVoxels.end());
      EXPECT_TRUE(key == bbxIt->first);
      EXPECT_EQ(it.getSize(), bbxIt->second);
    }

  }

  // test tree with one node:
  OcTree simpleTree(0.01);
  simpleTree.updateNode(point3d(10, 10, 10), 5.0f);
  for(OcTree::leaf_iterator it = simpleTree.begin_leafs(maxDepth), end=simpleTree.end_leafs(); it!= end; ++it) {
    std::cout << it.getDepth() << " " << " "<<it.getCoordinate()<< std::endl;
  }


  std::cout << "Tests successful\n";


  return 0;
}
Exemplo n.º 3
0
void execute(const fremen::informationGoalConstPtr& goal, Server* as)
{

    /*              Octmap Estimation and Visualization             */

    octomap_msgs::Octomap bmap_msg;
    OcTree octree (resolution);
    geometry_msgs::Point initialPt, finalPt;

    //Create pointcloud:
    octomap::Pointcloud octoCloud;
    sensor_msgs::PointCloud fremenCloud;
    float x = 0*gridPtr->positionX;
    float y = 0*gridPtr->positionY;
    geometry_msgs::Point32 test_point;
    int cnt = 0;

    int cell_x, cell_y, cell_z;
    cell_x = (int)(goal->x/resolution);
    cell_y = (int)(goal->y/resolution);
    cell_z = (int)(head_height/resolution);

    for(double i = LIM_MIN_X; i < LIM_MAX_X; i+=resolution){
        for(double j = LIM_MIN_Y; j < LIM_MAX_Y; j+=resolution){
            for(double w = LIM_MIN_Z; w < LIM_MAX_Z; w+=resolution){
                point3d ptt(x+i+resolution/2,y+j+resolution/2,w+resolution/2);
                int s = goal->stamp;
                if(gridPtr->retrieve(cnt, goal->stamp)>0)
                {
                    //finalPt.z = (int)((w+resolution/2)/resolution)-cell_z;
                    //finalPt.y = (int)((j+resolution/2)/resolution)-cell_y;
                    //finalPt.x = (int)((i+resolution/2)/resolution)-cell_x;

                    //int cnta = ((cell_x+finalPt.x-LIM_MIN_X/resolution)*dim_y + (finalPt.y + cell_y-LIM_MIN_Y/resolution))*dim_z + (finalPt.z + cell_z-LIM_MIN_Z/resolution);
                    //ROS_INFO("something %d %d",cnt,cnta);
                    octoCloud.push_back(x+i+resolution/2,y+j+resolution/2,w+resolution/2);
                    octree.updateNode(ptt,true,true);
                }
                cnt++;
            }
        }
    }
    //Update grid
    octree.updateInnerOccupancy();

    //init visualization markers:
    visualization_msgs::MarkerArray occupiedNodesVis;
    unsigned int m_treeDepth = octree.getTreeDepth();

    //each array stores all cubes of a different size, one for each depth level:
    occupiedNodesVis.markers.resize(m_treeDepth + 1);
    geometry_msgs::Point cubeCenter;

    std_msgs::ColorRGBA m_color;
    m_color.r = 0.0;
    m_color.g = 0.0;
    m_color.b = 1.0;
    m_color.a = 0.5;

    for (unsigned i = 0; i < occupiedNodesVis.markers.size(); ++i)
    {
        double size = octree.getNodeSize(i);
        occupiedNodesVis.markers[i].header.frame_id = "/map";
        occupiedNodesVis.markers[i].header.stamp = ros::Time::now();
        occupiedNodesVis.markers[i].ns = "map";
        occupiedNodesVis.markers[i].id = i;
        occupiedNodesVis.markers[i].type = visualization_msgs::Marker::CUBE_LIST;
        occupiedNodesVis.markers[i].scale.x = size;
        occupiedNodesVis.markers[i].scale.y = size;
        occupiedNodesVis.markers[i].scale.z = size;
        occupiedNodesVis.markers[i].color = m_color;
    }

    ROS_INFO("s %i",cnt++);
    x = gridPtr->positionX;
    y = gridPtr->positionY;


    for(OcTree::leaf_iterator it = octree.begin_leafs(), end = octree.end_leafs(); it != end; ++it)
    {
        if(it != NULL && octree.isNodeOccupied(*it))
        {
            unsigned idx = it.getDepth();
            cubeCenter.x = x+it.getX();
            cubeCenter.y = y+it.getY();
            cubeCenter.z = it.getZ();
            occupiedNodesVis.markers[idx].points.push_back(cubeCenter);
            double minX, minY, minZ, maxX, maxY, maxZ;
            octree.getMetricMin(minX, minY, minZ);
            octree.getMetricMax(maxX, maxY, maxZ);
            double h = (1.0 - fmin(fmax((cubeCenter.z - minZ) / (maxZ - minZ), 0.0), 1.0)) * m_colorFactor;
            occupiedNodesVis.markers[idx].colors.push_back(heightMapColorA(h));
        }
    }

    /**** Robot Head Marker ****/

    //Robot Position


    visualization_msgs::Marker marker_head;
    marker_head.header.frame_id = "/map";
    marker_head.header.stamp = ros::Time();
    marker_head.ns = "my_namespace";
    marker_head.id = 1;
    marker_head.type = visualization_msgs::Marker::SPHERE;
    marker_head.action = visualization_msgs::Marker::ADD;
    marker_head.pose.position.x = goal->x;
    marker_head.pose.position.y = goal->y;
    marker_head.pose.position.z = head_height;
    marker_head.pose.orientation.x = 0.0;
    marker_head.pose.orientation.y = 0.0;
    marker_head.pose.orientation.z = 0.0;
    marker_head.pose.orientation.w = 1.0;
    marker_head.scale.x = 0.2;
    marker_head.scale.y = 0.2;
    marker_head.scale.z = 0.2;
    marker_head.color.a = 1.0;
    marker_head.color.r = 0.0;
    marker_head.color.g = 1.0;
    marker_head.color.b = 0.0;


    /****** Ray Traversal ******/

    //ROS_INFO("Robot Position (%f,%f,%f) = (%d,%d,%d)", goal->x, goal->y, head_height, cell_x, cell_y, cell_z);

    //Ray Casting (Grid Traversal - Digital Differential Analyzer)

    visualization_msgs::Marker marker_rays;
    marker_rays.header.frame_id = "/map";
    marker_rays.header.stamp = ros::Time();
    marker_rays.ns = "my_namespace";
    marker_rays.id = 2;
    marker_rays.type = visualization_msgs::Marker::LINE_LIST;
    marker_rays.action = visualization_msgs::Marker::ADD;
    marker_rays.scale.x = 0.01;


    geometry_msgs::Vector3 rayDirection, deltaT, cellIndex;

    std_msgs::ColorRGBA line_color;

    initialPt.x = goal->x;
    initialPt.y = goal->y;
    initialPt.z = head_height;

    line_color.a = 0.2;
    line_color.r = 0.0;
    line_color.g = 0.0;
    line_color.b = 1.0;

    float delta, H;
    bool free_cell;

    ROS_INFO("Performing Ray Casting...");
            H = 0;
    int gridsize = dim_x*dim_y*dim_z;
    for(float ang_v = -0.174; ang_v < 0.174; ang_v+=angular_step){
        for(float ang_h = 0; ang_h < 2*M_PI; ang_h+= angular_step){ //0 - 360 degrees
            //Initial conditions:
            rayDirection.z = sin(ang_v);//z
            rayDirection.x = cos(ang_v) * cos(ang_h);//x
            rayDirection.y = cos(ang_v) * sin(ang_h);//y

            delta = fmax(fmax(fabs(rayDirection.x), fabs(rayDirection.y)), fabs(rayDirection.z));

            deltaT.x = rayDirection.x/delta;
            deltaT.y = rayDirection.y/delta;
            deltaT.z = rayDirection.z/delta;

            free_cell = true;


            int max_it = RANGE_MAX/resolution * 2/sqrt(pow(deltaT.x,2) + pow(deltaT.y,2) + pow(deltaT.z,2));

            //    ROS_INFO("Max_it: %d %d %d", cell_x,cell_y,cell_z);

            finalPt.x = 0;
            finalPt.y = 0;
            finalPt.z = 0;

            for(int i = 0; i < max_it && free_cell; i++){
                finalPt.x += deltaT.x/2;
                finalPt.y += deltaT.y/2;
                finalPt.z += deltaT.z/2;

                //cnt?
                int cnt = ((int)((cell_x+finalPt.x-LIM_MIN_X/resolution))*dim_y + (int)(finalPt.y + cell_y-LIM_MIN_Y/resolution))*dim_z + (int)(finalPt.z + cell_z-LIM_MIN_Z/resolution);//get fremen grid index!

                //TODO
                if (cnt < 0){
                    cnt = 0;
                    free_cell = false;
                }
                if (cnt > gridsize-1){
                    cnt = gridsize-1;
                    free_cell = false;
                }
                //ROS_INFO("CNT: %d %d", cnt,gridsize);
                //ROS_INFO("DIM %d %d", dim_x, dim_z);
                if(gridPtr->retrieve(cnt, goal->stamp) > 0) free_cell = false;
                if(aux_entropy[cnt] ==0){
                    aux_entropy[cnt] = 1;
                    //float p = gridPtr->estimate(cnt,goal->stamp);
                    //h+=-p*ln(p);
                    H++;
                }
            }


            marker_rays.points.push_back(initialPt);
            marker_rays.colors.push_back(line_color);
            finalPt.x = finalPt.x*resolution+initialPt.x;
            finalPt.y = finalPt.y*resolution+initialPt.y;
            finalPt.z = finalPt.z*resolution+initialPt.z;
            marker_rays.points.push_back(finalPt);
            marker_rays.colors.push_back(line_color);

        }
    }

    //Entropy (text marker):

    visualization_msgs::Marker marker_text;
    marker_text.header.frame_id = "/map";
    marker_text.header.stamp = ros::Time();
    marker_text.ns = "my_namespace";
    marker_text.id = 1;
    marker_text.type = visualization_msgs::Marker::TEXT_VIEW_FACING;
    marker_text.action = visualization_msgs::Marker::ADD;
    marker_text.pose.position.x = goal->x;
    marker_text.pose.position.y = goal->y;
    marker_text.pose.position.z = head_height + 2;
    marker_text.pose.orientation.x = 0.0;
    marker_text.pose.orientation.y = 0.0;
    marker_text.pose.orientation.z = 0.0;
    marker_text.pose.orientation.w = 1.0;
    marker_text.scale.z = 0.5;
    marker_text.color.a = 1.0;
    marker_text.color.r = 0.0;
    marker_text.color.g = 1.0;
    marker_text.color.b = 0.0;
    char output[1000];
    sprintf(output,"Gain: %f",H);
    marker_text.text = output;


    //Publish Results:
    ROS_INFO("Data published!");
    head_pub_ptr->publish(marker_head);
    estimate_pub_ptr->publish(occupiedNodesVis);
    rays_pub_ptr->publish(marker_rays);
    text_pub_ptr->publish(marker_text);


    as->setSucceeded();

}