Exemplo n.º 1
0
SDValue PTXTargetLowering::
  LowerFormalArguments(SDValue Chain,
                       CallingConv::ID CallConv,
                       bool isVarArg,
                       const SmallVectorImpl<ISD::InputArg> &Ins,
                       DebugLoc dl,
                       SelectionDAG &DAG,
                       SmallVectorImpl<SDValue> &InVals) const {
  if (isVarArg) llvm_unreachable("PTX does not support varargs");

  MachineFunction &MF = DAG.getMachineFunction();
  PTXMachineFunctionInfo *MFI = MF.getInfo<PTXMachineFunctionInfo>();

  switch (CallConv) {
    default:
      llvm_unreachable("Unsupported calling convention");
      break;
    case CallingConv::PTX_Kernel:
      MFI->setKernel(true);
      break;
    case CallingConv::PTX_Device:
      MFI->setKernel(false);
      break;
  }

  if (MFI->isKernel()) {
    // For kernel functions, we just need to emit the proper READ_PARAM ISDs
    for (unsigned i = 0, e = Ins.size(); i != e; ++i) {

      assert(Ins[i].VT != MVT::i1 && "Kernels cannot take pred operands");

      SDValue ArgValue = DAG.getNode(PTXISD::READ_PARAM, dl, Ins[i].VT, Chain,
                                     DAG.getTargetConstant(i, MVT::i32));
      InVals.push_back(ArgValue);

      // Instead of storing a physical register in our argument list, we just
      // store the total size of the parameter, in bits.  The ASM printer
      // knows how to process this.
      MFI->addArgReg(Ins[i].VT.getStoreSizeInBits());
    }
  }
  else {
    // For device functions, we use the PTX calling convention to do register
    // assignments then create CopyFromReg ISDs for the allocated registers

    SmallVector<CCValAssign, 16> ArgLocs;
    CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), ArgLocs,
                   *DAG.getContext());

    CCInfo.AnalyzeFormalArguments(Ins, CC_PTX);

    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {

      CCValAssign&         VA    = ArgLocs[i];
      EVT                  RegVT = VA.getLocVT();
      TargetRegisterClass* TRC   = 0;

      assert(VA.isRegLoc() && "CCValAssign must be RegLoc");

      // Determine which register class we need
      if (RegVT == MVT::i1) {
        TRC = PTX::RegPredRegisterClass;
      }
      else if (RegVT == MVT::i16) {
        TRC = PTX::RegI16RegisterClass;
      }
      else if (RegVT == MVT::i32) {
        TRC = PTX::RegI32RegisterClass;
      }
      else if (RegVT == MVT::i64) {
        TRC = PTX::RegI64RegisterClass;
      }
      else if (RegVT == MVT::f32) {
        TRC = PTX::RegF32RegisterClass;
      }
      else if (RegVT == MVT::f64) {
        TRC = PTX::RegF64RegisterClass;
      }
      else {
        llvm_unreachable("Unknown parameter type");
      }

      unsigned Reg = MF.getRegInfo().createVirtualRegister(TRC);
      MF.getRegInfo().addLiveIn(VA.getLocReg(), Reg);

      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
      InVals.push_back(ArgValue);

      MFI->addArgReg(VA.getLocReg());
    }
  }

  return Chain;
}
Exemplo n.º 2
0
SDValue PTXTargetLowering::
  LowerFormalArguments(SDValue Chain,
                       CallingConv::ID CallConv,
                       bool isVarArg,
                       const SmallVectorImpl<ISD::InputArg> &Ins,
                       DebugLoc dl,
                       SelectionDAG &DAG,
                       SmallVectorImpl<SDValue> &InVals) const {
  if (isVarArg) llvm_unreachable("PTX does not support varargs");

  MachineFunction &MF = DAG.getMachineFunction();
  PTXMachineFunctionInfo *MFI = MF.getInfo<PTXMachineFunctionInfo>();

  switch (CallConv) {
    default:
      llvm_unreachable("Unsupported calling convention");
      break;
    case CallingConv::PTX_Kernel:
      MFI->setKernel(true);
      break;
    case CallingConv::PTX_Device:
      MFI->setKernel(false);
      break;
  }

  // Make sure we don't add argument registers twice
  if (MFI->isDoneAddArg())
    llvm_unreachable("cannot add argument registers twice");

  // Reset argmap before allocation
  for (struct argmap_entry *i = argmap, *e = argmap + array_lengthof(argmap);
       i != e; ++ i)
    i->reset();

  for (int i = 0, e = Ins.size(); i != e; ++ i) {
    MVT::SimpleValueType VT = Ins[i].VT.SimpleTy;

    struct argmap_entry *entry = std::find(argmap,
                                           argmap + array_lengthof(argmap), VT);
    if (entry == argmap + array_lengthof(argmap))
      llvm_unreachable("Type of argument is not supported");

    if (MFI->isKernel() && entry->RC == PTX::PredsRegisterClass)
      llvm_unreachable("cannot pass preds to kernel");

    MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();

    unsigned preg = *++(entry->loc); // allocate start from register 1
    unsigned vreg = RegInfo.createVirtualRegister(entry->RC);
    RegInfo.addLiveIn(preg, vreg);

    MFI->addArgReg(preg);

    SDValue inval;
    if (MFI->isKernel())
      inval = DAG.getNode(PTXISD::READ_PARAM, dl, VT, Chain,
                          DAG.getTargetConstant(i, MVT::i32));
    else
      inval = DAG.getCopyFromReg(Chain, dl, vreg, VT);
    InVals.push_back(inval);
  }

  MFI->doneAddArg();

  return Chain;
}
SDValue PTXTargetLowering::
  LowerFormalArguments(SDValue Chain,
                       CallingConv::ID CallConv,
                       bool isVarArg,
                       const SmallVectorImpl<ISD::InputArg> &Ins,
                       DebugLoc dl,
                       SelectionDAG &DAG,
                       SmallVectorImpl<SDValue> &InVals) const {
  if (isVarArg) llvm_unreachable("PTX does not support varargs");

  MachineFunction &MF = DAG.getMachineFunction();
  const PTXSubtarget& ST = getTargetMachine().getSubtarget<PTXSubtarget>();
  PTXMachineFunctionInfo *MFI = MF.getInfo<PTXMachineFunctionInfo>();
  PTXParamManager &PM = MFI->getParamManager();

  switch (CallConv) {
    default:
      llvm_unreachable("Unsupported calling convention");
      break;
    case CallingConv::PTX_Kernel:
      MFI->setKernel(true);
      break;
    case CallingConv::PTX_Device:
      MFI->setKernel(false);
      break;
  }

  // We do one of two things here:
  // IsKernel || SM >= 2.0  ->  Use param space for arguments
  // SM < 2.0               ->  Use registers for arguments
  if (MFI->isKernel() || ST.useParamSpaceForDeviceArgs()) {
    // We just need to emit the proper LOAD_PARAM ISDs
    for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
      assert((!MFI->isKernel() || Ins[i].VT != MVT::i1) &&
             "Kernels cannot take pred operands");

      unsigned ParamSize = Ins[i].VT.getStoreSizeInBits();
      unsigned Param = PM.addArgumentParam(ParamSize);
      const std::string &ParamName = PM.getParamName(Param);
      SDValue ParamValue = DAG.getTargetExternalSymbol(ParamName.c_str(),
                                                       MVT::Other);
      SDValue ArgValue = DAG.getNode(PTXISD::LOAD_PARAM, dl, Ins[i].VT, Chain,
                                     ParamValue);
      InVals.push_back(ArgValue);
    }
  }
  else {
    for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
      EVT                  RegVT = Ins[i].VT;
      TargetRegisterClass* TRC   = getRegClassFor(RegVT);

      // Use a unique index in the instruction to prevent instruction folding.
      // Yes, this is a hack.
      SDValue Index = DAG.getTargetConstant(i, MVT::i32);
      unsigned Reg = MF.getRegInfo().createVirtualRegister(TRC);
      SDValue ArgValue = DAG.getNode(PTXISD::READ_PARAM, dl, RegVT, Chain,
                                     Index);

      InVals.push_back(ArgValue);

      MFI->addArgReg(Reg);
    }
  }

  return Chain;
}