Exemplo n.º 1
0
void testMcKibbenActuator()
{

    double pressure = 5 * 10e5; // 5 bars
    double num_turns = 1.5;     // 1.5 turns
    double B = 277.1 * 10e-4;  // 277.1 mm

    using namespace SimTK;
    std::clock_t startTime = std::clock();

    double mass = 1;
    double ball_radius = 10e-6;

    Model *model = new Model;
    model->setGravity(Vec3(0));

    Ground& ground = model->updGround();

    McKibbenActuator *actuator = new McKibbenActuator("mckibben", num_turns, B);
    
    OpenSim::Body* ball = new OpenSim::Body("ball", mass ,Vec3(0),  mass*SimTK::Inertia::sphere(0.1));
    ball->scale(Vec3(ball_radius), false);

    actuator->addNewPathPoint("mck_ground", ground, Vec3(0));
    actuator->addNewPathPoint("mck_ball", *ball, Vec3(ball_radius));

    Vec3 locationInParent(0, ball_radius, 0), orientationInParent(0), locationInBody(0), orientationInBody(0);
    SliderJoint *ballToGround = new SliderJoint("ballToGround", ground, locationInParent, orientationInParent, *ball, locationInBody, orientationInBody);

    ballToGround->updCoordinate().setName("ball_d");
    ballToGround->updCoordinate().setPrescribedFunction(LinearFunction(20 * 10e-4, 0.5 * 264.1 * 10e-4));
    ballToGround->updCoordinate().set_prescribed(true);

    model->addBody(ball);
    model->addJoint(ballToGround);
    model->addForce(actuator);

    PrescribedController* controller =  new PrescribedController();
    controller->addActuator(*actuator);
    controller->prescribeControlForActuator("mckibben", new Constant(pressure));

    model->addController(controller);

    ForceReporter* reporter = new ForceReporter(model);
    model->addAnalysis(reporter);
    
    SimTK::State& si = model->initSystem();

    model->getMultibodySystem().realize(si, Stage::Position);

    double final_t = 10.0;
    double nsteps = 10;
    double dt = final_t / nsteps;

    RungeKuttaMersonIntegrator integrator(model->getMultibodySystem());
    integrator.setAccuracy(1e-7);
    Manager manager(*model, integrator);
    manager.setInitialTime(0.0);

    for (int i = 1; i <= nsteps; i++){
        manager.setFinalTime(dt*i);
        manager.integrate(si);
        model->getMultibodySystem().realize(si, Stage::Velocity);
        Vec3 pos;
        model->updSimbodyEngine().getPosition(si, *ball, Vec3(0), pos);

        double applied = actuator->computeActuation(si);;

        double theoretical = (pressure / (4* pow(num_turns,2) * SimTK::Pi)) * (3*pow(pos(0), 2) - pow(B, 2));

        ASSERT_EQUAL(applied, theoretical, 10.0);

        manager.setInitialTime(dt*i);
    }


    std::cout << " ******** Test McKibbenActuator time = ********" <<
        1.e3*(std::clock() - startTime) / CLOCKS_PER_SEC << "ms\n" << endl;
}
Exemplo n.º 2
0
void testClutchedPathSpring()
{
    using namespace SimTK;

    // start timing
    std::clock_t startTime = std::clock();

    double mass = 1;
    double stiffness = 100;
    double dissipation = 0.3;
    double start_h = 0.5;
    //double ball_radius = 0.25;

    //double omega = sqrt(stiffness/mass);

    // Setup OpenSim model
    Model* model = new Model;
    model->setName("ClutchedPathSpringModel");
    model->setGravity(gravity_vec);

    //OpenSim bodies
    const Ground* ground = &model->getGround();
    
    // body that acts as the pulley that the path wraps over
    OpenSim::Body* pulleyBody =
        new OpenSim::Body("PulleyBody", mass ,Vec3(0),  mass*Inertia::brick(0.1, 0.1, 0.1));
    
    // body the path spring is connected to at both ends
    OpenSim::Body* block =
        new OpenSim::Body("block", mass ,Vec3(0),  mass*Inertia::brick(0.2, 0.1, 0.1));
    block->attachGeometry(new Brick(Vec3(0.2, 0.1, 0.1)));
    block->scale(Vec3(0.2, 0.1, 0.1), false);

    //double dh = mass*gravity_vec(1)/stiffness;
    
    WrapCylinder* pulley = new WrapCylinder();
    pulley->set_radius(0.1);
    pulley->set_length(0.05);

    // Add the wrap object to the body, which takes ownership of it
    pulleyBody->addWrapObject(pulley);

    // Add joints
    WeldJoint* weld = 
        new WeldJoint("weld", *ground, Vec3(0, 1.0, 0), Vec3(0), *pulleyBody, Vec3(0), Vec3(0));
    
    SliderJoint* slider =
        new SliderJoint("slider", *ground, Vec3(0), Vec3(0,0,Pi/2),*block, Vec3(0), Vec3(0,0,Pi/2));

    double positionRange[2] = {-10, 10};
    // Rename coordinates for a slider joint
    slider->updCoordinate().setName("block_h");
    slider->updCoordinate().setRange(positionRange);

    model->addBody(pulleyBody);
    model->addJoint(weld);

    model->addBody(block);
    model->addJoint(slider);

    ClutchedPathSpring* spring = 
        new ClutchedPathSpring("clutch_spring", stiffness, dissipation, 0.01);

    spring->updGeometryPath().appendNewPathPoint("origin", *block, Vec3(-0.1, 0.0 ,0.0));
    
    int N = 10;
    for(int i=1; i<N; ++i){
        double angle = i*Pi/N;
        double x = 0.1*cos(angle);
        double y = 0.1*sin(angle);
        spring->updGeometryPath().appendNewPathPoint("", *pulleyBody, Vec3(-x, y ,0.0));
    }

    spring->updGeometryPath().appendNewPathPoint("insertion", *block, Vec3(0.1, 0.0 ,0.0));

    // BUG in defining wrapping API requires that the Force containing the GeometryPath be
    // connected to the model before the wrap can be added
    model->addForce(spring);

    PrescribedController* controller = new PrescribedController();
    controller->addActuator(*spring);
    
    // Control greater than 1 or less than 0 should be treated as 1 and 0 respectively.
    double     timePts[4] = {0.0,  5.0, 6.0, 10.0};
    double clutchOnPts[4] = {1.5, -2.0, 0.5,  0.5};

    PiecewiseConstantFunction* controlfunc = 
        new PiecewiseConstantFunction(4, timePts, clutchOnPts);

    controller->prescribeControlForActuator("clutch_spring", controlfunc);
    model->addController(controller);

    model->print("ClutchedPathSpringModel.osim");

    //Test deserialization
    delete model;
    model = new Model("ClutchedPathSpringModel.osim");

    // Create the force reporter
    ForceReporter* reporter = new ForceReporter(model);
    model->addAnalysis(reporter);

    model->setUseVisualizer(false);
    SimTK::State& state = model->initSystem();

    CoordinateSet& coords = model->updCoordinateSet();
    coords[0].setValue(state, start_h);
    model->getMultibodySystem().realize(state, Stage::Position );

    //==========================================================================
    // Compute the force and torque at the specified times.

    RungeKuttaMersonIntegrator integrator(model->getMultibodySystem() );
    integrator.setAccuracy(integ_accuracy);
    Manager manager(*model,  integrator);
    manager.setWriteToStorage(true);

    manager.setInitialTime(0.0);

    double final_t = 4.99999;

    manager.setFinalTime(final_t);
    manager.integrate(state);

    // tension is dynamics dependent because controls must be computed
    model->getMultibodySystem().realize(state, Stage::Dynamics);

    spring = dynamic_cast<ClutchedPathSpring*>(
                &model->updForceSet().get("clutch_spring"));
    // Now check that the force reported by spring
    double model_force = spring->getTension(state);
    double stretch0 = spring->getStretch(state);

    // the tension should be half the weight of the block
    double analytical_force = -0.5*(gravity_vec(1))*mass;

    cout << "Tension is: " << model_force << " and should be: " << analytical_force << endl;

    // error if the block does not reach equilibrium since spring is clamped
    ASSERT_EQUAL(model_force, analytical_force, 10*integ_accuracy);

    // unclamp and continue integrating
    manager.setInitialTime(final_t);
    final_t = 5.99999;
    manager.setFinalTime(final_t);
    manager.integrate(state);

    // tension is dynamics dependent because controls must be computed
    model->getMultibodySystem().realize(state, Stage::Dynamics);

    // tension should go to zero quickly
    model_force = spring->getTension(state);

    cout << "Tension is: " << model_force << " and should be: 0.0" << endl;
    // is unclamped and block should be in free-fall
    ASSERT_EQUAL(model_force, 0.0, 10*integ_accuracy);

    // spring is reclamped at 7s so keep integrating
    manager.setInitialTime(final_t);
    final_t = 10.0;
    manager.setFinalTime(final_t);
    manager.integrate(state);

    // tension is dynamics dependent because controls must be computed
    model->getMultibodySystem().realize(state, Stage::Dynamics);

    // tension should build to support the block again
    model_force = spring->getTension(state);
    double stretch1 = spring->getStretch(state);

    cout << "Tension is: " << model_force << " and should be: "<< analytical_force << endl;

    // is unclamped and block should be in free-fall
    ASSERT_EQUAL(model_force, analytical_force, 10*integ_accuracy);

    cout << "Steady stretch at control = 1.0 is " << stretch0 << " m." << endl;
    cout << "Steady stretch at control = 0.5 is " << stretch1 << " m." << endl;

    ASSERT_EQUAL(2*stretch0, stretch1, 10*integ_accuracy);

    manager.getStateStorage().print("clutched_path_spring_states.sto");
    model->getControllerSet().printControlStorage("clutched_path_spring_controls.sto");

    // Save the forces
    reporter->getForceStorage().print("clutched_path_spring_forces.mot"); 

    model->disownAllComponents();

    cout << " ********** Test clutched spring time = ********** " << 
        1.e3*(std::clock()-startTime)/CLOCKS_PER_SEC << "ms\n" << endl;
}
/**
 * Method for building the Luxo Jr articulating model. It sets up the system of
 * rigid bodies and joint articulations to define Luxo Jr lamp geometry.
 */
void createLuxoJr(OpenSim::Model &model){
    
    // Create base
    //--------------
    OpenSim::Body* base = new OpenSim::Body("base", baseMass, Vec3(0.0),
                Inertia::cylinderAlongY(0.1, baseHeight));
    
    // Add visible geometry
    base->attachMeshGeometry("Base_meters.obj");
    
    
    // Define base to float relative to ground via free joint
    FreeJoint* base_ground = new FreeJoint("base_ground",
                // parent body, location in parent body, orientation in parent
                model.getGround(), Vec3(0.0), Vec3(0.0),
                // child body, location in child body, orientation in child
                *base, Vec3(0.0,-baseHeight/2.0,0.0),Vec3(0.0));
    
    // add base to model
    model.addBody(base); model.addJoint(base_ground);
    
    /*for (int i = 0; i<base_ground->get_CoordinateSet().getSize(); ++i) {
        base_ground->upd_CoordinateSet()[i].set_locked(true);
    }*/
    
    // Fix a frame to the base axis for attaching the bottom bracket
    SimTK::Transform* shift_and_rotate = new SimTK::Transform();
    //shift_and_rotate->setToZero();
    shift_and_rotate->set(Rotation(-1*SimTK::Pi/2,
                                   SimTK::CoordinateAxis::XCoordinateAxis()),
                          Vec3(0.0, bracket_location, 0.0));

    PhysicalOffsetFrame pivot_frame_on_base("pivot_frame_on_base",
            *base, *shift_and_rotate);

    // Create bottom bracket
    //-----------------------
    OpenSim::Body* bottom_bracket = new OpenSim::Body("bottom_bracket",
                                            bracket_mass, Vec3(0.0),
                                            Inertia::brick(0.03, 0.03, 0.015));
    // add bottom bracket to model
    model.addBody(bottom_bracket);
    
    // Fix a frame to the bracket for attaching joint
    shift_and_rotate->setP(Vec3(0.0));
    PhysicalOffsetFrame pivot_frame_on_bottom_bracket(
        "pivot_frame_on_bottom_bracket", *bottom_bracket, *shift_and_rotate);
    
    // Add visible geometry
    bottom_bracket->attachMeshGeometry("bottom_bracket_meters.obj");

    // Make bottom bracket to twist on base with vertical pin joint.
    // You can create a joint from any existing physical frames attached to
    // rigid bodies. One way to reference them is by name, like this...
    PinJoint* base_pivot = new PinJoint("base_pivot", pivot_frame_on_base,
                                        pivot_frame_on_bottom_bracket);
    
    base_pivot->append_frames(pivot_frame_on_base);
    base_pivot->append_frames(pivot_frame_on_bottom_bracket);
    // add base pivot joint to the model
    model.addJoint(base_pivot);
    
    // add some damping to the pivot
    // initialized to zero stiffness and damping
    BushingForce* pivotDamper = new BushingForce("pivot_bushing",
                                         "pivot_frame_on_base",
                                         "pivot_frame_on_bottom_bracket");
    
    pivotDamper->set_rotational_damping(pivot_damping);
    
    model.addForce(pivotDamper);
    
    // Create posterior leg
    //-----------------------
    OpenSim::Body* posteriorLegBar = new OpenSim::Body("posterior_leg_bar",
                                    bar_mass,
                                    Vec3(0.0),
                                    Inertia::brick(leg_bar_dimensions/2.0));
    
    posteriorLegBar->attachMeshGeometry("Leg_meters.obj");

    PhysicalOffsetFrame posterior_knee_on_bottom_bracket(
        "posterior_knee_on_bottom_bracket",
            *bottom_bracket, Transform(posterior_bracket_hinge_location) );

    PhysicalOffsetFrame posterior_knee_on_posterior_bar(
        "posterior_knee_on_posterior_bar",
            *posteriorLegBar, Transform(inferior_bar_hinge_location) );

    // Attach posterior leg to bottom bracket using another pin joint.
    // Another way to reference physical frames in a joint is by creating them
    // in place, like this...
    OpenSim::PinJoint* posteriorKnee = new OpenSim::PinJoint("posterior_knee",
                                    posterior_knee_on_bottom_bracket,
                                    posterior_knee_on_posterior_bar);
    // posteriorKnee will own and serialize the attachment offset frames 
    posteriorKnee->append_frames(posterior_knee_on_bottom_bracket);
    posteriorKnee->append_frames(posterior_knee_on_posterior_bar);

    
    // add posterior leg to model
    model.addBody(posteriorLegBar); model.addJoint(posteriorKnee);
    
    // allow this joint's coordinate to float freely when assembling constraints
    // the joint we create next will drive the pose of the 4-bar linkage
    posteriorKnee->upd_CoordinateSet()[0]
                                    .set_is_free_to_satisfy_constraints(true);
    
    // Create anterior leg Hlink
    //----------------------------
    OpenSim::Body* leg_Hlink = new OpenSim::Body("leg_Hlink",
                                    bar_mass,
                                    Vec3(0.0),
                                    Inertia::brick(leg_Hlink_dimensions/2.0));
    
    leg_Hlink->attachMeshGeometry("H_Piece_meters.obj");
    
    
    PhysicalOffsetFrame anterior_knee_on_bottom_bracket(
        "anterior_knee_on_bottom_bracket",
            *bottom_bracket, Transform(anterior_bracket_hinge_location));

    
    PhysicalOffsetFrame anterior_knee_on_anterior_bar(
        "anterior_knee_on_anterior_bar",
            *leg_Hlink, Transform(inferior_Hlink_hinge_location));


    // Connect anterior leg to bottom bracket via pin joint
    OpenSim::PinJoint* anterior_knee = new OpenSim::PinJoint("anterior_knee",
                                    anterior_knee_on_bottom_bracket,
                                    anterior_knee_on_anterior_bar);
    anterior_knee->append_frames(anterior_knee_on_bottom_bracket);
    anterior_knee->append_frames(anterior_knee_on_anterior_bar);

    
    // add anterior leg to model
    model.addBody(leg_Hlink); model.addJoint(anterior_knee);
    
    // this anterior knee joint defines the motion of the lower 4-bar linkage
    // set it's default coordinate value to a slightly flexed position.
    anterior_knee->upd_CoordinateSet()[0].set_default_value(SimTK::Pi/6);
    
    // Create pelvis bracket
    //-----------------------
    OpenSim::Body* pelvisBracket = new OpenSim::Body("pelvis_bracket",
                                            bracket_mass,
                                            Vec3(0.0),
                                        Inertia::brick(pelvis_dimensions/2.0));
    
    pelvisBracket->attachMeshGeometry("Pelvis_bracket_meters.obj");
    
    // Connect pelvis to Hlink via pin joint
    SimTK::Transform pelvis_anterior_shift(
                                        anterior_superior_pelvis_pin_location);

    PhysicalOffsetFrame anterior_hip_on_Hlink(
        "anterior_hip_on_Hlink",
        *leg_Hlink, Transform(superior_Hlink_hinge_location));

    PhysicalOffsetFrame anterior_hip_on_pelvis(
            "anterior_hip_on_pelvis",
        *pelvisBracket, pelvis_anterior_shift);

    OpenSim::PinJoint* anteriorHip = new OpenSim::PinJoint("anterior_hip",
                                                    anterior_hip_on_Hlink,
                                                    anterior_hip_on_pelvis);
    anteriorHip->append_frames(anterior_hip_on_Hlink);
    anteriorHip->append_frames(anterior_hip_on_pelvis);
    
    // add anterior leg to model
    model.addBody(pelvisBracket); model.addJoint(anteriorHip);
    
    // since the previous, anterior knee joint drives the pose of the lower
    // 4-bar linkage, set the anterior hip angle such that it's free to satisfy
    // constraints that couple it to the 4-bar linkage.
    anteriorHip->upd_CoordinateSet()[0]
                                    .set_is_free_to_satisfy_constraints(true);
    
    // Close the loop for the lower, four-bar linkage with a constraint
    //------------------------------------------------------------------
    
    // Create and configure point on line constraint
    OpenSim::PointOnLineConstraint* posteriorHip =
        new OpenSim::PointOnLineConstraint();
    
    posteriorHip->setLineBodyByName(pelvisBracket->getName());
    posteriorHip->setLineDirection(Vec3(0.0,0.0,1.0));
    posteriorHip->setPointOnLine(inferior_pelvis_pin_location);
    posteriorHip->setFollowerBodyByName(posteriorLegBar->getName());
    posteriorHip->setPointOnFollower(superior_bar_hinge_location);
    
    // add constraint to model
    model.addConstraint(posteriorHip);
    
    // Create chest piece
    //-----------------------
    OpenSim::Body* chest = new OpenSim::Body("chest_bar", bar_mass,
                                     Vec3(0.0),
                                     Inertia::brick(torso_bar_dimensions/2.0));
    
    chest->attachMeshGeometry("Anterior_torso_bar.obj");

    PhysicalOffsetFrame anterior_torso_hinge_on_pelvis(
        "anterior_torso_hinge_on_pelvis",
        *pelvisBracket, Transform(anterior_superior_pelvis_pin_location) );

    PhysicalOffsetFrame anterior_torso_hinge_on_chest(
        "anterior_torso_hinge_on_chest",
        *chest, Transform(inferior_torso_hinge_location) );
    
    // Attach chest piece to pelvice with pin joint
    OpenSim::PinJoint* anteriorTorsoHinge = new OpenSim::PinJoint(
                                              "anterior_torso_hinge",
                                              anterior_torso_hinge_on_pelvis,
                                              anterior_torso_hinge_on_chest);
    anteriorTorsoHinge->append_frames(anterior_torso_hinge_on_pelvis);
    anteriorTorsoHinge->append_frames(anterior_torso_hinge_on_chest);
    
    // add posterior leg to model
    model.addBody(chest); model.addJoint(anteriorTorsoHinge);
    
    // set torso rotation slightly anterior
    anteriorTorsoHinge->upd_CoordinateSet()[0].setDefaultValue(-1*SimTK::Pi/4);
    
    // Create chest piece
    //-----------------------
    OpenSim::Body* back = new OpenSim::Body("back_bar", bar_mass,
                                     Vec3(0.0),
                                     Inertia::brick(torso_bar_dimensions/2.0));
    
    back->attachMeshGeometry("Posterior_torso_bar.obj");

    PhysicalOffsetFrame posterior_torso_hinge_on_pelvis(
        "posterior_torso_hinge_on_pelvis",
        *pelvisBracket, Transform(posterior_superior_pelvis_pin_location) );

    PhysicalOffsetFrame posterior_torso_hinge_on_back(
        "posterior_torso_hinge_on_back",
        *back, Transform(back_peg_center) );
    
    // Attach chest piece to pelvis with pin joint
    OpenSim::PinJoint* posteriorTorsoHinge = new OpenSim::PinJoint(
                                          "posterior_torso_hinge",
                                          posterior_torso_hinge_on_pelvis,
                                          posterior_torso_hinge_on_back);
    posteriorTorsoHinge->append_frames(posterior_torso_hinge_on_pelvis);
    posteriorTorsoHinge->append_frames(posterior_torso_hinge_on_back);
    
    // add posterior leg to model
    model.addBody(back); model.addJoint(posteriorTorsoHinge);
    
    // set posterior back joint to freely follow anterior joint through 4-bar
    // linkage coupling.
    posteriorTorsoHinge->upd_CoordinateSet()[0]
    .set_is_free_to_satisfy_constraints(true);
    
    // Create shoulder bracket
    //-----------------------
    OpenSim::Body* shoulderBracket = new OpenSim::Body("shoulder_bracket",
                                     bracket_mass,
                                     Vec3(0.0),
                                     Inertia::brick(shoulder_dimensions/2.0));

    shoulderBracket->attachMeshGeometry("Shoulder_meters.obj");
    // add anterior leg to model
    model.addBody(shoulderBracket);

    PhysicalOffsetFrame anterior_thoracic_joint_on_chest(
        "anterior_thoracic_joint_on_chest",
        *chest, Transform(superior_torso_hinge_location) );

    PhysicalOffsetFrame anterior_thoracic_joint_on_shoulder(
        "anterior_thoracic_joint_on_shoulder",
        *shoulderBracket, Transform(anterior_thoracic_joint_center));
    
    // Connect pelvis to Hlink via pin joint
    OpenSim::PinJoint* anteriorThoracicJoint =
                        new OpenSim::PinJoint("anterior_thoracic_joint",
                                       anterior_thoracic_joint_on_chest,
                                       anterior_thoracic_joint_on_shoulder);
    anteriorThoracicJoint->append_frames(anterior_thoracic_joint_on_chest);
    anteriorThoracicJoint->append_frames(anterior_thoracic_joint_on_shoulder);
    // add back joint
    model.addJoint(anteriorThoracicJoint);
    
    // since the previous, anterior thoracic joint drives the pose of the lower
    // 4-bar linkage, set the anterior shoulder angle such that it's free to
    // satisfy constraints that couple it to the 4-bar linkage.
    anteriorThoracicJoint->upd_CoordinateSet()[0]
    .set_is_free_to_satisfy_constraints(true);
    
    // Close the loop for the lower, four-bar linkage with a constraint
    //------------------------------------------------------------------
    // Create and configure point on line constraint
    OpenSim::PointOnLineConstraint* posteriorShoulder =
    new OpenSim::PointOnLineConstraint();
    
    posteriorShoulder->setLineBodyByName(shoulderBracket->getName());
    posteriorShoulder->setLineDirection(Vec3(0.0,0.0,1.0));
    posteriorShoulder->setPointOnLine(posterior_thoracic_joint_center);
    posteriorShoulder->setFollowerBodyByName(back->getName());
    posteriorShoulder->setPointOnFollower(superior_torso_hinge_location);
    
    // add constraint to model
    model.addConstraint(posteriorShoulder);
    
    // Create and add luxo head
    OpenSim::Body* head = new OpenSim::Body("head", head_mass, Vec3(0),
            Inertia::cylinderAlongX(0.5*head_dimension[1], head_dimension[1]));
    
    head->attachMeshGeometry("luxo_head_meters.obj");
    head->attachMeshGeometry("Bulb_meters.obj");
    model.addBody(head);


    PhysicalOffsetFrame cervical_joint_on_shoulder("cervical_joint_on_shoulder",
        *shoulderBracket, Transform(superior_shoulder_hinge_location) );

    PhysicalOffsetFrame cervical_joint_on_head("cervical_joint_on_head",
        *head, Transform(cervicle_joint_center));

    // attach to shoulder via pin joint
    OpenSim::PinJoint* cervicalJoint = new OpenSim::PinJoint("cervical_joint",
                                  cervical_joint_on_shoulder,
                                  cervical_joint_on_head);
    
    cervicalJoint->append_frames(cervical_joint_on_shoulder);
    cervicalJoint->append_frames(cervical_joint_on_head);
    // add a neck joint
     model.addJoint(cervicalJoint);
    
    // lock the kneck coordinate so the head doens't spin without actuators or
    // passive forces
    cervicalJoint->upd_CoordinateSet()[0].set_locked(true);
    
    // Coordinate Limit forces for restricting leg range of motion.
    //-----------------------------------------------------------------------
    CoordinateLimitForce* kneeLimitForce =
            new CoordinateLimitForce(
                     anterior_knee->get_CoordinateSet()[0].getName(),
                     knee_flexion_max, joint_softstop_stiffness,
                     knee_flexion_min, joint_softstop_stiffness,
                     joint_softstop_damping,
                     transition_region);
    model.addForce(kneeLimitForce);
    
    // Coordinate Limit forces for restricting back range motion.
    //-----------------------------------------------------------------------
    CoordinateLimitForce* backLimitForce =
    new CoordinateLimitForce(
                         anteriorTorsoHinge->get_CoordinateSet()[0].getName(),
                         back_extension_max, joint_softstop_stiffness,
                         back_extension_min, joint_softstop_stiffness,
                         joint_softstop_damping,
                         transition_region);
    model.addForce(backLimitForce);
    
    
    // Contact
    //-----------------------------------------------------------------------
    ContactHalfSpace* floor_surface = new ContactHalfSpace(SimTK::Vec3(0),
                                       SimTK::Vec3(0, 0, -0.5*SimTK::Pi),
                                       model.updGround(), "floor_surface");
    
    OpenSim::ContactMesh* foot_surface = new ContactMesh(
                                         "thin_disc_0.11_by_0.01_meters.obj",
                                          SimTK::Vec3(0),
                                          SimTK::Vec3(0),
                                          *base,
                                          "foot_surface");
    
    // add contact geometry to model
    model.addContactGeometry(floor_surface);
    model.addContactGeometry(foot_surface);
    
    // define contact as an elastic foundation force
    OpenSim::ElasticFoundationForce::ContactParameters* contactParameters =
            new OpenSim::ElasticFoundationForce::ContactParameters(
                                               stiffness,
                                               dissipation,
                                               friction,
                                               friction,
                                               viscosity);
    
    contactParameters->addGeometry("foot_surface");
    contactParameters->addGeometry("floor_surface");
    
    OpenSim::ElasticFoundationForce* contactForce =
                        new OpenSim::ElasticFoundationForce(contactParameters);
    contactForce->setName("contact_force");
    
    model.addForce(contactForce);
    
    
    
    // MUSCLES
    //-----------------------------------------------------------------------
    
    // add a knee extensor to control the lower 4-bar linkage
    Millard2012EquilibriumMuscle* kneeExtensorRight = new Millard2012EquilibriumMuscle(
                                            "knee_extensor_right",
                                            knee_extensor_F0, knee_extensor_lm0,
                                            knee_extensor_lts, pennationAngle);
    kneeExtensorRight->addNewPathPoint("knee_extensor_right_origin", *leg_Hlink,
                                  knee_extensor_origin);
    kneeExtensorRight->addNewPathPoint("knee_extensor_right_insertion",
                                      *bottom_bracket,
                                        knee_extensor_insertion);
    kneeExtensorRight->set_ignore_tendon_compliance(true);
    model.addForce(kneeExtensorRight);
    
    // add a second copy of this knee extensor for the left side
    Millard2012EquilibriumMuscle* kneeExtensorLeft =
                                new Millard2012EquilibriumMuscle(*kneeExtensorRight);
    kneeExtensorLeft->setName("kneeExtensorLeft");
    
    // flip the z coordinates of all path points
    PathPointSet& points = kneeExtensorLeft->updGeometryPath().updPathPointSet();
    for (int i=0; i<points.getSize(); ++i) {
        points[i].setLocationCoord(2, -1*points[i].getLocationCoord(2));
    }

    kneeExtensorLeft->set_ignore_tendon_compliance(true);
    model.addForce(kneeExtensorLeft);
    
    // add a back extensor to controll the upper 4-bar linkage
    Millard2012EquilibriumMuscle* backExtensorRight = new Millard2012EquilibriumMuscle(
                                            "back_extensor_right",
                                            back_extensor_F0, back_extensor_lm0,
                                            back_extensor_lts, pennationAngle);
    
    backExtensorRight->addNewPathPoint("back_extensor_right_origin", *chest,
                                      back_extensor_origin);
    backExtensorRight->addNewPathPoint("back_extensor_right_insertion", *back,
                                      back_extensor_insertion);
    backExtensorRight->set_ignore_tendon_compliance(true);
    model.addForce(backExtensorRight);
    
    // copy right back extensor and use to make left extensor
    Millard2012EquilibriumMuscle* backExtensorLeft =
            new Millard2012EquilibriumMuscle(*backExtensorRight);
    
    backExtensorLeft->setName("back_extensor_left");
    
    PathPointSet& pointsLeft = backExtensorLeft->updGeometryPath()
        .updPathPointSet();
    for (int i=0; i<points.getSize(); ++i) {
        pointsLeft[i].setLocationCoord(2, -1*pointsLeft[i].getLocationCoord(2));
    }
    backExtensorLeft->set_ignore_tendon_compliance(true);
    model.addForce(backExtensorLeft);
    
    
    
    // MUSCLE CONTROLLERS
    //________________________________________________________________________
    
    // specify a piecwise linear function for the muscle excitations
    PiecewiseConstantFunction* x_of_t = new PiecewiseConstantFunction(3, times,
                                                                  excitations);
    
    
    PrescribedController* kneeController = new PrescribedController();
    kneeController->addActuator(*kneeExtensorLeft);
    kneeController->addActuator(*kneeExtensorRight);
    kneeController->prescribeControlForActuator(0, x_of_t);
    kneeController->prescribeControlForActuator(1, x_of_t->clone());
    
    model.addController(kneeController);
    
    PrescribedController* backController = new PrescribedController();
    backController->addActuator(*backExtensorLeft);
    backController->addActuator(*backExtensorRight);
    backController->prescribeControlForActuator(0, x_of_t->clone());
    backController->prescribeControlForActuator(1, x_of_t->clone());
    
    model.addController(backController);

    
    /* You'll find that these muscles can make Luxo Myo stand, but not jump.
     * Jumping will require an assistive device. We'll add two frames for
     * attaching a point to point assistive actuator.
     */
    
    
    // add frames for connecting a back assitance device between the chest
    // and pelvis
    PhysicalOffsetFrame* back_assist_origin_frame = new
        PhysicalOffsetFrame("back_assist_origin",
                            *chest,
                            back_assist_origin_transform);
    
    PhysicalOffsetFrame* back_assist_insertion_frame = new
        PhysicalOffsetFrame("back_assist_insertion",
                            *pelvisBracket,
                            back_assist_insertion_transform);
    
    model.addFrame(back_assist_origin_frame);
    model.addFrame(back_assist_insertion_frame);
    
    // add frames for connecting a knee assistance device between the posterior
    // leg and bottom bracket.
    PhysicalOffsetFrame* knee_assist_origin_frame = new
    PhysicalOffsetFrame("knee_assist_origin",
                        *posteriorLegBar,
                        knee_assist_origin_transform);
    
    PhysicalOffsetFrame* knee_assist_insertion_frame = new
    PhysicalOffsetFrame("knee_assist_insertion",
                        *bottom_bracket,
                        knee_assist_insertion_transform);
    
    model.addFrame(knee_assist_origin_frame);
    model.addFrame(knee_assist_insertion_frame);

    // Temporary: make the frame geometry disappear.
    for (auto& c : model.getComponentList<OpenSim::FrameGeometry>()) {
        const_cast<OpenSim::FrameGeometry*>(&c)->set_scale_factors(
                SimTK::Vec3(0.001, 0.001, 0.001));
    }
    
}
Exemplo n.º 4
0
//==============================================================================
// Test Cases
//==============================================================================
void testTorqueActuator()
{
    using namespace SimTK;
    // start timing
    std::clock_t startTime = std::clock();

    // Setup OpenSim model
    Model *model = new Model;

    // turn off gravity
    model->setGravity(Vec3(0));

    //OpenSim bodies
    const Ground& ground = model->getGround();

    //Cylindrical bodies
    double r = 0.25, h = 1.0;
    double m1 = 1.0, m2 = 2.0;
    Inertia j1 = m1*Inertia::cylinderAlongY(r, h);
    Inertia j2 = m2*Inertia::cylinderAlongY(r, h);

    //OpenSim bodies
    OpenSim::Body* bodyA 
        = new OpenSim::Body("A", m1, Vec3(0), j1);
    
    OpenSim::Body* bodyB 
        = new OpenSim::Body("B", m2, Vec3(0), j2);

    // connect bodyA to ground with 6dofs
    FreeJoint* base = 
        new FreeJoint("base", ground, Vec3(0), Vec3(0), *bodyA, Vec3(0), Vec3(0));

    model->addBody(bodyA);
    model->addJoint(base);

    // connect bodyA to bodyB by a Ball joint
    BallJoint* bInA = new BallJoint("bInA", *bodyA, Vec3(0,-h/2, 0), Vec3(0), 
                           *bodyB, Vec3(0, h/2, 0), Vec3(0));

    model->addBody(bodyB);
    model->addJoint(bInA);

    // specify magnitude and direction of applied torque
    double torqueMag = 2.1234567890;
    Vec3 torqueAxis(1/sqrt(2.0), 0, 1/sqrt(2.0));
    Vec3 torqueInG = torqueMag*torqueAxis;

    State state = model->initSystem();

    model->getMultibodySystem().realize(state, Stage::Dynamics);
    Vector_<SpatialVec>& bodyForces = 
        model->getMultibodySystem().updRigidBodyForces(state, Stage::Dynamics);
    bodyForces.dump("Body Forces before applying torque");
    model->getMatterSubsystem().addInBodyTorque(state, bodyA->getMobilizedBodyIndex(),
        torqueMag*torqueAxis, bodyForces);
    model->getMatterSubsystem().addInBodyTorque(state, bodyB->getMobilizedBodyIndex(),
        -torqueMag*torqueAxis, bodyForces);
    bodyForces.dump("Body Forces after applying torque to bodyA and bodyB");

    model->getMultibodySystem().realize(state, Stage::Acceleration);
    const Vector& udotBody = state.getUDot();
    udotBody.dump("Accelerations due to body forces");

    // clear body forces
    bodyForces *= 0;

    // update mobility forces
    Vector& mobilityForces = model->getMultibodySystem()
        .updMobilityForces(state, Stage::Dynamics);

    // Apply torques as mobility forces of the ball joint
    for(int i=0; i<3; ++i){
        mobilityForces[6+i] = torqueInG[i]; 
    }

    model->getMultibodySystem().realize(state, Stage::Acceleration);
    const Vector& udotMobility = state.getUDot();
    udotMobility.dump("Accelerations due to mobility forces");

    // First make sure that accelerations are not zero accidentally
    ASSERT(udotMobility.norm() != 0.0 || udotBody.norm() != 0.0);
    // Then check if they are equal
    for(int i=0; i<udotMobility.size(); ++i){
        ASSERT_EQUAL(udotMobility[i], udotBody[i], 1.0e-12);
    }

    // clear the mobility forces
    mobilityForces = 0;

    //Now add the actuator to the model and control it to generate the same
    //torque as applied directly to the multibody system (above)

    // Create and add the torque actuator to the model
    TorqueActuator* actuator =
        new TorqueActuator(*bodyA, *bodyB, torqueAxis, true);
    actuator->setName("torque");
    model->addForce(actuator);

    // Create and add a controller to control the actuator
    PrescribedController* controller =  new PrescribedController();
    controller->addActuator(*actuator);
    // Apply torque about torqueAxis
    controller->prescribeControlForActuator("torque", new Constant(torqueMag));

    model->addController(controller);

    /*
    ActuatorPowerProbe* powerProbe = new ActuatorPowerProbe(Array<string>("torque",1),false, 1); 
    powerProbe->setOperation("integrate");
    powerProbe->setInitialConditions(Vector(1, 0.0));
    */

    //model->addProbe(powerProbe);

    model->print("TestTorqueActuatorModel.osim");
    model->setUseVisualizer(false);

    // get a new system and state to reflect additions to the model
    state = model->initSystem();

    model->computeStateVariableDerivatives(state);

    const Vector &udotTorqueActuator = state.getUDot();

    // First make sure that accelerations are not zero accidentally
    ASSERT(udotMobility.norm() != 0.0 || udotTorqueActuator.norm() != 0.0);

    // Then verify that the TorqueActuator also generates the same acceleration
    // as the equivalent applied mobility force
    for(int i=0; i<udotMobility.size(); ++i){
        ASSERT_EQUAL(udotMobility[i], udotTorqueActuator[i], 1.0e-12);
    }

    // determine the initial kinetic energy of the system
    /*double iKE = */model->getMatterSubsystem().calcKineticEnergy(state);

    RungeKuttaMersonIntegrator integrator(model->getMultibodySystem());
    integrator.setAccuracy(integ_accuracy);
    Manager manager(*model,  integrator);

    manager.setInitialTime(0.0);

    double final_t = 1.00;

    manager.setFinalTime(final_t);
    manager.integrate(state);

    model->computeStateVariableDerivatives(state);

    /*double fKE = */model->getMatterSubsystem().calcKineticEnergy(state);

    // Change in system kinetic energy can only be attributable to actuator work
    //double actuatorWork = (powerProbe->getProbeOutputs(state))[0];
    // test that this is true
    //ASSERT_EQUAL(actuatorWork, fKE-iKE, integ_accuracy);

    // Before exiting lets see if copying the spring works
    TorqueActuator* copyOfActuator = actuator->clone();
    ASSERT(*copyOfActuator == *actuator);
    
    // Check that de/serialization works
    Model modelFromFile("TestTorqueActuatorModel.osim");
    ASSERT(modelFromFile == *model, __FILE__, __LINE__,
        "Model from file FAILED to match model in memory.");

    std::cout << " ********** Test TorqueActuator time =  ********** " << 
        1.e3*(std::clock()-startTime)/CLOCKS_PER_SEC << "ms\n" << endl;
}
Exemplo n.º 5
0
int main() {
    Model model;
    model.setName("bicep_curl");
#ifdef VISUALIZE
    model.setUseVisualizer(true);
#endif

    // Create two links, each with a mass of 1 kg, center of mass at the body's
    // origin, and moments and products of inertia of zero.
    OpenSim::Body* humerus = new OpenSim::Body("humerus", 1, Vec3(0), Inertia(0));
    OpenSim::Body* radius  = new OpenSim::Body("radius",  1, Vec3(0), Inertia(0));

    // Connect the bodies with pin joints. Assume each body is 1 m long.
    PinJoint* shoulder = new PinJoint("shoulder",
            // Parent body, location in parent, orientation in parent.
            model.getGround(), Vec3(0), Vec3(0),
            // Child body, location in child, orientation in child.
            *humerus, Vec3(0, 1, 0), Vec3(0));
    PinJoint* elbow = new PinJoint("elbow",
            *humerus, Vec3(0), Vec3(0), *radius, Vec3(0, 1, 0), Vec3(0));

    // Add a muscle that flexes the elbow.
    Millard2012EquilibriumMuscle* biceps = new
        Millard2012EquilibriumMuscle("biceps", 200, 0.6, 0.55, 0);
    biceps->addNewPathPoint("origin",    *humerus, Vec3(0, 0.8, 0));
    biceps->addNewPathPoint("insertion", *radius,  Vec3(0, 0.7, 0));

    // Add a controller that specifies the excitation of the muscle.
    PrescribedController* brain = new PrescribedController();
    brain->addActuator(*biceps);
    // Muscle excitation is 0.3 for the first 0.5 seconds, then increases to 1.
    brain->prescribeControlForActuator("biceps",
            new StepFunction(0.5, 3, 0.3, 1));

    // Add components to the model.
    model.addBody(humerus);    model.addBody(radius);
    model.addJoint(shoulder);  model.addJoint(elbow);
    model.addForce(biceps);
    model.addController(brain);

    // Add a console reporter to print the muscle fiber force and elbow angle.
    ConsoleReporter* reporter = new ConsoleReporter();
    reporter->set_report_time_interval(1.0);
    reporter->addToReport(biceps->getOutput("fiber_force"));
    reporter->addToReport(
        elbow->getCoordinate(PinJoint::Coord::RotationZ).getOutput("value"),
        "elbow_angle");
    model.addComponent(reporter);

    // Add display geometry.
    Ellipsoid bodyGeometry(0.1, 0.5, 0.1);
    bodyGeometry.setColor(Gray);
    // Attach an ellipsoid to a frame located at the center of each body.
    PhysicalOffsetFrame* humerusCenter = new PhysicalOffsetFrame(
        "humerusCenter", *humerus, Transform(Vec3(0, 0.5, 0)));
    humerus->addComponent(humerusCenter);
    humerusCenter->attachGeometry(bodyGeometry.clone());
    PhysicalOffsetFrame* radiusCenter = new PhysicalOffsetFrame(
        "radiusCenter", *radius, Transform(Vec3(0, 0.5, 0)));
    radius->addComponent(radiusCenter);
    radiusCenter->attachGeometry(bodyGeometry.clone());

    // Configure the model.
    State& state = model.initSystem();
    // Fix the shoulder at its default angle and begin with the elbow flexed.
    shoulder->getCoordinate().setLocked(state, true);
    elbow->getCoordinate().setValue(state, 0.5 * Pi);
    model.equilibrateMuscles(state);

    // Configure the visualizer.
#ifdef VISUALIZE
    model.updMatterSubsystem().setShowDefaultGeometry(true);
    Visualizer& viz = model.updVisualizer().updSimbodyVisualizer();
    viz.setBackgroundType(viz.SolidColor);
    viz.setBackgroundColor(White);
#endif

    // Simulate.
    simulate(model, state, 10.0);

    return 0;
};