Exemplo n.º 1
0
void QgsPolygon3DSymbolEntity::addEntityForSelectedPolygons( const Qgs3DMapSettings &map, QgsVectorLayer *layer, const QgsPolygon3DSymbol &symbol )
{
  // build the default material
  Qt3DExtras::QPhongMaterial *mat = material( symbol );

  // update the material with selection colors
  mat->setDiffuse( map.selectionColor() );
  mat->setAmbient( map.selectionColor().darker() );

  // build a transform function
  Qt3DCore::QTransform *tform = new Qt3DCore::QTransform;
  tform->setTranslation( QVector3D( 0, 0, 0 ) );

  // build the feature request to select features
  QgsFeatureRequest req;
  req.setDestinationCrs( map.crs() );
  req.setSubsetOfAttributes( _requiredAttributes( symbol, layer ), layer->fields() );
  req.setFilterFids( layer->selectedFeatureIds() );

  // build the entity
  QgsPolygon3DSymbolEntityNode *entity = new QgsPolygon3DSymbolEntityNode( map, layer, symbol, req );
  entity->addComponent( mat );
  entity->addComponent( tform );
  entity->setParent( this );
}
Exemplo n.º 2
0
void QgsLine3DSymbolEntity::addEntityForNotSelectedLines( const Qgs3DMapSettings &map, QgsVectorLayer *layer, const QgsLine3DSymbol &symbol )
{
  // build the default material
  Qt3DExtras::QPhongMaterial *mat = material( symbol );

  // build the feature request to select features
  QgsFeatureRequest req;
  req.setDestinationCrs( map.crs(), map.transformContext() );

  QgsFeatureIds notSelected = layer->allFeatureIds();
  notSelected.subtract( layer->selectedFeatureIds() );
  req.setFilterFids( notSelected );

  // build the entity
  QgsLine3DSymbolEntityNode *entity = new QgsLine3DSymbolEntityNode( map, layer, symbol, req );
  entity->addComponent( mat );
  entity->setParent( this );
}
Exemplo n.º 3
0
void QgsLine3DSymbolEntity::addEntityForSelectedLines( const Qgs3DMapSettings &map, QgsVectorLayer *layer, const QgsLine3DSymbol &symbol )
{
  // build the default material
  Qt3DExtras::QPhongMaterial *mat = material( symbol );

  // update the material with selection colors
  mat->setDiffuse( map.selectionColor() );
  mat->setAmbient( map.selectionColor().darker() );

  // build the feature request to select features
  QgsFeatureRequest req;
  req.setDestinationCrs( map.crs(), map.transformContext() );
  req.setFilterFids( layer->selectedFeatureIds() );

  // build the entity
  QgsLine3DSymbolEntityNode *entity = new QgsLine3DSymbolEntityNode( map, layer, symbol, req );
  entity->addComponent( mat );
  entity->setParent( this );
}
Exemplo n.º 4
0
Qt3DCore::QEntity *QgsRuleBased3DRenderer::createEntity( const Qgs3DMapSettings &map ) const
{
  QgsVectorLayer *vl = layer();

  if ( !vl )
    return nullptr;

  Qgs3DRenderContext context( map );

  QgsExpressionContext exprContext( Qgs3DUtils::globalProjectLayerExpressionContext( vl ) );
  exprContext.setFields( vl->fields() );
  context.setExpressionContext( exprContext );

  RuleToHandlerMap handlers;
  mRootRule->createHandlers( vl, handlers );

  QSet<QString> attributeNames;
  mRootRule->prepare( context, attributeNames, handlers );

  QgsFeatureRequest req;
  req.setDestinationCrs( map.crs(), map.transformContext() );
  req.setSubsetOfAttributes( attributeNames, vl->fields() );

  QgsFeature f;
  QgsFeatureIterator fi = vl->getFeatures( req );
  while ( fi.nextFeature( f ) )
  {
    context.expressionContext().setFeature( f );
    mRootRule->registerFeature( f, context, handlers );
  }

  Qt3DCore::QEntity *entity = new Qt3DCore::QEntity;
  for ( QgsFeature3DHandler *handler : handlers.values() )
    handler->finalize( entity, context );

  qDeleteAll( handlers.values() );

  return entity;

}
Exemplo n.º 5
0
int QgsZonalStatistics::calculateStatistics( QgsFeedback *feedback )
{
  if ( !mPolygonLayer || mPolygonLayer->geometryType() != QgsWkbTypes::PolygonGeometry )
  {
    return 1;
  }

  QgsVectorDataProvider *vectorProvider = mPolygonLayer->dataProvider();
  if ( !vectorProvider )
  {
    return 2;
  }

  if ( !mRasterInterface )
  {
    return 3;
  }

  if ( mRasterInterface->bandCount() < mRasterBand )
  {
    return 4;
  }

  //get geometry info about raster layer
  int nCellsXProvider = mRasterInterface->xSize();
  int nCellsYProvider = mRasterInterface->ySize();

  QgsRectangle rasterBBox = mRasterInterface->extent();

  //add the new fields to the provider
  QList<QgsField> newFieldList;
  QString countFieldName;
  if ( mStatistics & QgsZonalStatistics::Count )
  {
    countFieldName = getUniqueFieldName( mAttributePrefix + "count", newFieldList );
    QgsField countField( countFieldName, QVariant::Double, QStringLiteral( "double precision" ) );
    newFieldList.push_back( countField );
  }
  QString sumFieldName;
  if ( mStatistics & QgsZonalStatistics::Sum )
  {
    sumFieldName = getUniqueFieldName( mAttributePrefix + "sum", newFieldList );
    QgsField sumField( sumFieldName, QVariant::Double, QStringLiteral( "double precision" ) );
    newFieldList.push_back( sumField );
  }
  QString meanFieldName;
  if ( mStatistics & QgsZonalStatistics::Mean )
  {
    meanFieldName = getUniqueFieldName( mAttributePrefix + "mean", newFieldList );
    QgsField meanField( meanFieldName, QVariant::Double, QStringLiteral( "double precision" ) );
    newFieldList.push_back( meanField );
  }
  QString medianFieldName;
  if ( mStatistics & QgsZonalStatistics::Median )
  {
    medianFieldName = getUniqueFieldName( mAttributePrefix + "median", newFieldList );
    QgsField medianField( medianFieldName, QVariant::Double, QStringLiteral( "double precision" ) );
    newFieldList.push_back( medianField );
  }
  QString stdevFieldName;
  if ( mStatistics & QgsZonalStatistics::StDev )
  {
    stdevFieldName = getUniqueFieldName( mAttributePrefix + "stdev", newFieldList );
    QgsField stdField( stdevFieldName, QVariant::Double, QStringLiteral( "double precision" ) );
    newFieldList.push_back( stdField );
  }
  QString minFieldName;
  if ( mStatistics & QgsZonalStatistics::Min )
  {
    minFieldName = getUniqueFieldName( mAttributePrefix + "min", newFieldList );
    QgsField minField( minFieldName, QVariant::Double, QStringLiteral( "double precision" ) );
    newFieldList.push_back( minField );
  }
  QString maxFieldName;
  if ( mStatistics & QgsZonalStatistics::Max )
  {
    maxFieldName = getUniqueFieldName( mAttributePrefix + "max", newFieldList );
    QgsField maxField( maxFieldName, QVariant::Double, QStringLiteral( "double precision" ) );
    newFieldList.push_back( maxField );
  }
  QString rangeFieldName;
  if ( mStatistics & QgsZonalStatistics::Range )
  {
    rangeFieldName = getUniqueFieldName( mAttributePrefix + "range", newFieldList );
    QgsField rangeField( rangeFieldName, QVariant::Double, QStringLiteral( "double precision" ) );
    newFieldList.push_back( rangeField );
  }
  QString minorityFieldName;
  if ( mStatistics & QgsZonalStatistics::Minority )
  {
    minorityFieldName = getUniqueFieldName( mAttributePrefix + "minority", newFieldList );
    QgsField minorityField( minorityFieldName, QVariant::Double, QStringLiteral( "double precision" ) );
    newFieldList.push_back( minorityField );
  }
  QString majorityFieldName;
  if ( mStatistics & QgsZonalStatistics::Majority )
  {
    majorityFieldName = getUniqueFieldName( mAttributePrefix + "majority", newFieldList );
    QgsField majField( majorityFieldName, QVariant::Double, QStringLiteral( "double precision" ) );
    newFieldList.push_back( majField );
  }
  QString varietyFieldName;
  if ( mStatistics & QgsZonalStatistics::Variety )
  {
    varietyFieldName = getUniqueFieldName( mAttributePrefix + "variety", newFieldList );
    QgsField varietyField( varietyFieldName, QVariant::Int, QStringLiteral( "int" ) );
    newFieldList.push_back( varietyField );
  }
  QString varianceFieldName;
  if ( mStatistics & QgsZonalStatistics::Variance )
  {
    varianceFieldName = getUniqueFieldName( mAttributePrefix + "variance", newFieldList );
    QgsField varianceField( varianceFieldName, QVariant::Double, QStringLiteral( "double precision" ) );
    newFieldList.push_back( varianceField );
  }
  vectorProvider->addAttributes( newFieldList );

  //index of the new fields
  int countIndex = mStatistics & QgsZonalStatistics::Count ? vectorProvider->fieldNameIndex( countFieldName ) : -1;
  int sumIndex = mStatistics & QgsZonalStatistics::Sum ? vectorProvider->fieldNameIndex( sumFieldName ) : -1;
  int meanIndex = mStatistics & QgsZonalStatistics::Mean ? vectorProvider->fieldNameIndex( meanFieldName ) : -1;
  int medianIndex = mStatistics & QgsZonalStatistics::Median ? vectorProvider->fieldNameIndex( medianFieldName ) : -1;
  int stdevIndex = mStatistics & QgsZonalStatistics::StDev ? vectorProvider->fieldNameIndex( stdevFieldName ) : -1;
  int minIndex = mStatistics & QgsZonalStatistics::Min ? vectorProvider->fieldNameIndex( minFieldName ) : -1;
  int maxIndex = mStatistics & QgsZonalStatistics::Max ? vectorProvider->fieldNameIndex( maxFieldName ) : -1;
  int rangeIndex = mStatistics & QgsZonalStatistics::Range ? vectorProvider->fieldNameIndex( rangeFieldName ) : -1;
  int minorityIndex = mStatistics & QgsZonalStatistics::Minority ? vectorProvider->fieldNameIndex( minorityFieldName ) : -1;
  int majorityIndex = mStatistics & QgsZonalStatistics::Majority ? vectorProvider->fieldNameIndex( majorityFieldName ) : -1;
  int varietyIndex = mStatistics & QgsZonalStatistics::Variety ? vectorProvider->fieldNameIndex( varietyFieldName ) : -1;
  int varianceIndex = mStatistics & QgsZonalStatistics::Variance ? vectorProvider->fieldNameIndex( varianceFieldName ) : -1;

  if ( ( mStatistics & QgsZonalStatistics::Count && countIndex == -1 )
       || ( mStatistics & QgsZonalStatistics::Sum && sumIndex == -1 )
       || ( mStatistics & QgsZonalStatistics::Mean && meanIndex == -1 )
       || ( mStatistics & QgsZonalStatistics::Median && medianIndex == -1 )
       || ( mStatistics & QgsZonalStatistics::StDev && stdevIndex == -1 )
       || ( mStatistics & QgsZonalStatistics::Min && minIndex == -1 )
       || ( mStatistics & QgsZonalStatistics::Max && maxIndex == -1 )
       || ( mStatistics & QgsZonalStatistics::Range && rangeIndex == -1 )
       || ( mStatistics & QgsZonalStatistics::Minority && minorityIndex == -1 )
       || ( mStatistics & QgsZonalStatistics::Majority && majorityIndex == -1 )
       || ( mStatistics & QgsZonalStatistics::Variety && varietyIndex == -1 )
       || ( mStatistics & QgsZonalStatistics::Variance && varianceIndex == -1 )
     )
  {
    //failed to create a required field
    return 8;
  }

  //progress dialog
  long featureCount = vectorProvider->featureCount();

  //iterate over each polygon
  QgsFeatureRequest request;
  request.setNoAttributes();
  request.setDestinationCrs( mRasterCrs, QgsProject::instance()->transformContext() );
  QgsFeatureIterator fi = vectorProvider->getFeatures( request );
  QgsFeature f;

  bool statsStoreValues = ( mStatistics & QgsZonalStatistics::Median ) ||
                          ( mStatistics & QgsZonalStatistics::StDev ) ||
                          ( mStatistics & QgsZonalStatistics::Variance );
  bool statsStoreValueCount = ( mStatistics & QgsZonalStatistics::Minority ) ||
                              ( mStatistics & QgsZonalStatistics::Majority );

  FeatureStats featureStats( statsStoreValues, statsStoreValueCount );
  int featureCounter = 0;

  QgsChangedAttributesMap changeMap;
  while ( fi.nextFeature( f ) )
  {
    if ( feedback && feedback->isCanceled() )
    {
      break;
    }

    if ( feedback )
    {
      feedback->setProgress( 100.0 * static_cast< double >( featureCounter ) / featureCount );
    }

    if ( !f.hasGeometry() )
    {
      ++featureCounter;
      continue;
    }
    QgsGeometry featureGeometry = f.geometry();

    QgsRectangle featureRect = featureGeometry.boundingBox().intersect( rasterBBox );
    if ( featureRect.isEmpty() )
    {
      ++featureCounter;
      continue;
    }

    int nCellsX, nCellsY;
    QgsRectangle rasterBlockExtent;
    QgsRasterAnalysisUtils::cellInfoForBBox( rasterBBox, featureRect, mCellSizeX, mCellSizeY, nCellsX, nCellsY, nCellsXProvider, nCellsYProvider, rasterBlockExtent );

    featureStats.reset();
    QgsRasterAnalysisUtils::statisticsFromMiddlePointTest( mRasterInterface, mRasterBand, featureGeometry, nCellsX, nCellsY, mCellSizeX, mCellSizeY,
    rasterBlockExtent, [ &featureStats ]( double value ) { featureStats.addValue( value ); } );

    if ( featureStats.count <= 1 )
    {
      //the cell resolution is probably larger than the polygon area. We switch to precise pixel - polygon intersection in this case
      featureStats.reset();
      QgsRasterAnalysisUtils::statisticsFromPreciseIntersection( mRasterInterface, mRasterBand, featureGeometry, nCellsX, nCellsY, mCellSizeX, mCellSizeY,
      rasterBlockExtent, [ &featureStats ]( double value, double weight ) { featureStats.addValue( value, weight ); } );
    }

    //write the statistics value to the vector data provider
    QgsAttributeMap changeAttributeMap;
    if ( mStatistics & QgsZonalStatistics::Count )
      changeAttributeMap.insert( countIndex, QVariant( featureStats.count ) );
    if ( mStatistics & QgsZonalStatistics::Sum )
      changeAttributeMap.insert( sumIndex, QVariant( featureStats.sum ) );
    if ( featureStats.count > 0 )
    {
      double mean = featureStats.sum / featureStats.count;
      if ( mStatistics & QgsZonalStatistics::Mean )
        changeAttributeMap.insert( meanIndex, QVariant( mean ) );
      if ( mStatistics & QgsZonalStatistics::Median )
      {
        std::sort( featureStats.values.begin(), featureStats.values.end() );
        int size = featureStats.values.count();
        bool even = ( size % 2 ) < 1;
        double medianValue;
        if ( even )
        {
          medianValue = ( featureStats.values.at( size / 2 - 1 ) + featureStats.values.at( size / 2 ) ) / 2;
        }
        else //odd
        {
          medianValue = featureStats.values.at( ( size + 1 ) / 2 - 1 );
        }
        changeAttributeMap.insert( medianIndex, QVariant( medianValue ) );
      }
      if ( mStatistics & QgsZonalStatistics::StDev || mStatistics & QgsZonalStatistics::Variance )
      {
        double sumSquared = 0;
        for ( int i = 0; i < featureStats.values.count(); ++i )
        {
          double diff = featureStats.values.at( i ) - mean;
          sumSquared += diff * diff;
        }
        double variance = sumSquared / featureStats.values.count();
        if ( mStatistics & QgsZonalStatistics::StDev )
        {
          double stdev = std::pow( variance, 0.5 );
          changeAttributeMap.insert( stdevIndex, QVariant( stdev ) );
        }
        if ( mStatistics & QgsZonalStatistics::Variance )
          changeAttributeMap.insert( varianceIndex, QVariant( variance ) );
      }
      if ( mStatistics & QgsZonalStatistics::Min )
        changeAttributeMap.insert( minIndex, QVariant( featureStats.min ) );
      if ( mStatistics & QgsZonalStatistics::Max )
        changeAttributeMap.insert( maxIndex, QVariant( featureStats.max ) );
      if ( mStatistics & QgsZonalStatistics::Range )
        changeAttributeMap.insert( rangeIndex, QVariant( featureStats.max - featureStats.min ) );
      if ( mStatistics & QgsZonalStatistics::Minority || mStatistics & QgsZonalStatistics::Majority )
      {
        QList<int> vals = featureStats.valueCount.values();
        std::sort( vals.begin(), vals.end() );
        if ( mStatistics & QgsZonalStatistics::Minority )
        {
          double minorityKey = featureStats.valueCount.key( vals.first() );
          changeAttributeMap.insert( minorityIndex, QVariant( minorityKey ) );
        }
        if ( mStatistics & QgsZonalStatistics::Majority )
        {
          double majKey = featureStats.valueCount.key( vals.last() );
          changeAttributeMap.insert( majorityIndex, QVariant( majKey ) );
        }
      }
      if ( mStatistics & QgsZonalStatistics::Variety )
        changeAttributeMap.insert( varietyIndex, QVariant( featureStats.valueCount.count() ) );
    }

    changeMap.insert( f.id(), changeAttributeMap );
    ++featureCounter;
  }

  vectorProvider->changeAttributeValues( changeMap );

  if ( feedback )
  {
    feedback->setProgress( 100 );
  }

  mPolygonLayer->updateFields();

  if ( feedback && feedback->isCanceled() )
  {
    return 9;
  }

  return 0;
}
Exemplo n.º 6
0
QVariantMap QgsSplitWithLinesAlgorithm::processAlgorithm( const QVariantMap &parameters, QgsProcessingContext &context, QgsProcessingFeedback *feedback )
{
  std::unique_ptr< QgsFeatureSource > source( parameterAsSource( parameters, QStringLiteral( "INPUT" ), context ) );
  if ( !source )
    throw QgsProcessingException( invalidSourceError( parameters, QStringLiteral( "INPUT" ) ) );

  std::unique_ptr< QgsFeatureSource > linesSource( parameterAsSource( parameters, QStringLiteral( "LINES" ), context ) );
  if ( !linesSource )
    throw QgsProcessingException( invalidSourceError( parameters, QStringLiteral( "LINES" ) ) );

  bool sameLayer = parameters.value( QStringLiteral( "INPUT" ) ) == parameters.value( QStringLiteral( "LINES" ) );

  QString dest;
  std::unique_ptr< QgsFeatureSink > sink( parameterAsSink( parameters, QStringLiteral( "OUTPUT" ), context, dest, source->fields(),
                                          QgsWkbTypes::multiType( source->wkbType() ),  source->sourceCrs() ) );
  if ( !sink )
    throw QgsProcessingException( invalidSinkError( parameters, QStringLiteral( "OUTPUT" ) ) );

  QgsSpatialIndex spatialIndex;
  QMap< QgsFeatureId, QgsGeometry > splitGeoms;
  QgsFeatureRequest request;
  request.setSubsetOfAttributes( QgsAttributeList() );
  request.setDestinationCrs( source->sourceCrs(), context.transformContext() );

  QgsFeatureIterator splitLines = linesSource->getFeatures( request );
  QgsFeature aSplitFeature;
  while ( splitLines.nextFeature( aSplitFeature ) )
  {
    if ( feedback->isCanceled() )
    {
      break;
    }

    splitGeoms.insert( aSplitFeature.id(), aSplitFeature.geometry() );
    spatialIndex.addFeature( aSplitFeature );
  }

  QgsFeature outFeat;
  QgsFeatureIterator features = source->getFeatures();

  double step = source->featureCount() > 0 ? 100.0 / source->featureCount() : 1;
  int i = 0;
  QgsFeature inFeatureA;
  while ( features.nextFeature( inFeatureA ) )
  {
    i++;
    if ( feedback->isCanceled() )
    {
      break;
    }

    if ( !inFeatureA.hasGeometry() )
    {
      sink->addFeature( inFeatureA, QgsFeatureSink::FastInsert );
      continue;
    }

    QgsGeometry inGeom = inFeatureA.geometry();
    outFeat.setAttributes( inFeatureA.attributes() );

    QVector< QgsGeometry > inGeoms = inGeom.asGeometryCollection();

    const QgsFeatureIds lines = spatialIndex.intersects( inGeom.boundingBox() ).toSet();
    if ( !lines.empty() ) // has intersection of bounding boxes
    {
      QVector< QgsGeometry > splittingLines;

      // use prepared geometries for faster intersection tests
      std::unique_ptr< QgsGeometryEngine > engine;

      for ( QgsFeatureId line : lines )
      {
        // check if trying to self-intersect
        if ( sameLayer && inFeatureA.id() == line )
          continue;

        QgsGeometry splitGeom = splitGeoms.value( line );
        if ( !engine )
        {
          engine.reset( QgsGeometry::createGeometryEngine( inGeom.constGet() ) );
          engine->prepareGeometry();
        }

        if ( engine->intersects( splitGeom.constGet() ) )
        {
          QVector< QgsGeometry > splitGeomParts = splitGeom.asGeometryCollection();
          splittingLines.append( splitGeomParts );
        }
      }

      if ( !splittingLines.empty() )
      {
        for ( const QgsGeometry &splitGeom : qgis::as_const( splittingLines ) )
        {
          QVector<QgsPointXY> splitterPList;
          QVector< QgsGeometry > outGeoms;

          // use prepared geometries for faster intersection tests
          std::unique_ptr< QgsGeometryEngine > splitGeomEngine( QgsGeometry::createGeometryEngine( splitGeom.constGet() ) );
          splitGeomEngine->prepareGeometry();
          while ( !inGeoms.empty() )
          {
            if ( feedback->isCanceled() )
            {
              break;
            }

            QgsGeometry inGeom = inGeoms.takeFirst();
            if ( !inGeom )
              continue;

            if ( splitGeomEngine->intersects( inGeom.constGet() ) )
            {
              QgsGeometry before = inGeom;
              if ( splitterPList.empty() )
              {
                const QgsCoordinateSequence sequence = splitGeom.constGet()->coordinateSequence();
                for ( const QgsRingSequence &part : sequence )
                {
                  for ( const QgsPointSequence &ring : part )
                  {
                    for ( const QgsPoint &pt : ring )
                    {
                      splitterPList << QgsPointXY( pt );
                    }
                  }
                }
              }

              QVector< QgsGeometry > newGeometries;
              QVector<QgsPointXY> topologyTestPoints;
              QgsGeometry::OperationResult result = inGeom.splitGeometry( splitterPList, newGeometries, false, topologyTestPoints );

              // splitGeometry: If there are several intersections
              // between geometry and splitLine, only the first one is considered.
              if ( result == QgsGeometry::Success ) // split occurred
              {
                if ( inGeom.isGeosEqual( before ) )
                {
                  // bug in splitGeometry: sometimes it returns 0 but
                  // the geometry is unchanged
                  outGeoms.append( inGeom );
                }
                else
                {
                  inGeoms.append( inGeom );
                  inGeoms.append( newGeometries );
                }
              }
              else
              {
                outGeoms.append( inGeom );
              }
            }
            else
            {
              outGeoms.append( inGeom );
            }

          }
          inGeoms = outGeoms;
        }
      }
    }

    QVector< QgsGeometry > parts;
    for ( const QgsGeometry &aGeom : qgis::as_const( inGeoms ) )
    {
      if ( feedback->isCanceled() )
      {
        break;
      }

      bool passed = true;
      if ( QgsWkbTypes::geometryType( aGeom.wkbType() ) == QgsWkbTypes::LineGeometry )
      {
        int numPoints = aGeom.constGet()->nCoordinates();

        if ( numPoints <= 2 )
        {
          if ( numPoints == 2 )
            passed = !static_cast< const QgsCurve * >( aGeom.constGet() )->isClosed(); // tests if vertex 0 = vertex 1
          else
            passed = false; // sometimes splitting results in lines of zero length
        }
      }

      if ( passed )
        parts.append( aGeom );
    }

    for ( const QgsGeometry &g : parts )
    {
      outFeat.setGeometry( g );
      sink->addFeature( outFeat, QgsFeatureSink::FastInsert );
    }

    feedback->setProgress( i * step );
  }

  QVariantMap outputs;
  outputs.insert( QStringLiteral( "OUTPUT" ), dest );
  return outputs;
}
QVariantMap QgsLineIntersectionAlgorithm::processAlgorithm( const QVariantMap &parameters, QgsProcessingContext &context, QgsProcessingFeedback *feedback )
{
  std::unique_ptr< QgsFeatureSource > sourceA( parameterAsSource( parameters, QStringLiteral( "INPUT" ), context ) );
  if ( !sourceA )
    throw QgsProcessingException( invalidSourceError( parameters, QStringLiteral( "INPUT" ) ) );

  std::unique_ptr< QgsFeatureSource > sourceB( parameterAsSource( parameters, QStringLiteral( "INTERSECT" ), context ) );
  if ( !sourceB )
    throw QgsProcessingException( invalidSourceError( parameters, QStringLiteral( "INTERSECT" ) ) );

  const QStringList fieldsA = parameterAsFields( parameters, QStringLiteral( "INPUT_FIELDS" ), context );
  const QStringList fieldsB = parameterAsFields( parameters, QStringLiteral( "INTERSECT_FIELDS" ), context );

  QgsAttributeList fieldIndicesA = QgsProcessingUtils::fieldNamesToIndices( fieldsA, sourceA->fields() );
  QgsAttributeList fieldIndicesB = QgsProcessingUtils::fieldNamesToIndices( fieldsB, sourceB->fields() );

  QString intersectFieldsPrefix = parameterAsString( parameters, QStringLiteral( "INTERSECT_FIELDS_PREFIX" ), context );
  QgsFields outFields = QgsProcessingUtils::combineFields(
                          QgsProcessingUtils::indicesToFields( fieldIndicesA, sourceA->fields() ),
                          QgsProcessingUtils::indicesToFields( fieldIndicesB, sourceB->fields() ),
                          intersectFieldsPrefix );

  QString dest;
  std::unique_ptr< QgsFeatureSink > sink( parameterAsSink( parameters, QStringLiteral( "OUTPUT" ), context, dest, outFields, QgsWkbTypes::Point,  sourceA->sourceCrs(), QgsFeatureSink::RegeneratePrimaryKey ) );
  if ( !sink )
    throw QgsProcessingException( invalidSinkError( parameters, QStringLiteral( "OUTPUT" ) ) );

  QgsSpatialIndex spatialIndex( sourceB->getFeatures( QgsFeatureRequest().setNoAttributes().setDestinationCrs( sourceA->sourceCrs(), context.transformContext() ) ), feedback );
  QgsFeature outFeature;
  QgsFeatureIterator features = sourceA->getFeatures( QgsFeatureRequest().setSubsetOfAttributes( fieldIndicesA ) );
  double step = sourceA->featureCount() > 0 ? 100.0 / sourceA->featureCount() : 1;
  int i = 0;
  QgsFeature inFeatureA;
  while ( features.nextFeature( inFeatureA ) )
  {
    i++;
    if ( feedback->isCanceled() )
    {
      break;
    }

    if ( !inFeatureA.hasGeometry() )
      continue;

    QgsGeometry inGeom = inFeatureA.geometry();
    QgsFeatureIds lines = spatialIndex.intersects( inGeom.boundingBox() ).toSet();
    if ( !lines.empty() )
    {
      // use prepared geometries for faster intersection tests
      std::unique_ptr< QgsGeometryEngine > engine( QgsGeometry::createGeometryEngine( inGeom.constGet() ) );
      engine->prepareGeometry();

      QgsFeatureRequest request = QgsFeatureRequest().setFilterFids( lines );
      request.setDestinationCrs( sourceA->sourceCrs(), context.transformContext() );
      request.setSubsetOfAttributes( fieldIndicesB );

      QgsFeature inFeatureB;
      QgsFeatureIterator featuresB = sourceB->getFeatures( request );
      while ( featuresB.nextFeature( inFeatureB ) )
      {
        if ( feedback->isCanceled() )
        {
          break;
        }

        QgsGeometry tmpGeom = inFeatureB.geometry();
        if ( engine->intersects( tmpGeom.constGet() ) )
        {
          QgsMultiPointXY points;
          QgsGeometry intersectGeom = inGeom.intersection( tmpGeom );
          QgsAttributes outAttributes;
          for ( int a : qgis::as_const( fieldIndicesA ) )
          {
            outAttributes.append( inFeatureA.attribute( a ) );
          }
          for ( int b : qgis::as_const( fieldIndicesB ) )
          {
            outAttributes.append( inFeatureB.attribute( b ) );
          }
          if ( QgsWkbTypes::flatType( intersectGeom.wkbType() ) == QgsWkbTypes::GeometryCollection )
          {
            const QVector<QgsGeometry> geomCollection = intersectGeom.asGeometryCollection();
            for ( const QgsGeometry &part : geomCollection )
            {
              if ( part.type() == QgsWkbTypes::PointGeometry )
              {
                if ( part.isMultipart() )
                {
                  points = part.asMultiPoint();
                }
                else
                {
                  points.append( part.asPoint() );
                }
              }
            }
          }
          else if ( intersectGeom.type() == QgsWkbTypes::PointGeometry )
          {
            if ( intersectGeom.isMultipart() )
            {
              points = intersectGeom.asMultiPoint();
            }
            else
            {
              points.append( intersectGeom.asPoint() );
            }
          }
          for ( const QgsPointXY &j : qgis::as_const( points ) )
          {
            outFeature.setGeometry( QgsGeometry::fromPointXY( j ) );
            outFeature.setAttributes( outAttributes );
            sink->addFeature( outFeature, QgsFeatureSink::FastInsert );
          }
        }
      }
    }

    feedback->setProgress( i * step );

  }

  QVariantMap outputs;
  outputs.insert( QStringLiteral( "OUTPUT" ), dest );
  return outputs;
}
Exemplo n.º 8
0
void QgsOverlayUtils::difference( const QgsFeatureSource &sourceA, const QgsFeatureSource &sourceB, QgsFeatureSink &sink, QgsProcessingContext &context, QgsProcessingFeedback *feedback, int &count, int totalCount, QgsOverlayUtils::DifferenceOutput outputAttrs )
{
  QgsFeatureRequest requestB;
  requestB.setSubsetOfAttributes( QgsAttributeList() );
  if ( outputAttrs != OutputBA )
    requestB.setDestinationCrs( sourceA.sourceCrs(), context.transformContext() );
  QgsSpatialIndex indexB( sourceB.getFeatures( requestB ), feedback );

  int fieldsCountA = sourceA.fields().count();
  int fieldsCountB = sourceB.fields().count();
  QgsAttributes attrs;
  attrs.resize( outputAttrs == OutputA ? fieldsCountA : ( fieldsCountA + fieldsCountB ) );

  if ( totalCount == 0 )
    totalCount = 1;  // avoid division by zero

  QgsFeature featA;
  QgsFeatureRequest requestA;
  if ( outputAttrs == OutputBA )
    requestA.setDestinationCrs( sourceB.sourceCrs(), context.transformContext() );
  QgsFeatureIterator fitA = sourceA.getFeatures( requestA );
  while ( fitA.nextFeature( featA ) )
  {
    if ( feedback->isCanceled() )
      break;

    if ( featA.hasGeometry() )
    {
      QgsGeometry geom( featA.geometry() );
      QgsFeatureIds intersects = indexB.intersects( geom.boundingBox() ).toSet();

      QgsFeatureRequest request;
      request.setFilterFids( intersects );
      request.setSubsetOfAttributes( QgsAttributeList() );
      if ( outputAttrs != OutputBA )
        request.setDestinationCrs( sourceA.sourceCrs(), context.transformContext() );

      std::unique_ptr< QgsGeometryEngine > engine;
      if ( !intersects.isEmpty() )
      {
        // use prepared geometries for faster intersection tests
        engine.reset( QgsGeometry::createGeometryEngine( geom.constGet() ) );
        engine->prepareGeometry();
      }

      QVector<QgsGeometry> geometriesB;
      QgsFeature featB;
      QgsFeatureIterator fitB = sourceB.getFeatures( request );
      while ( fitB.nextFeature( featB ) )
      {
        if ( feedback->isCanceled() )
          break;

        if ( engine->intersects( featB.geometry().constGet() ) )
          geometriesB << featB.geometry();
      }

      if ( !geometriesB.isEmpty() )
      {
        QgsGeometry geomB = QgsGeometry::unaryUnion( geometriesB );
        geom = geom.difference( geomB );
      }

      if ( !sanitizeDifferenceResult( geom ) )
        continue;

      const QgsAttributes attrsA( featA.attributes() );
      switch ( outputAttrs )
      {
        case OutputA:
          attrs = attrsA;
          break;
        case OutputAB:
          for ( int i = 0; i < fieldsCountA; ++i )
            attrs[i] = attrsA[i];
          break;
        case OutputBA:
          for ( int i = 0; i < fieldsCountA; ++i )
            attrs[i + fieldsCountB] = attrsA[i];
          break;
      }

      QgsFeature outFeat;
      outFeat.setGeometry( geom );
      outFeat.setAttributes( attrs );
      sink.addFeature( outFeat, QgsFeatureSink::FastInsert );
    }
    else
    {
      // TODO: should we write out features that do not have geometry?
      sink.addFeature( featA, QgsFeatureSink::FastInsert );
    }

    ++count;
    feedback->setProgress( count / ( double ) totalCount * 100. );
  }
}
Exemplo n.º 9
0
void QgsOverlayUtils::intersection( const QgsFeatureSource &sourceA, const QgsFeatureSource &sourceB, QgsFeatureSink &sink, QgsProcessingContext &context, QgsProcessingFeedback *feedback, int &count, int totalCount, const QList<int> &fieldIndicesA, const QList<int> &fieldIndicesB )
{
  QgsWkbTypes::GeometryType geometryType = QgsWkbTypes::geometryType( QgsWkbTypes::multiType( sourceA.wkbType() ) );
  int attrCount = fieldIndicesA.count() + fieldIndicesB.count();

  QgsFeatureRequest request;
  request.setSubsetOfAttributes( QgsAttributeList() );
  request.setDestinationCrs( sourceA.sourceCrs(), context.transformContext() );

  QgsFeature outFeat;
  QgsSpatialIndex indexB( sourceB.getFeatures( request ), feedback );

  if ( totalCount == 0 )
    totalCount = 1;  // avoid division by zero

  QgsFeature featA;
  QgsFeatureIterator fitA = sourceA.getFeatures( QgsFeatureRequest().setSubsetOfAttributes( fieldIndicesA ) );
  while ( fitA.nextFeature( featA ) )
  {
    if ( feedback->isCanceled() )
      break;

    if ( !featA.hasGeometry() )
      continue;

    QgsGeometry geom( featA.geometry() );
    QgsFeatureIds intersects = indexB.intersects( geom.boundingBox() ).toSet();

    QgsFeatureRequest request;
    request.setFilterFids( intersects );
    request.setDestinationCrs( sourceA.sourceCrs(), context.transformContext() );
    request.setSubsetOfAttributes( fieldIndicesB );

    std::unique_ptr< QgsGeometryEngine > engine;
    if ( !intersects.isEmpty() )
    {
      // use prepared geometries for faster intersection tests
      engine.reset( QgsGeometry::createGeometryEngine( geom.constGet() ) );
      engine->prepareGeometry();
    }

    QgsAttributes outAttributes( attrCount );
    const QgsAttributes attrsA( featA.attributes() );
    for ( int i = 0; i < fieldIndicesA.count(); ++i )
      outAttributes[i] = attrsA[fieldIndicesA[i]];

    QgsFeature featB;
    QgsFeatureIterator fitB = sourceB.getFeatures( request );
    while ( fitB.nextFeature( featB ) )
    {
      if ( feedback->isCanceled() )
        break;

      QgsGeometry tmpGeom( featB.geometry() );
      if ( !engine->intersects( tmpGeom.constGet() ) )
        continue;

      QgsGeometry intGeom = geom.intersection( tmpGeom );
      if ( !sanitizeIntersectionResult( intGeom, geometryType ) )
        continue;

      const QgsAttributes attrsB( featB.attributes() );
      for ( int i = 0; i < fieldIndicesB.count(); ++i )
        outAttributes[fieldIndicesA.count() + i] = attrsB[fieldIndicesB[i]];

      outFeat.setGeometry( intGeom );
      outFeat.setAttributes( outAttributes );
      sink.addFeature( outFeat, QgsFeatureSink::FastInsert );
    }

    ++count;
    feedback->setProgress( count / ( double ) totalCount * 100. );
  }
}
QVariantMap QgsZonalHistogramAlgorithm::processAlgorithm( const QVariantMap &parameters, QgsProcessingContext &context, QgsProcessingFeedback *feedback )
{

  std::unique_ptr< QgsFeatureSource > zones( parameterAsSource( parameters, QStringLiteral( "INPUT_VECTOR" ), context ) );
  if ( !zones )
    throw QgsProcessingException( invalidSourceError( parameters, QStringLiteral( "INPUT_VECTOR" ) ) );

  long count = zones->featureCount();
  double step = count > 0 ? 100.0 / count : 1;
  long current = 0;

  QList< double > uniqueValues;
  QMap< QgsFeatureId, QHash< double, qgssize > > featuresUniqueValues;

  // First loop through the zones to build up a list of unique values across all zones to determine sink fields list
  QgsFeatureRequest request;
  request.setNoAttributes();
  if ( zones->sourceCrs() != mCrs )
  {
    request.setDestinationCrs( mCrs, context.transformContext() );
  }
  QgsFeatureIterator it = zones->getFeatures( request );
  QgsFeature f;
  while ( it.nextFeature( f ) )
  {
    if ( feedback && feedback->isCanceled() )
    {
      break;
    }
    feedback->setProgress( current * step );

    if ( !f.hasGeometry() )
    {
      current++;
      continue;
    }

    QgsGeometry featureGeometry = f.geometry();
    QgsRectangle featureRect = featureGeometry.boundingBox().intersect( mRasterExtent );
    if ( featureRect.isEmpty() )
    {
      current++;
      continue;
    }

    int nCellsX, nCellsY;
    QgsRectangle rasterBlockExtent;
    QgsRasterAnalysisUtils::cellInfoForBBox( mRasterExtent, featureRect, mCellSizeX, mCellSizeY, nCellsX, nCellsY, mNbCellsXProvider, mNbCellsYProvider, rasterBlockExtent );

    QHash< double, qgssize > fUniqueValues;
    QgsRasterAnalysisUtils::statisticsFromMiddlePointTest( mRasterInterface.get(), mRasterBand, featureGeometry, nCellsX, nCellsY, mCellSizeX, mCellSizeY,
    rasterBlockExtent, [ &fUniqueValues]( double value ) { fUniqueValues[value]++; }, false );

    if ( fUniqueValues.count() < 1 )
    {
      // The cell resolution is probably larger than the polygon area. We switch to slower precise pixel - polygon intersection in this case
      // TODO: eventually deal with weight if needed
      QgsRasterAnalysisUtils::statisticsFromPreciseIntersection( mRasterInterface.get(), mRasterBand, featureGeometry, nCellsX, nCellsY, mCellSizeX, mCellSizeY,
      rasterBlockExtent, [ &fUniqueValues]( double value, double ) { fUniqueValues[value]++; }, false );
    }

    for ( auto it = fUniqueValues.constBegin(); it != fUniqueValues.constEnd(); ++it )
    {
      if ( uniqueValues.indexOf( it.key() ) == -1 )
      {
        uniqueValues << it.key();
      }
      featuresUniqueValues[f.id()][it.key()] += it.value();
    }

    current++;
  }

  std::sort( uniqueValues.begin(), uniqueValues.end() );

  QString fieldPrefix = parameterAsString( parameters, QStringLiteral( "COLUMN_PREFIX" ), context );
  QgsFields newFields;
  for ( auto it = uniqueValues.constBegin(); it != uniqueValues.constEnd(); ++it )
  {
    newFields.append( QgsField( QStringLiteral( "%1%2" ).arg( fieldPrefix, mHasNoDataValue && *it == mNodataValue ? QStringLiteral( "NODATA" ) : QString::number( *it ) ), QVariant::LongLong, QString(), -1, 0 ) );
  }
  QgsFields fields = QgsProcessingUtils::combineFields( zones->fields(), newFields );

  QString dest;
  std::unique_ptr< QgsFeatureSink > sink( parameterAsSink( parameters, QStringLiteral( "OUTPUT" ), context, dest, fields,
                                          zones->wkbType(), zones->sourceCrs() ) );
  if ( !sink )
    throw QgsProcessingException( invalidSinkError( parameters, QStringLiteral( "OUTPUT" ) ) );

  it = zones->getFeatures( QgsFeatureRequest() );
  while ( it.nextFeature( f ) )
  {
    QgsAttributes attributes = f.attributes();
    QHash< double, qgssize > fUniqueValues = featuresUniqueValues.value( f.id() );
    for ( auto it = uniqueValues.constBegin(); it != uniqueValues.constEnd(); ++it )
    {
      attributes += fUniqueValues.value( *it, 0 );
    }

    QgsFeature outputFeature;
    outputFeature.setGeometry( f.geometry() );
    outputFeature.setAttributes( attributes );

    sink->addFeature( outputFeature, QgsFeatureSink::FastInsert );
  }

  QVariantMap outputs;
  outputs.insert( QStringLiteral( "OUTPUT" ), dest );
  return outputs;
}