Exemplo n.º 1
0
MineInfo State::mine(uint _msTimeout)
{
	// Update difficulty according to timestamp.
	m_currentBlock.difficulty = m_currentBlock.calculateDifficulty(m_previousBlock);

	// TODO: Miner class that keeps dagger between mine calls (or just non-polling mining).
	MineInfo ret = m_dagger.mine(/*out*/m_currentBlock.nonce, m_currentBlock.headerHashWithoutNonce(), m_currentBlock.difficulty, _msTimeout);
	if (ret.completed)
	{
		// Got it!

		// Commit to disk.
		m_db.commit();

		// Compile block:
		RLPStream ret;
		ret.appendList(3);
		m_currentBlock.fillStream(ret, true);
		ret.appendRaw(m_currentTxs);
		ret.appendRaw(m_currentUncles);
		ret.swapOut(m_currentBytes);
		m_currentBlock.hash = sha3(m_currentBytes);
		cnote << "Mined " << m_currentBlock.hash << "(parent: " << m_currentBlock.parentHash << ")";
	}
	else
		m_currentBytes.clear();

	return ret;
}
Exemplo n.º 2
0
void Raft::voteBlockEnd()
{
	uint64_t now = utcTime(); 
	if(m_idUnVoted.size() >= (nodeCount()+1)/2 || now > m_consensusTimeOut){
		LOG(TRACE) << "m_idUnVoted.size()=" << m_idUnVoted.size() << ",m_idVoted.size()=" << m_idVoted.size() << ",nodeCount()=" << nodeCount();
		
		reSet();
		return;
	}
	
	if(raftFinished != m_consensusState && m_idVoted.size() > nodeCount()/2){
		LOG(TRACE) << "Vote succed, m_blockBytes.size() = " << m_blockBytes.size();

		try{
			if(m_onSealGenerated){
				std::vector<std::pair<u256, Signature>> sig_list;

				for(size_t i = 0; i < m_miner_list.size(); i++){
					if(m_idVoted.count(m_miner_list[i])){
						
sig_list.push_back(std::make_pair(u256(i), m_idVoted[m_miner_list[i]]));
					}
				}

				BlockHeader header(m_blockBytes);
				RLP r(m_blockBytes);
				RLPStream rs;
				rs.appendList(5);
				rs.appendRaw(r[0].data()); // header
				rs.appendRaw(r[1].data()); // tx
				rs.appendRaw(r[2].data()); // uncles
				rs.append(header.hash()); // hash
				rs.appendVector(sig_list); // sign_list

				bytes blockBytes;
				rs.swapOut(blockBytes);
				
				LOG(TRACE) << "Vote_succed: idx.count blockBytes.size() = " << blockBytes.size() << ",header.number()=" << header.number() << ",header.hash()=" << header.hash(WithoutSeal) << ",generl_id = " << (m_votedId == NodeID() ? id() : m_votedId) << ",m_node_idx=" << static_cast<uint64_t>(m_node_idx);
				
				m_onSealGenerated(blockBytes, m_votedId == NodeID());
			}
		}catch(...){
			LOG(ERROR) << "m_consensusFinishedFunc run err";
		}

		m_consensusState = raftFinished;
		m_consensusTimeOut = utcTime() + m_consensusTimeInterval;
		return;
Exemplo n.º 3
0
h256 RLPXDatagramFace::sign(Secret const& _k)
{
    assert(packetType());
    
    RLPStream rlpxstream;
//	rlpxstream.appendRaw(toPublic(_k).asBytes()); // for mdc-based signature
    rlpxstream.appendRaw(bytes(1, packetType())); // prefix by 1 byte for type
    streamRLP(rlpxstream);
    bytes rlpxBytes(rlpxstream.out());
    
    bytesConstRef rlpx(&rlpxBytes);
    h256 sighash(dev::sha3(rlpx)); // H(type||data)
    Signature sig = dev::sign(_k, sighash); // S(H(type||data))
    
    data.resize(h256::size + Signature::size + rlpx.size());
    bytesRef rlpxHash(&data[0], h256::size);
    bytesRef rlpxSig(&data[h256::size], Signature::size);
    bytesRef rlpxPayload(&data[h256::size + Signature::size], rlpx.size());
    
    sig.ref().copyTo(rlpxSig);
    rlpx.copyTo(rlpxPayload);
    
    bytesConstRef signedRLPx(&data[h256::size], data.size() - h256::size);
    h256 hash(dev::sha3(signedRLPx));
    hash.ref().copyTo(rlpxHash);

    return hash;
}
Exemplo n.º 4
0
void WhisperPeer::sendMessages()
{
	RLPStream amalg;
	unsigned n = 0;

	Guard l(x_unseen);
	while (m_unseen.size())
	{
		auto p = *m_unseen.begin();
		m_unseen.erase(m_unseen.begin());
		host()->streamMessage(p.second, amalg);
		n++;
	}

	if (n)
	{
		RLPStream s;
		prep(s);
		s.appendList(n + 1) << MessagesPacket;
		s.appendRaw(amalg.out(), n);
		sealAndSend(s);
	}
	else
		// just pause if no messages to send
		this_thread::sleep_for(chrono::milliseconds(100));
}
Exemplo n.º 5
0
void BlockHeader::streamRLP(RLPStream &_s, IncludeSeal _i) const
{
    if (_i != OnlySeal)
    {
        _s.appendList(BlockHeader::BasicFields + (_i == WithoutSeal ? 0 : m_seal.size()));
        BlockHeader::streamRLPFields(_s);
    }
    if (_i != WithoutSeal)
        for (unsigned i = 0; i < m_seal.size(); ++i)
            _s.appendRaw(m_seal[i]);
}
Exemplo n.º 6
0
void State::completeMine()
{
	cdebug << "Completing mine!";
	// Got it!

	// Compile block:
	RLPStream ret;
	ret.appendList(3);
	m_currentBlock.streamRLP(ret, WithNonce);
	ret.appendRaw(m_currentTxs);
	ret.appendRaw(m_currentUncles);
	ret.swapOut(m_currentBytes);
	m_currentBlock.hash = sha3(RLP(m_currentBytes)[0].data());
	cnote << "Mined " << m_currentBlock.hash.abridged() << "(parent: " << m_currentBlock.parentHash.abridged() << ")";

	// Quickly reset the transactions.
	// TODO: Leave this in a better state than this limbo, or at least record that it's in limbo.
	m_transactions.clear();
	m_receipts.clear();
	m_transactionSet.clear();
	m_lastTx = m_db;
}
Exemplo n.º 7
0
bool State::amIJustParanoid(BlockChain const& _bc)
{
	commitToMine(_bc);

	// Update difficulty according to timestamp.
	m_currentBlock.difficulty = m_currentBlock.calculateDifficulty(m_previousBlock);

	// Compile block:
	RLPStream block;
	block.appendList(3);
	m_currentBlock.streamRLP(block, WithNonce);
	block.appendRaw(m_currentTxs);
	block.appendRaw(m_currentUncles);

	State s(*this);
	s.resetCurrent();
	try
	{
		cnote << "PARANOIA root:" << s.rootHash();
//		s.m_currentBlock.populate(&block.out(), false);
//		s.m_currentBlock.verifyInternals(&block.out());
		s.enact(&block.out(), _bc, false);	// don't check nonce for this since we haven't mined it yet.
		s.cleanup(false);
		return true;
	}
	catch (Exception const& _e)
	{
		cwarn << "Bad block: " << diagnostic_information(_e);
	}
	catch (std::exception const& _e)
	{
		cwarn << "Bad block: " << _e.what();
	}

	return false;
}
Exemplo n.º 8
0
bool PeerServer::sync(BlockChain& _bc, TransactionQueue& _tq, Overlay& _o)
{
	bool ret = ensureInitialised(_bc, _tq);

	if (sync())
		ret = true;

	if (m_mode == NodeMode::Full)
	{
		for (auto it = m_incomingTransactions.begin(); it != m_incomingTransactions.end(); ++it)
			if (_tq.import(*it))
			{}//ret = true;		// just putting a transaction in the queue isn't enough to change the state - it might have an invalid nonce...
			else
				m_transactionsSent.insert(sha3(*it));	// if we already had the transaction, then don't bother sending it on.
		m_incomingTransactions.clear();

		auto h = _bc.currentHash();
		bool resendAll = (h != m_latestBlockSent);

		// Send any new transactions.
		for (auto j: m_peers)
			if (auto p = j.second.lock())
			{
				bytes b;
				uint n = 0;
				for (auto const& i: _tq.transactions())
					if ((!m_transactionsSent.count(i.first) && !p->m_knownTransactions.count(i.first)) || p->m_requireTransactions || resendAll)
					{
						b += i.second;
						++n;
						m_transactionsSent.insert(i.first);
					}
				if (n)
				{
					RLPStream ts;
					PeerSession::prep(ts);
					ts.appendList(n + 1) << TransactionsPacket;
					ts.appendRaw(b, n).swapOut(b);
					seal(b);
					p->send(&b);
				}
				p->m_knownTransactions.clear();
				p->m_requireTransactions = false;
			}

		// Send any new blocks.
		if (h != m_latestBlockSent)
		{
			// TODO: find where they diverge and send complete new branch.
			RLPStream ts;
			PeerSession::prep(ts);
			ts.appendList(2) << BlocksPacket;
			bytes b;
			ts.appendRaw(_bc.block(_bc.currentHash())).swapOut(b);
			seal(b);
			for (auto j: m_peers)
				if (auto p = j.second.lock())
				{
					if (!p->m_knownBlocks.count(_bc.currentHash()))
						p->send(&b);
					p->m_knownBlocks.clear();
				}
		}
		m_latestBlockSent = h;

		for (int accepted = 1, n = 0; accepted; ++n)
		{
			accepted = 0;

			if (m_incomingBlocks.size())
				for (auto it = prev(m_incomingBlocks.end());; --it)
				{
					try
					{
						_bc.import(*it, _o);
						it = m_incomingBlocks.erase(it);
						++accepted;
						ret = true;
					}
					catch (UnknownParent)
					{
						// Don't (yet) know its parent. Leave it for later.
						m_unknownParentBlocks.push_back(*it);
						it = m_incomingBlocks.erase(it);
					}
					catch (...)
					{
						// Some other error - erase it.
						it = m_incomingBlocks.erase(it);
					}

					if (it == m_incomingBlocks.begin())
						break;
				}
			if (!n && accepted)
			{
				for (auto i: m_unknownParentBlocks)
					m_incomingBlocks.push_back(i);
				m_unknownParentBlocks.clear();
			}
		}

		// Connect to additional peers
		while (m_peers.size() < m_idealPeerCount)
		{
			if (m_freePeers.empty())
			{
				if (chrono::steady_clock::now() > m_lastPeersRequest + chrono::seconds(10))
				{
					RLPStream s;
					bytes b;
					(PeerSession::prep(s).appendList(1) << GetPeersPacket).swapOut(b);
					seal(b);
					for (auto const& i: m_peers)
						if (auto p = i.second.lock())
							if (p->isOpen())
								p->send(&b);
					m_lastPeersRequest = chrono::steady_clock::now();
				}


				if (!m_accepting)
					ensureAccepting();

				break;
			}

			auto x = time(0) % m_freePeers.size();
			m_incomingPeers[m_freePeers[x]].second++;
			connect(m_incomingPeers[m_freePeers[x]].first);
			m_freePeers.erase(m_freePeers.begin() + x);
		}
	}

	// platform for consensus of social contract.
	// restricts your freedom but does so fairly. and that's the value proposition.
	// guarantees that everyone else respect the rules of the system. (i.e. obeys laws).

	// We'll keep at most twice as many as is ideal, halfing what counts as "too young to kill" until we get there.
	for (uint old = 15000; m_peers.size() > m_idealPeerCount * 2 && old > 100; old /= 2)
		while (m_peers.size() > m_idealPeerCount)
		{
			// look for worst peer to kick off
			// first work out how many are old enough to kick off.
			shared_ptr<PeerSession> worst;
			unsigned agedPeers = 0;
			for (auto i: m_peers)
				if (auto p = i.second.lock())
					if ((m_mode != NodeMode::PeerServer || p->m_caps != 0x01) && chrono::steady_clock::now() > p->m_connect + chrono::milliseconds(old))	// don't throw off new peers; peer-servers should never kick off other peer-servers.
					{
						++agedPeers;
						if ((!worst || p->m_rating < worst->m_rating || (p->m_rating == worst->m_rating && p->m_connect > worst->m_connect)))	// kill older ones
							worst = p;
					}
			if (!worst || agedPeers <= m_idealPeerCount)
				break;
			worst->disconnect(TooManyPeers);
		}

	return ret;
}
Exemplo n.º 9
0
void State::commitToMine(BlockChain const& _bc)
{
	uncommitToMine();

//	cnote << "Committing to mine on block" << m_previousBlock.hash.abridged();
#ifdef ETH_PARANOIA
	commit();
	cnote << "Pre-reward stateRoot:" << m_state.root();
#endif

	m_lastTx = m_db;

	Addresses uncleAddresses;

	RLPStream unclesData;
	unsigned unclesCount = 0;
	if (m_previousBlock.number != 0)
	{
		// Find great-uncles (or second-cousins or whatever they are) - children of great-grandparents, great-great-grandparents... that were not already uncles in previous generations.
//		cout << "Checking " << m_previousBlock.hash << ", parent=" << m_previousBlock.parentHash << endl;
		set<h256> knownUncles = _bc.allUnclesFrom(m_currentBlock.parentHash);
		auto p = m_previousBlock.parentHash;
		for (unsigned gen = 0; gen < 6 && p != _bc.genesisHash(); ++gen, p = _bc.details(p).parent)
		{
			auto us = _bc.details(p).children;
			assert(us.size() >= 1);	// must be at least 1 child of our grandparent - it's our own parent!
			for (auto const& u: us)
				if (!knownUncles.count(u))	// ignore any uncles/mainline blocks that we know about.
				{
					BlockInfo ubi(_bc.block(u));
					ubi.streamRLP(unclesData, WithNonce);
					++unclesCount;
					uncleAddresses.push_back(ubi.coinbaseAddress);
				}
		}
	}

	MemoryDB tm;
	GenericTrieDB<MemoryDB> transactionsTrie(&tm);
	transactionsTrie.init();

	MemoryDB rm;
	GenericTrieDB<MemoryDB> receiptsTrie(&rm);
	receiptsTrie.init();

	RLPStream txs;
	txs.appendList(m_transactions.size());

	for (unsigned i = 0; i < m_transactions.size(); ++i)
	{
		RLPStream k;
		k << i;

		RLPStream receiptrlp;
		m_receipts[i].streamRLP(receiptrlp);
		receiptsTrie.insert(&k.out(), &receiptrlp.out());

		RLPStream txrlp;
		m_transactions[i].streamRLP(txrlp);
		transactionsTrie.insert(&k.out(), &txrlp.out());

		txs.appendRaw(txrlp.out());
	}

	txs.swapOut(m_currentTxs);

	RLPStream(unclesCount).appendRaw(unclesData.out(), unclesCount).swapOut(m_currentUncles);

	m_currentBlock.transactionsRoot = transactionsTrie.root();
	m_currentBlock.receiptsRoot = receiptsTrie.root();
	m_currentBlock.logBloom = logBloom();
	m_currentBlock.sha3Uncles = sha3(m_currentUncles);

	// Apply rewards last of all.
	applyRewards(uncleAddresses);

	// Commit any and all changes to the trie that are in the cache, then update the state root accordingly.
	commit();

//	cnote << "Post-reward stateRoot:" << m_state.root().abridged();
//	cnote << m_state;
//	cnote << *this;

	m_currentBlock.gasUsed = gasUsed();
	m_currentBlock.stateRoot = m_state.root();
	m_currentBlock.parentHash = m_previousBlock.hash;
}