Exemplo n.º 1
0
TEST (RANSAC, Base)
{
  // Create a shared plane model pointer directly
  SampleConsensusModelPlanePtr model (new SampleConsensusModelPlane<PointXYZ> (cloud_));

  // Create the RANSAC object
  RandomSampleConsensus<PointXYZ> sac (model, 0.03);

  // Basic tests
  ASSERT_EQ (sac.getDistanceThreshold (), 0.03);
  sac.setDistanceThreshold (0.03);
  ASSERT_EQ (sac.getDistanceThreshold (), 0.03);

  sac.setProbability (0.99);
  ASSERT_EQ (sac.getProbability (), 0.99);

  sac.setMaxIterations (10000);
  ASSERT_EQ (sac.getMaxIterations (), 10000);
}
Exemplo n.º 2
0
Arquivo: icp.hpp Projeto: Bardo91/pcl
template <typename PointSource, typename PointTarget> void
pcl::IterativeClosestPoint<PointSource, PointTarget>::computeTransformation (PointCloudSource &output, const Eigen::Matrix4f &guess)
{
  // Allocate enough space to hold the results
  std::vector<int> nn_indices (1);
  std::vector<float> nn_dists (1);

  // Point cloud containing the correspondences of each point in <input, indices>
  PointCloudTarget input_corresp;
  input_corresp.points.resize (indices_->size ());

  nr_iterations_ = 0;
  converged_ = false;
  double dist_threshold = corr_dist_threshold_ * corr_dist_threshold_;

  // If the guessed transformation is non identity
  if (guess != Eigen::Matrix4f::Identity ())
  {
    // Initialise final transformation to the guessed one
    final_transformation_ = guess;
    // Apply guessed transformation prior to search for neighbours
    transformPointCloud (output, output, guess);
  }

  // Resize the vector of distances between correspondences 
  std::vector<float> previous_correspondence_distances (indices_->size ());
  correspondence_distances_.resize (indices_->size ());

  while (!converged_)           // repeat until convergence
  {
    // Save the previously estimated transformation
    previous_transformation_ = transformation_;
    // And the previous set of distances
    previous_correspondence_distances = correspondence_distances_;

    int cnt = 0;
    std::vector<int> source_indices (indices_->size ());
    std::vector<int> target_indices (indices_->size ());

    // Iterating over the entire index vector and  find all correspondences
    for (size_t idx = 0; idx < indices_->size (); ++idx)
    {
      if (!this->searchForNeighbors (output, (*indices_)[idx], nn_indices, nn_dists))
      {
        PCL_ERROR ("[pcl::%s::computeTransformation] Unable to find a nearest neighbor in the target dataset for point %d in the source!\n", getClassName ().c_str (), (*indices_)[idx]);
        return;
      }

      // Check if the distance to the nearest neighbor is smaller than the user imposed threshold
      if (nn_dists[0] < dist_threshold)
      {
        source_indices[cnt] = (*indices_)[idx];
        target_indices[cnt] = nn_indices[0];
        cnt++;
      }

      // Save the nn_dists[0] to a global vector of distances
      correspondence_distances_[(*indices_)[idx]] = std::min (nn_dists[0], static_cast<float> (dist_threshold));
    }
    if (cnt < min_number_correspondences_)
    {
      PCL_ERROR ("[pcl::%s::computeTransformation] Not enough correspondences found. Relax your threshold parameters.\n", getClassName ().c_str ());
      converged_ = false;
      return;
    }

    // Resize to the actual number of valid correspondences
    source_indices.resize (cnt); target_indices.resize (cnt);

    std::vector<int> source_indices_good;
    std::vector<int> target_indices_good;
    {
      // From the set of correspondences found, attempt to remove outliers
      // Create the registration model
      typedef typename SampleConsensusModelRegistration<PointSource>::Ptr SampleConsensusModelRegistrationPtr;
      SampleConsensusModelRegistrationPtr model;
      model.reset (new SampleConsensusModelRegistration<PointSource> (output.makeShared (), source_indices));
      // Pass the target_indices
      model->setInputTarget (target_, target_indices);
      // Create a RANSAC model
      RandomSampleConsensus<PointSource> sac (model, inlier_threshold_);
      sac.setMaxIterations (ransac_iterations_);

      // Compute the set of inliers
      if (!sac.computeModel ())
      {
        source_indices_good = source_indices;
        target_indices_good = target_indices;
      }
      else
      {
        std::vector<int> inliers;
        // Get the inliers
        sac.getInliers (inliers);
        source_indices_good.resize (inliers.size ());
        target_indices_good.resize (inliers.size ());

        boost::unordered_map<int, int> source_to_target;
        for (unsigned int i = 0; i < source_indices.size(); ++i)
          source_to_target[source_indices[i]] = target_indices[i];

        // Copy just the inliers
        std::copy(inliers.begin(), inliers.end(), source_indices_good.begin());
        for (size_t i = 0; i < inliers.size (); ++i)
          target_indices_good[i] = source_to_target[inliers[i]];
      }
    }

    // Check whether we have enough correspondences
    cnt = static_cast<int> (source_indices_good.size ());
    if (cnt < min_number_correspondences_)
    {
      PCL_ERROR ("[pcl::%s::computeTransformation] Not enough correspondences found. Relax your threshold parameters.\n", getClassName ().c_str ());
      converged_ = false;
      return;
    }

    PCL_DEBUG ("[pcl::%s::computeTransformation] Number of correspondences %d [%f%%] out of %zu points [100.0%%], RANSAC rejected: %zu [%f%%].\n", 
        getClassName ().c_str (), 
        cnt, 
        (static_cast<float> (cnt) * 100.0f) / static_cast<float> (indices_->size ()), 
        indices_->size (), 
        source_indices.size () - cnt, 
        static_cast<float> (source_indices.size () - cnt) * 100.0f / static_cast<float> (source_indices.size ()));
  
    // Estimate the transform
    //rigid_transformation_estimation_(output, source_indices_good, *target_, target_indices_good, transformation_);
    transformation_estimation_->estimateRigidTransformation (output, source_indices_good, *target_, target_indices_good, transformation_);

    // Tranform the data
    transformPointCloud (output, output, transformation_);

    // Obtain the final transformation    
    final_transformation_ = transformation_ * final_transformation_;

    nr_iterations_++;

    // Update the vizualization of icp convergence
    if (update_visualizer_ != 0)
      update_visualizer_(output, source_indices_good, *target_, target_indices_good );

    // Various/Different convergence termination criteria
    // 1. Number of iterations has reached the maximum user imposed number of iterations (via 
    //    setMaximumIterations)
    // 2. The epsilon (difference) between the previous transformation and the current estimated transformation 
    //    is smaller than an user imposed value (via setTransformationEpsilon)
    // 3. The sum of Euclidean squared errors is smaller than a user defined threshold (via 
    //    setEuclideanFitnessEpsilon)

    if (nr_iterations_ >= max_iterations_ ||
        (transformation_ - previous_transformation_).array ().abs ().sum () < transformation_epsilon_ ||
        fabs (this->getFitnessScore (correspondence_distances_, previous_correspondence_distances)) <= euclidean_fitness_epsilon_
       )
    {
      converged_ = true;
      PCL_DEBUG ("[pcl::%s::computeTransformation] Convergence reached. Number of iterations: %d out of %d. Transformation difference: %f\n",
                 getClassName ().c_str (), nr_iterations_, max_iterations_, (transformation_ - previous_transformation_).array ().abs ().sum ());

      PCL_DEBUG ("nr_iterations_ (%d) >= max_iterations_ (%d)\n", nr_iterations_, max_iterations_);
      PCL_DEBUG ("(transformation_ - previous_transformation_).array ().abs ().sum () (%f) < transformation_epsilon_ (%f)\n",
                 (transformation_ - previous_transformation_).array ().abs ().sum (), transformation_epsilon_);
      PCL_DEBUG ("fabs (getFitnessScore (correspondence_distances_, previous_correspondence_distances)) (%f) <= euclidean_fitness_epsilon_ (%f)\n",
                 fabs (this->getFitnessScore (correspondence_distances_, previous_correspondence_distances)),
                 euclidean_fitness_epsilon_);

    }
  }
}
Exemplo n.º 3
0
void
compute (const sensor_msgs::PointCloud2::ConstPtr &input, sensor_msgs::PointCloud2 &output,
         int max_iterations = 1000, double threshold = 0.05, bool negative = false)
{
  // Convert data to PointCloud<T>
  PointCloud<PointXYZ>::Ptr xyz (new PointCloud<PointXYZ>);
  fromROSMsg (*input, *xyz);

  // Estimate
  TicToc tt;
  print_highlight (stderr, "Computing ");
  
  tt.tic ();

  // Refine the plane indices
  typedef SampleConsensusModelPlane<PointXYZ>::Ptr SampleConsensusModelPlanePtr;
  SampleConsensusModelPlanePtr model (new SampleConsensusModelPlane<PointXYZ> (xyz));
  RandomSampleConsensus<PointXYZ> sac (model, threshold);
  sac.setMaxIterations (max_iterations);
  bool res = sac.computeModel ();
  
  vector<int> inliers;
  sac.getInliers (inliers);
  Eigen::VectorXf coefficients;
  sac.getModelCoefficients (coefficients);

  if (!res || inliers.empty ())
  {
    PCL_ERROR ("No planar model found. Relax thresholds and continue.\n");
    return;
  }
  sac.refineModel (2, 50);
  sac.getInliers (inliers);
  sac.getModelCoefficients (coefficients);

  print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms, plane has : "); print_value ("%zu", inliers.size ()); print_info (" points]\n");

  print_info ("Model coefficients: [");
  print_value ("%g %g %g %g", coefficients[0], coefficients[1], coefficients[2], coefficients[3]); print_info ("]\n");

  // Instead of returning the planar model as a set of inliers, return the outliers, but perform a cluster segmentation first
  if (negative)
  {
    // Remove the plane indices from the data
    PointIndices::Ptr everything_but_the_plane (new PointIndices);
    std::vector<int> indices_fullset (xyz->size ());
    for (int p_it = 0; p_it < static_cast<int> (indices_fullset.size ()); ++p_it)
      indices_fullset[p_it] = p_it;
    
    std::sort (inliers.begin (), inliers.end ());
    set_difference (indices_fullset.begin (), indices_fullset.end (),
                    inliers.begin (), inliers.end (),
                    inserter (everything_but_the_plane->indices, everything_but_the_plane->indices.begin ()));

    // Extract largest cluster minus the plane
    vector<PointIndices> cluster_indices;
    EuclideanClusterExtraction<PointXYZ> ec;
    ec.setClusterTolerance (0.02); // 2cm
    ec.setMinClusterSize (100);
    ec.setInputCloud (xyz);
    ec.setIndices (everything_but_the_plane);
    ec.extract (cluster_indices);

    // Convert data back
    copyPointCloud (*input, cluster_indices[0].indices, output);
  }
  else
  {
    // Convert data back
    PointCloud<PointXYZ> output_inliers;
    copyPointCloud (*input, inliers, output);
  }
}