Exemplo n.º 1
0
void CallFrameShuffleData::setupCalleeSaveRegisters(CodeBlock* codeBlock)
{
    RegisterSet calleeSaveRegisters { RegisterSet::vmCalleeSaveRegisters() };
    RegisterAtOffsetList* registerSaveLocations = codeBlock->calleeSaveRegisters();

    for (size_t i = 0; i < registerSaveLocations->size(); ++i) {
        RegisterAtOffset entry { registerSaveLocations->at(i) };
        if (!calleeSaveRegisters.get(entry.reg()))
            continue;

        VirtualRegister saveSlot { entry.offsetAsIndex() };
        registers[entry.reg()]
            = ValueRecovery::displacedInJSStack(saveSlot, DataFormatJS);
    }

    for (Reg reg = Reg::first(); reg <= Reg::last(); reg = reg.next()) {
        if (!calleeSaveRegisters.get(reg))
            continue;

        if (registers[reg])
            continue;

        registers[reg] = ValueRecovery::inRegister(reg, DataFormatJS);
    }
}
Exemplo n.º 2
0
vector<Reg> Reg::Concavities() {
    vector<Reg> ret = vector<Reg>();
    vector<Seg> ch = convexhull;
    unsigned int j = 0;

    cerr << "Calculating Concavities Start " << depth++ << "\n";
    cerr << "Hull\n";
    for (unsigned int a = 0; a < ch.size(); a++) {
        cerr << ch[a].ToString() << "\n";
    }
    cerr << "Pol\n";
    for (unsigned int a = 0; a < v.size(); a++) {
        cerr << v[a].ToString() << "\n";
    }

    for (j = 0; j < v.size(); j++) {
        if ((ch[0].x1 == v[j].x1) && (ch[0].y1 == v[j].y1)) {
            break;
        }
    }

    for (unsigned int i = 0; i < ch.size(); i++) {
        if (!(ch[i] == v[j])) {
            cerr << "Found new Concavity: " << depth << "\n";
            Reg r = Reg(this, i);
            unsigned int hpidx;
            if (j == 0) {
                hpidx = v.size() - 1;
            } else {
                hpidx = j - 1;
            }
            r.hullPoint = new Pt(v[hpidx].x1, v[hpidx].x2);
            cerr << "End: " << ch[i].x2 << "/" << ch[i].y2 << "\n";
            do {
                Seg s = Seg(v[j].x2, v[j].y2, v[j].x1, v[j].y1);
                r.AddSeg(s);
                j = (j + 1) % v.size();
            } while ((ch[i].x2 != v[j].x1) || (ch[i].y2 != v[j].y1));
            std::reverse(r.v.begin(), r.v.end());
            r.Close();
            //            r.Print();
            cerr << "End Found new Concavity: " << depth << "\n";
            ret.push_back(r);
        } else {
            j = (j + 1) % v.size();
        }
    }

    cvs = ret;

    cerr << "Found " << cvs.size() << " Concavities\n";

    cerr << "Calculating Concavities End " << --depth << "\n";

    return ret;
}
Exemplo n.º 3
0
void RegisterSet::dump(PrintStream& out) const
{
    CommaPrinter comma;
    out.print("[");
    for (Reg reg = Reg::first(); reg <= Reg::last(); reg = reg.next()) {
        if (get(reg))
            out.print(comma, reg);
    }
    out.print("]");
}
Exemplo n.º 4
0
static void registerClobberCheck(AssemblyHelpers& jit, RegisterSet dontClobber)
{
    if (!Options::clobberAllRegsInFTLICSlowPath())
        return;
    
    RegisterSet clobber = RegisterSet::allRegisters();
    clobber.exclude(RegisterSet::reservedHardwareRegisters());
    clobber.exclude(RegisterSet::stackRegisters());
    clobber.exclude(RegisterSet::calleeSaveRegisters());
    clobber.exclude(dontClobber);
    
    GPRReg someGPR;
    for (Reg reg = Reg::first(); reg <= Reg::last(); reg = reg.next()) {
        if (!clobber.get(reg) || !reg.isGPR())
            continue;
        
        jit.move(AssemblyHelpers::TrustedImm32(0x1337beef), reg.gpr());
        someGPR = reg.gpr();
    }
    
    for (Reg reg = Reg::first(); reg <= Reg::last(); reg = reg.next()) {
        if (!clobber.get(reg) || !reg.isFPR())
            continue;
        
        jit.move64ToDouble(someGPR, reg.fpr());
    }
}
Exemplo n.º 5
0
TEST(reg, reg)
{
	Reg reg;
	reg.input(regWrite, 1);
	reg.input(writeReg, 2);
	reg.input(writeData, 4);
	reg.input(clock_in, 1);
	reg.input(readReg1, 2);
	EXPECT_EQ(4, reg.output(readData1));
	reg.input(regWrite, 1);
	reg.input(writeReg, 2);
	reg.input(writeData, 2);
	// No clock_in
	reg.input(readReg1, 2);
	EXPECT_EQ(4, reg.output(readData1));
}
Exemplo n.º 6
0
void ValueRep::emitRestore(AssemblyHelpers& jit, Reg reg) const
{
    if (reg.isGPR()) {
        switch (kind()) {
        case LateRegister:
        case Register:
            if (isGPR())
                jit.move(gpr(), reg.gpr());
            else
                jit.moveDoubleTo64(fpr(), reg.gpr());
            break;
        case Stack:
            jit.load64(AssemblyHelpers::Address(GPRInfo::callFrameRegister, offsetFromFP()), reg.gpr());
            break;
        case Constant:
            jit.move(AssemblyHelpers::TrustedImm64(value()), reg.gpr());
            break;
        default:
            RELEASE_ASSERT_NOT_REACHED();
            break;
        }
        return;
    }

    switch (kind()) {
    case LateRegister:
    case Register:
        if (isGPR())
            jit.move64ToDouble(gpr(), reg.fpr());
        else
            jit.moveDouble(fpr(), reg.fpr());
        break;
    case Stack:
        jit.loadDouble(AssemblyHelpers::Address(GPRInfo::callFrameRegister, offsetFromFP()), reg.fpr());
        break;
    case Constant:
        jit.move(AssemblyHelpers::TrustedImm64(value()), jit.scratchRegister());
        jit.move64ToDouble(jit.scratchRegister(), reg.fpr());
        break;
    default:
        RELEASE_ASSERT_NOT_REACHED();
        break;
    }
}
Exemplo n.º 7
0
void X86Compiler::alloc(Var& var, const Reg& reg)
{
  _vhint(var, kVarHintAlloc, IntUtil::maskFromIndex(reg.getRegIndex()));
}
Exemplo n.º 8
0
vector<Reg> Reg::Concavities2(Reg *reg2) {
    vector<Reg> ret;
    Reg *reg1 = this;

    reg1->Begin();
    reg2->Begin();

    Reg r1 = Reg(reg1->convexhull);
    Reg r2 = Reg(reg2->convexhull);
    cerr << "\n\nConcavities2: START\n";

    do {
        double a1 = r1.Cur().angle();
        double a2 = r2.Cur().angle();
        int sx1 = 0, sy1 = 0, sx2 = 0, sy2 = 0,
                dx1 = 0, dy1 = 0, dx2 = 0, dy2 = 0;

        if (((a1 <= a2) && !r1.End()) || r2.End()) {
            cerr << "Concavities2/r1: Comparing " << r1.Cur().ToString()
                    << " (hull) / " << reg1->Cur().ToString() << " (region)\n";
            if (r1.Cur() == reg1->Cur()) {
                r1.Next();
                reg1->Next();
            } else {

                // We found a concavity in the source region

                cerr << "Concavities2: Found concavity\n";
                Reg ccv; // The concavity
                while (r1.Cur().x2 != reg1->Cur().x1 ||
                        r1.Cur().y2 != reg1->Cur().y1) {
                    sx1 = reg1->Cur().x1;
                    sy1 = reg1->Cur().y1;
                    sx2 = reg1->Cur().x2;
                    sy2 = reg1->Cur().y2;
                    dx1 = dx2 = r2.Cur().x1;
                    dy1 = dy2 = r2.Cur().y1;
                    reg1->Next();
                    //    msegs.AddMSeg(sx1, sy1, sx2, sy2, dx1, dy1, dx2, dy2);
                    Seg s(sx1, sy1, sx2, sy2);
                    ccv.AddSeg(s);
                    cerr << "Concavities2: Adding segment " << s.ToString()
                            << "\n";
                }
                ccv.hullPoint = new Pt(reg1->Cur().x1, reg1->Cur().y1);
                ccv.peerPoint = new Pt(r2.Cur().x1, r2.Cur().y1);
                cerr << "HP" << ccv.hullPoint->ToString()
                        << " PP " << ccv.peerPoint->ToString() << "\n\n";
                cerr << "Concavities2: Found concavity end\n\n";
                ccv.Close();
                ret.push_back(ccv);
                r1.Next();
            }
        } else if ((a1 >= a2) || r1.End()) {
            cerr << "Concavities2/r2: Comparing " << r2.Cur().ToString()
                    << " (hull) / " << reg2->Cur().ToString() << " (region)\n";
            if (r2.Cur() == reg2->Cur()) {
                reg2->Next();
                r2.Next();
            } else {
                while (r2.Cur().x2 != reg2->Cur().x1 ||
                        r2.Cur().y2 != reg2->Cur().y1) {
                    reg2->Next();
                }
                r2.Next();
            }
        }

        if (r1.End() && r2.End())
            break;

    } while (1);
    cerr << "\nConcavities2: END\n\n";

    return ret;
}
Exemplo n.º 9
0
Error Compiler::alloc(Var& var, const Reg& reg) noexcept {
  if (var.getId() == kInvalidValue)
    return kErrorOk;
  return _hint(var, kVarHintAlloc, reg.getRegIndex());
}
Exemplo n.º 10
0
void Compiler::alloc(Var& var, const Reg& reg) {
  addHint(var, kVarHintAlloc, reg.getRegIndex());
}
Exemplo n.º 11
0
void IdRegisteredClass::registerIn(Reg &reg, IdType id)
{
    if (registeredInVal) registeredInVal->unregister(this);
    idVal = reg.registerObject(this, id);
    registeredInVal = &reg;
}
void CallFrameShuffler::emitDisplace(CachedRecovery& cachedRecovery)
{
    Reg wantedReg;
    if (!(wantedReg = Reg { cachedRecovery.wantedJSValueRegs().gpr() }))
        wantedReg = Reg { cachedRecovery.wantedFPR() };
    ASSERT(wantedReg);
    ASSERT(!m_lockedRegisters.get(wantedReg));

    if (CachedRecovery* current = m_registers[wantedReg]) {
        if (current == &cachedRecovery) {
            if (verbose)
                dataLog("   + ", wantedReg, " is OK\n");
            return;
        }
        // We could do a more complex thing by finding cycles
        // etc. in that case.
        // However, ending up in this situation will be super
        // rare, and should actually be outright impossible for
        // non-FTL tiers, since:
        //  (a) All doubles have been converted into JSValues with
        //      ValueRep nodes, so FPRs are initially free
        //
        //  (b) The only recoveries with wanted registers are the
        //      callee (which always starts out in a register) and
        //      the callee-save registers
        //
        //  (c) The callee-save registers are the first things we
        //      load (after the return PC), and they are loaded as JSValues
        //
        //  (d) We prefer loading JSValues into FPRs if their
        //      wanted GPR is not available
        //
        //  (e) If we end up spilling some registers with a
        //      target, we won't load them again before the very
        //      end of the algorithm
        //
        // Combined, this means that we will never load a recovery
        // with a wanted GPR into any GPR other than its wanted
        // GPR. The callee could however have been initially in
        // one of the callee-save registers - but since the wanted
        // GPR for the callee is always regT0, it will be the
        // first one to be displaced, and we won't see it when
        // handling any of the callee-save registers.
        //
        // Thus, the only way we could ever reach this path is in
        // the FTL, when there is so much pressure that we
        // absolutely need to load the callee-save registers into
        // different GPRs initially but not enough pressure to
        // then have to spill all of them. And even in that case,
        // depending on the order in which B3 saves the
        // callee-saves, we will probably still be safe. Anyway,
        // the couple extra move instructions compared to an
        // efficient cycle-based algorithm are not going to hurt
        // us.
        if (wantedReg.isFPR()) {
            FPRReg tempFPR = getFreeFPR();
            if (verbose)
                dataLog("  * Moving ", wantedReg, " into ", tempFPR, "\n");
            m_jit.moveDouble(wantedReg.fpr(), tempFPR);
            updateRecovery(*current,
                ValueRecovery::inFPR(tempFPR, current->recovery().dataFormat()));
        } else {
            GPRReg tempGPR = getFreeGPR();
            if (verbose)
                dataLog("  * Moving ", wantedReg.gpr(), " into ", tempGPR, "\n");
            m_jit.move(wantedReg.gpr(), tempGPR);
            updateRecovery(*current,
                ValueRecovery::inGPR(tempGPR, current->recovery().dataFormat()));
        }
    }
    ASSERT(!m_registers[wantedReg]);

    if (cachedRecovery.recovery().isConstant()) {
        // We only care about callee saves for wanted FPRs, and those are never constants
        ASSERT(wantedReg.isGPR());
        if (verbose)
            dataLog("   * Loading ", cachedRecovery.recovery().constant(), " into ", wantedReg, "\n");
        m_jit.moveTrustedValue(cachedRecovery.recovery().constant(), JSValueRegs { wantedReg.gpr() });
        updateRecovery(
            cachedRecovery,
            ValueRecovery::inRegister(wantedReg, DataFormatJS));
    } else if (cachedRecovery.recovery().isInGPR()) {
        if (verbose)
            dataLog("   * Moving ", cachedRecovery.recovery(), " into ", wantedReg, "\n");
        if (wantedReg.isGPR())
            m_jit.move(cachedRecovery.recovery().gpr(), wantedReg.gpr());
        else
            m_jit.move64ToDouble(cachedRecovery.recovery().gpr(), wantedReg.fpr());
        RELEASE_ASSERT(cachedRecovery.recovery().dataFormat() == DataFormatJS);
        updateRecovery(cachedRecovery,
            ValueRecovery::inRegister(wantedReg, DataFormatJS));
    } else {
        ASSERT(cachedRecovery.recovery().isInFPR());
        if (cachedRecovery.recovery().dataFormat() == DataFormatDouble) {
            // We only care about callee saves for wanted FPRs, and those are always DataFormatJS
            ASSERT(wantedReg.isGPR());
            // This will automatically pick the wanted GPR
            emitBox(cachedRecovery);
        } else {
            if (verbose)
                dataLog("   * Moving ", cachedRecovery.recovery().fpr(), " into ", wantedReg, "\n");
            if (wantedReg.isGPR())
                m_jit.moveDoubleTo64(cachedRecovery.recovery().fpr(), wantedReg.gpr());
            else
                m_jit.moveDouble(cachedRecovery.recovery().fpr(), wantedReg.fpr());
            RELEASE_ASSERT(cachedRecovery.recovery().dataFormat() == DataFormatJS);
            updateRecovery(cachedRecovery,
                ValueRecovery::inRegister(wantedReg, DataFormatJS));
        }
    }

    ASSERT(m_registers[wantedReg] == &cachedRecovery);
}
Exemplo n.º 13
0
static void compileStub(
    unsigned exitID, JITCode* jitCode, OSRExit& exit, VM* vm, CodeBlock* codeBlock)
{
    StackMaps::Record* record = nullptr;
    
    for (unsigned i = jitCode->stackmaps.records.size(); i--;) {
        record = &jitCode->stackmaps.records[i];
        if (record->patchpointID == exit.m_stackmapID)
            break;
    }
    
    RELEASE_ASSERT(record->patchpointID == exit.m_stackmapID);
    
    // This code requires framePointerRegister is the same as callFrameRegister
    static_assert(MacroAssembler::framePointerRegister == GPRInfo::callFrameRegister, "MacroAssembler::framePointerRegister and GPRInfo::callFrameRegister must be the same");

    CCallHelpers jit(vm, codeBlock);
    
    // We need scratch space to save all registers, to build up the JS stack, to deal with unwind
    // fixup, pointers to all of the objects we materialize, and the elements inside those objects
    // that we materialize.
    
    // Figure out how much space we need for those object allocations.
    unsigned numMaterializations = 0;
    size_t maxMaterializationNumArguments = 0;
    for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) {
        numMaterializations++;
        
        maxMaterializationNumArguments = std::max(
            maxMaterializationNumArguments,
            materialization->properties().size());
    }
    
    ScratchBuffer* scratchBuffer = vm->scratchBufferForSize(
        sizeof(EncodedJSValue) * (
            exit.m_values.size() + numMaterializations + maxMaterializationNumArguments) +
        requiredScratchMemorySizeInBytes() +
        codeBlock->calleeSaveRegisters()->size() * sizeof(uint64_t));
    EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0;
    EncodedJSValue* materializationPointers = scratch + exit.m_values.size();
    EncodedJSValue* materializationArguments = materializationPointers + numMaterializations;
    char* registerScratch = bitwise_cast<char*>(materializationArguments + maxMaterializationNumArguments);
    uint64_t* unwindScratch = bitwise_cast<uint64_t*>(registerScratch + requiredScratchMemorySizeInBytes());
    
    HashMap<ExitTimeObjectMaterialization*, EncodedJSValue*> materializationToPointer;
    unsigned materializationCount = 0;
    for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) {
        materializationToPointer.add(
            materialization, materializationPointers + materializationCount++);
    }
    
    // Note that we come in here, the stack used to be as LLVM left it except that someone called pushToSave().
    // We don't care about the value they saved. But, we do appreciate the fact that they did it, because we use
    // that slot for saveAllRegisters().

    saveAllRegisters(jit, registerScratch);
    
    // Bring the stack back into a sane form and assert that it's sane.
    jit.popToRestore(GPRInfo::regT0);
    jit.checkStackPointerAlignment();
    
    if (vm->m_perBytecodeProfiler && codeBlock->jitCode()->dfgCommon()->compilation) {
        Profiler::Database& database = *vm->m_perBytecodeProfiler;
        Profiler::Compilation* compilation = codeBlock->jitCode()->dfgCommon()->compilation.get();
        
        Profiler::OSRExit* profilerExit = compilation->addOSRExit(
            exitID, Profiler::OriginStack(database, codeBlock, exit.m_codeOrigin),
            exit.m_kind, exit.m_kind == UncountableInvalidation);
        jit.add64(CCallHelpers::TrustedImm32(1), CCallHelpers::AbsoluteAddress(profilerExit->counterAddress()));
    }

    // The remaining code assumes that SP/FP are in the same state that they were in the FTL's
    // call frame.
    
    // Get the call frame and tag thingies.
    // Restore the exiting function's callFrame value into a regT4
    jit.move(MacroAssembler::TrustedImm64(TagTypeNumber), GPRInfo::tagTypeNumberRegister);
    jit.move(MacroAssembler::TrustedImm64(TagMask), GPRInfo::tagMaskRegister);
    
    // Do some value profiling.
    if (exit.m_profileDataFormat != DataFormatNone) {
        record->locations[0].restoreInto(jit, jitCode->stackmaps, registerScratch, GPRInfo::regT0);
        reboxAccordingToFormat(
            exit.m_profileDataFormat, jit, GPRInfo::regT0, GPRInfo::regT1, GPRInfo::regT2);
        
        if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) {
            CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile;
            if (ArrayProfile* arrayProfile = jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) {
                jit.load32(MacroAssembler::Address(GPRInfo::regT0, JSCell::structureIDOffset()), GPRInfo::regT1);
                jit.store32(GPRInfo::regT1, arrayProfile->addressOfLastSeenStructureID());
                jit.load8(MacroAssembler::Address(GPRInfo::regT0, JSCell::indexingTypeOffset()), GPRInfo::regT1);
                jit.move(MacroAssembler::TrustedImm32(1), GPRInfo::regT2);
                jit.lshift32(GPRInfo::regT1, GPRInfo::regT2);
                jit.or32(GPRInfo::regT2, MacroAssembler::AbsoluteAddress(arrayProfile->addressOfArrayModes()));
            }
        }

        if (!!exit.m_valueProfile)
            jit.store64(GPRInfo::regT0, exit.m_valueProfile.getSpecFailBucket(0));
    }

    // Materialize all objects. Don't materialize an object until all
    // of the objects it needs have been materialized. We break cycles
    // by populating objects late - we only consider an object as
    // needing another object if the later is needed for the
    // allocation of the former.

    HashSet<ExitTimeObjectMaterialization*> toMaterialize;
    for (ExitTimeObjectMaterialization* materialization : exit.m_materializations)
        toMaterialize.add(materialization);

    while (!toMaterialize.isEmpty()) {
        unsigned previousToMaterializeSize = toMaterialize.size();

        Vector<ExitTimeObjectMaterialization*> worklist;
        worklist.appendRange(toMaterialize.begin(), toMaterialize.end());
        for (ExitTimeObjectMaterialization* materialization : worklist) {
            // Check if we can do anything about this right now.
            bool allGood = true;
            for (ExitPropertyValue value : materialization->properties()) {
                if (!value.value().isObjectMaterialization())
                    continue;
                if (!value.location().neededForMaterialization())
                    continue;
                if (toMaterialize.contains(value.value().objectMaterialization())) {
                    // Gotta skip this one, since it needs a
                    // materialization that hasn't been materialized.
                    allGood = false;
                    break;
                }
            }
            if (!allGood)
                continue;

            // All systems go for materializing the object. First we
            // recover the values of all of its fields and then we
            // call a function to actually allocate the beast.
            // We only recover the fields that are needed for the allocation.
            for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) {
                const ExitPropertyValue& property = materialization->properties()[propertyIndex];
                const ExitValue& value = property.value();
                if (!property.location().neededForMaterialization())
                    continue;

                compileRecovery(
                    jit, value, record, jitCode->stackmaps, registerScratch,
                    materializationToPointer);
                jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex);
            }
            
            // This call assumes that we don't pass arguments on the stack.
            jit.setupArgumentsWithExecState(
                CCallHelpers::TrustedImmPtr(materialization),
                CCallHelpers::TrustedImmPtr(materializationArguments));
            jit.move(CCallHelpers::TrustedImmPtr(bitwise_cast<void*>(operationMaterializeObjectInOSR)), GPRInfo::nonArgGPR0);
            jit.call(GPRInfo::nonArgGPR0);
            jit.storePtr(GPRInfo::returnValueGPR, materializationToPointer.get(materialization));

            // Let everyone know that we're done.
            toMaterialize.remove(materialization);
        }
        
        // We expect progress! This ensures that we crash rather than looping infinitely if there
        // is something broken about this fixpoint. Or, this could happen if we ever violate the
        // "materializations form a DAG" rule.
        RELEASE_ASSERT(toMaterialize.size() < previousToMaterializeSize);
    }

    // Now that all the objects have been allocated, we populate them
    // with the correct values. This time we can recover all the
    // fields, including those that are only needed for the allocation.
    for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) {
        for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) {
            const ExitValue& value = materialization->properties()[propertyIndex].value();
            compileRecovery(
                jit, value, record, jitCode->stackmaps, registerScratch,
                materializationToPointer);
            jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex);
        }

        // This call assumes that we don't pass arguments on the stack
        jit.setupArgumentsWithExecState(
            CCallHelpers::TrustedImmPtr(materialization),
            CCallHelpers::TrustedImmPtr(materializationToPointer.get(materialization)),
            CCallHelpers::TrustedImmPtr(materializationArguments));
        jit.move(CCallHelpers::TrustedImmPtr(bitwise_cast<void*>(operationPopulateObjectInOSR)), GPRInfo::nonArgGPR0);
        jit.call(GPRInfo::nonArgGPR0);
    }

    // Save all state from wherever the exit data tells us it was, into the appropriate place in
    // the scratch buffer. This also does the reboxing.
    
    for (unsigned index = exit.m_values.size(); index--;) {
        compileRecovery(
            jit, exit.m_values[index], record, jitCode->stackmaps, registerScratch,
            materializationToPointer);
        jit.store64(GPRInfo::regT0, scratch + index);
    }
    
    // Henceforth we make it look like the exiting function was called through a register
    // preservation wrapper. This implies that FP must be nudged down by a certain amount. Then
    // we restore the various things according to either exit.m_values or by copying from the
    // old frame, and finally we save the various callee-save registers into where the
    // restoration thunk would restore them from.
    
    // Before we start messing with the frame, we need to set aside any registers that the
    // FTL code was preserving.
    for (unsigned i = codeBlock->calleeSaveRegisters()->size(); i--;) {
        RegisterAtOffset entry = codeBlock->calleeSaveRegisters()->at(i);
        jit.load64(
            MacroAssembler::Address(MacroAssembler::framePointerRegister, entry.offset()),
            GPRInfo::regT0);
        jit.store64(GPRInfo::regT0, unwindScratch + i);
    }
    
    jit.load32(CCallHelpers::payloadFor(JSStack::ArgumentCount), GPRInfo::regT2);
    
    // Let's say that the FTL function had failed its arity check. In that case, the stack will
    // contain some extra stuff.
    //
    // We compute the padded stack space:
    //
    //     paddedStackSpace = roundUp(codeBlock->numParameters - regT2 + 1)
    //
    // The stack will have regT2 + CallFrameHeaderSize stuff.
    // We want to make the stack look like this, from higher addresses down:
    //
    //     - argument padding
    //     - actual arguments
    //     - call frame header

    // This code assumes that we're dealing with FunctionCode.
    RELEASE_ASSERT(codeBlock->codeType() == FunctionCode);
    
    jit.add32(
        MacroAssembler::TrustedImm32(-codeBlock->numParameters()), GPRInfo::regT2,
        GPRInfo::regT3);
    MacroAssembler::Jump arityIntact = jit.branch32(
        MacroAssembler::GreaterThanOrEqual, GPRInfo::regT3, MacroAssembler::TrustedImm32(0));
    jit.neg32(GPRInfo::regT3);
    jit.add32(MacroAssembler::TrustedImm32(1 + stackAlignmentRegisters() - 1), GPRInfo::regT3);
    jit.and32(MacroAssembler::TrustedImm32(-stackAlignmentRegisters()), GPRInfo::regT3);
    jit.add32(GPRInfo::regT3, GPRInfo::regT2);
    arityIntact.link(&jit);

    CodeBlock* baselineCodeBlock = jit.baselineCodeBlockFor(exit.m_codeOrigin);

    // First set up SP so that our data doesn't get clobbered by signals.
    unsigned conservativeStackDelta =
        (exit.m_values.numberOfLocals() + baselineCodeBlock->calleeSaveSpaceAsVirtualRegisters()) * sizeof(Register) +
        maxFrameExtentForSlowPathCall;
    conservativeStackDelta = WTF::roundUpToMultipleOf(
        stackAlignmentBytes(), conservativeStackDelta);
    jit.addPtr(
        MacroAssembler::TrustedImm32(-conservativeStackDelta),
        MacroAssembler::framePointerRegister, MacroAssembler::stackPointerRegister);
    jit.checkStackPointerAlignment();

    RegisterSet allFTLCalleeSaves = RegisterSet::ftlCalleeSaveRegisters();
    RegisterAtOffsetList* baselineCalleeSaves = baselineCodeBlock->calleeSaveRegisters();

    for (Reg reg = Reg::first(); reg <= Reg::last(); reg = reg.next()) {
        if (!allFTLCalleeSaves.get(reg))
            continue;
        unsigned unwindIndex = codeBlock->calleeSaveRegisters()->indexOf(reg);
        RegisterAtOffset* baselineRegisterOffset = baselineCalleeSaves->find(reg);

        if (reg.isGPR()) {
            GPRReg regToLoad = baselineRegisterOffset ? GPRInfo::regT0 : reg.gpr();

            if (unwindIndex == UINT_MAX) {
                // The FTL compilation didn't preserve this register. This means that it also
                // didn't use the register. So its value at the beginning of OSR exit should be
                // preserved by the thunk. Luckily, we saved all registers into the register
                // scratch buffer, so we can restore them from there.
                jit.load64(registerScratch + offsetOfReg(reg), regToLoad);
            } else {
                // The FTL compilation preserved the register. Its new value is therefore
                // irrelevant, but we can get the value that was preserved by using the unwind
                // data. We've already copied all unwind-able preserved registers into the unwind
                // scratch buffer, so we can get it from there.
                jit.load64(unwindScratch + unwindIndex, regToLoad);
            }

            if (baselineRegisterOffset)
                jit.store64(regToLoad, MacroAssembler::Address(MacroAssembler::framePointerRegister, baselineRegisterOffset->offset()));
        } else {
            FPRReg fpRegToLoad = baselineRegisterOffset ? FPRInfo::fpRegT0 : reg.fpr();

            if (unwindIndex == UINT_MAX)
                jit.loadDouble(MacroAssembler::TrustedImmPtr(registerScratch + offsetOfReg(reg)), fpRegToLoad);
            else
                jit.loadDouble(MacroAssembler::TrustedImmPtr(unwindScratch + unwindIndex), fpRegToLoad);

            if (baselineRegisterOffset)
                jit.storeDouble(fpRegToLoad, MacroAssembler::Address(MacroAssembler::framePointerRegister, baselineRegisterOffset->offset()));
        }
    }

    size_t baselineVirtualRegistersForCalleeSaves = baselineCodeBlock->calleeSaveSpaceAsVirtualRegisters();

    // Now get state out of the scratch buffer and place it back into the stack. The values are
    // already reboxed so we just move them.
    for (unsigned index = exit.m_values.size(); index--;) {
        VirtualRegister reg = exit.m_values.virtualRegisterForIndex(index);

        if (reg.isLocal() && reg.toLocal() < static_cast<int>(baselineVirtualRegistersForCalleeSaves))
            continue;

        jit.load64(scratch + index, GPRInfo::regT0);
        jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(reg));
    }
    
    handleExitCounts(jit, exit);
    reifyInlinedCallFrames(jit, exit);
    adjustAndJumpToTarget(jit, exit, false);
    
    LinkBuffer patchBuffer(*vm, jit, codeBlock);
    exit.m_code = FINALIZE_CODE_IF(
        shouldDumpDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit(),
        patchBuffer,
        ("FTL OSR exit #%u (%s, %s) from %s, with operands = %s, and record = %s",
            exitID, toCString(exit.m_codeOrigin).data(),
            exitKindToString(exit.m_kind), toCString(*codeBlock).data(),
            toCString(ignoringContext<DumpContext>(exit.m_values)).data(),
            toCString(*record).data()));
}