Exemplo n.º 1
0
/// Determines (and sets) the value of Q from the axis and the inboard link and outboard link transforms
void ScrewJoint::determine_q(VectorN& q)
{
  // get the inboard and outboard link pointers
  RigidBodyPtr inboard = get_inboard_link();
  RigidBodyPtr outboard = get_outboard_link();
  
  // verify that the inboard and outboard links are set
  if (!inboard || !outboard)
  {
    std::cerr << "ScrewJoint::determine_Q() called on NULL inboard and/or outboard links!" << std::endl;
    assert(false);
    return;
  }

  // if axis is not defined, can't use this method
  if (std::fabs(_u.norm() - 1.0) > NEAR_ZERO)
  {
    std::cerr << "ScrewJoint::determine_Q() warning: some axes undefined; aborting..." << std::endl;
    return;
  }

  // get the attachment points on the link (global coords)
  Vector3d p1 = get_position_global(false);
  Vector3d p2 = get_position_global(true);

  // get the joint axis in the global frame
  Vector3d ug = inboard->get_transform().mult_vector(_u);

  // now, we'll project p2 onto the axis ug; points will be setup so that
  // ug passes through origin on inboard
  q.resize(num_dof());
  q[DOF_1] = ug.dot(p2-p1)/_pitch;
}
Exemplo n.º 2
0
Arquivo: Joint.cpp Projeto: hsu/Moby
/// Sets s bar from si
void Joint::calc_s_bar_from_si()
{
  const unsigned SPATIAL_DIM = 6;
  const unsigned NDOF = num_dof();
  SAFESTATIC MatrixN ns;
  SAFESTATIC SMatrix6N sx;

  // transform sx to frame located at joint
  RigidBodyPtr outboard = get_outboard_link();
  if (!outboard)
    return;
  const Matrix4& To = outboard->get_transform();
  Vector3 x = get_position_global();
  SpatialTransform(To, IDENTITY_3x3, x).transform(_si, sx);

  // setup ns - it's the standard (i.e., non-spatial) transpose of sx
  assert(sx.columns() == NDOF);
  ns.resize(NDOF, SPATIAL_DIM);
  for (unsigned i=0; i< NDOF; i++)
    for (unsigned j=0; j< SPATIAL_DIM; j++)
      ns(i,j) = sx(j,i);

  // compute the nullspace
  LinAlg::nullspace(ns, _s_bar);
}
Exemplo n.º 3
0
/// The main control loop
void controller(DynamicBodyPtr robot, Real time, void* data)
{
  // determine coordinates of ball in gripper coordinate frames
  if (first)
  {
    _ball_grip_left = Matrix4::inverse_transform(left_gripper->get_transform()) .mult_point(ball->get_position());  
    _ball_grip_right = Matrix4::inverse_transform(right_gripper->get_transform()).mult_point(ball->get_position());  
    first = false;
  }
  else
  {
    // output the combined error from the starting position w.r.t. both grippers
    std::ofstream out("error.ball", std::ios::app);
    Vector3 ball_grip_left = Matrix4::inverse_transform(left_gripper->get_transform()).mult_point(ball->get_position());  
    Vector3 ball_grip_right = Matrix4::inverse_transform(right_gripper->get_transform()).mult_point(ball->get_position());  
    Real err = std::sqrt((ball_grip_left - _ball_grip_left).norm_sq() + (ball_grip_right - _ball_grip_right).norm_sq());
    out << time << " " << err << std::endl;
    out.close();
  }

  control_PID(dynamic_pointer_cast<RCArticulatedBody>(robot), time);
}
Exemplo n.º 4
0
/// Determines (and sets) the value of Q from the axes and the inboard link and outboard link transforms
void SphericalJoint::determine_q(VectorN& q)
{
  const unsigned X = 0, Y = 1, Z = 2;

  // get the inboard and outboard links
  RigidBodyPtr inboard = get_inboard_link();
  RigidBodyPtr outboard = get_outboard_link();

  // verify that the inboard and outboard links are set
  if (!inboard || !outboard)
    throw NullPointerException("SphericalJoint::determine_q() called on NULL inboard and/or outboard links!");

  // if any of the axes are not defined, can't use this method
  if (std::fabs(_u[0].norm_sq() - 1.0) > NEAR_ZERO ||
      std::fabs(_u[1].norm_sq() - 1.0) > NEAR_ZERO ||
      std::fabs(_u[2].norm_sq() - 1.0) > NEAR_ZERO)
    return;

  // set proper size for q
  q.resize(num_dof());

  // get the link transforms
  Matrix3 R_inboard, R_outboard;
  inboard->get_transform().get_rotation(&R_inboard);
  outboard->get_transform().get_rotation(&R_outboard);

  // determine the joint transformation
  Matrix3 R_local = R_inboard.transpose_mult(R_outboard);

  // back out the transformation to z-axis
  Matrix3 RU = _R.transpose_mult(R_local * _R);

  // determine cos and sin values for q1, q2,  and q3
  Real s2 = RU(X,Z);
  Real c2 = std::cos(std::asin(s2));
  Real s1, c1, s3, c3;
  if (std::fabs(c2) > NEAR_ZERO)
  {
    s1 = -RU(Y,Z)/c2;
    c1 = RU(Z,Z)/c2;
    s3 = -RU(X,Y)/c2;
    c3 = RU(X,X)/c2;
    assert(!std::isnan(s1));
    assert(!std::isnan(c1));
    assert(!std::isnan(s3));
    assert(!std::isnan(c3));
  }
  else
  {
    // singular, we can pick any value for s1, c1, s3, c3 as long as the
    // following conditions are satisfied
    // c1*s3 + s1*c3*s2 = RU(Y,X)
    // c1*c3 - s1*s3*s2 = RU(Y,Y)
    // s1*s3 - c1*c3*s2 = RU(Z,X)
    // s1*c3 + c1*s3*s2 = RU(Z,Y)
    // so, we'll set q1 to zero (arbitrarily) and obtain
    s1 = 0;
    c1 = 1;
    s3 = RU(Y,X);
    c3 = RU(Y,Y);
  }

  // now determine q; only q2 can be determined without ambiguity
  if (std::fabs(s1) < NEAR_ZERO)
    q[DOF_2] = std::atan2(RU(X,Z), RU(Z,Z)/c1);
  else
    q[DOF_2] = std::atan2(RU(X,Z), -RU(Y,Z)/s1);
  assert(!std::isnan(q[DOF_2]));

  // if cos(q2) is not singular, proceed easily from here..
  if (std::fabs(c2) > NEAR_ZERO)
  {
    q[DOF_1] = std::atan2(-RU(Y,Z)/c2, RU(Z,Z)/c2);
    q[DOF_3] = std::atan2(-RU(X,Y)/c2, RU(X,X)/c2);
    assert(!std::isnan(q[DOF_1]));
    assert(!std::isnan(q[DOF_3]));
  }
  else
  {
    if (std::fabs(c1) > NEAR_ZERO)
      q[DOF_3] = std::atan2((RU(Y,X) - s1*s2*c3)/c1, (RU(Y,Y) + s1*s2*s3)/c1);
    else
      q[DOF_3] = std::atan2((RU(Z,X) + c1*s2*c3)/s1, (RU(Z,Y) - c1*s2*s3)/s1);
    if (std::fabs(c3) > NEAR_ZERO)
      q[DOF_1] = std::atan2((RU(Y,X) - c1*s3)/(s2*c3), (-RU(Y,X) + s1*s3)/(s2*c3));
    else
      q[DOF_1] = std::atan2((-RU(Y,Y) + c1*c3)/(s2*s3), (RU(Z,Y) - s1*c3)/(s2*s3));
    assert(!std::isnan(q[DOF_1]));
    assert(!std::isnan(q[DOF_3]));
  }
}
Exemplo n.º 5
0
/**
 * \param inv_dyn_data a mapping from links to the external forces (and
 *        torques) applied to them and to the desired inner joint
 *        accelerations; note that all links in the robot should be included
 *        in this map (even the base link, although inner joint acceleration
 *        is not applicable in that case and will be ignored for it)
 * \return a mapping from joints to actuator forces
 */
map<JointPtr, VectorN> RNEAlgorithm::calc_inv_dyn_floating_base(RCArticulatedBodyPtr body, const map<RigidBodyPtr, RCArticulatedBodyInvDynData>& inv_dyn_data) const
{
  queue<RigidBodyPtr> link_queue;
  map<RigidBodyPtr, RCArticulatedBodyInvDynData>::const_iterator idd_iter;
  vector<SpatialRBInertia> Iiso, I;
  vector<SVector6> Z, v, a;

  FILE_LOG(LOG_DYNAMICS) << "RNEAlgorithm::calc_inv_dyn_floating_base() entered" << endl;

  // get the reference frame type
  ReferenceFrameType rftype = body->computation_frame_type;

  // get the set of links
  const vector<RigidBodyPtr>& links = body->get_links();

  // ** STEP 0: compute isolated inertias 

  // get the isolated inertiae
  Iiso.resize(links.size());
  for (unsigned i=0; i< links.size(); i++)
  {
    unsigned idx = links[i]->get_index();
    Iiso[idx] = links[i]->get_spatial_iso_inertia(rftype); 
  }

  // ** STEP 1: compute velocities and relative accelerations

  // set all desired velocities and accelerations (latter relative to the base)
  // to zero initially
  v.resize(links.size());
  a.resize(links.size());
  for (unsigned i=0; i< links.size(); i++)
    v[i] = a[i] = ZEROS_6;
  
  // get the base link
  RigidBodyPtr base = links.front();
  
  // set velocity for the base
  v.front() = base->get_spatial_velocity(rftype);

  // add all child links of the base to the processing queue
  list<RigidBodyPtr> child_links;
  base->get_child_links(std::back_inserter(child_links)); 
  BOOST_FOREACH(RigidBodyPtr rb, child_links)
    link_queue.push(rb);
    
  // process all links
  while (!link_queue.empty())
  {
    // get the link off of the front of the queue
    RigidBodyPtr link = link_queue.front();
    link_queue.pop();
    
    // add all child links of the link to the processing queue
    child_links.clear();
    link->get_child_links(std::back_inserter(child_links)); 
    BOOST_FOREACH(RigidBodyPtr rb, child_links)
      link_queue.push(rb);
    
    // get the parent link
    RigidBodyPtr parent(link->get_parent_link());
    
    // get the index of this link and its parent
    unsigned i = link->get_index();
    unsigned im1 = parent->get_index();

    // get the spatial axes (and derivative) of this link's inner joint
    JointPtr joint(link->get_inner_joint_implicit());
    const SMatrix6N& s = joint->get_spatial_axes(rftype);
    const SMatrix6N& s_dot = joint->get_spatial_axes_dot(rftype);

    // compute s * qdot
    SVector6 sqd = s.mult(joint->qd);
    
    // get the desired acceleration for the current link
    idd_iter = inv_dyn_data.find(link);
    assert(idd_iter != inv_dyn_data.end());
    const VectorN& qdd_des = idd_iter->second.qdd;

    // compute velocity and relative acceleration
    v[i] = v[im1] + sqd;
    a[i] = a[im1] + s.mult(qdd_des) + s_dot.mult(joint->qd) + SVector6::spatial_cross(v[i], sqd);

    FILE_LOG(LOG_DYNAMICS) << "  s: " << s << endl;
    FILE_LOG(LOG_DYNAMICS) << "  velocity for link " << links[i]->id << ": " << v[i] << endl;
    FILE_LOG(LOG_DYNAMICS) << "  s * qdd: " << s.mult(qdd_des) << endl;
    FILE_LOG(LOG_DYNAMICS) << "  v x s * qd: " << SVector6::spatial_cross(v[i], sqd) << endl;
    FILE_LOG(LOG_DYNAMICS) << "  relative accel for link " << links[i]->id << ": " << a[i] << endl;
  }
  
  // ** STEP 2: compute composite inertias and Z.A. forces

  // resize vectors of spatial inertias and Z.A. vectors
  I.resize(links.size());
  Z.resize(links.size());

  // zero out I and Z
  for (unsigned i=0; i< links.size(); i++)
  {
    I[i].set_zero();
    Z[i] = ZEROS_6;
  }

  // set all spatial isolated inertias and Z.A. forces
  for (unsigned i=0; i< links.size(); i++)
  {
    // get the i'th link
    RigidBodyPtr link = links[i];
    unsigned idx = link->get_index();

    // add the spatial isolated inertia for this link to the composite inertia
    I[idx] += Iiso[idx];

    // setup forces due to (relative) acceleration on link
    Z[idx] = Iiso[idx] * a[idx];

    // add coriolis and centrifugal forces on link
    Z[idx] += SVector6::spatial_cross(v[i], Iiso[idx] * v[idx]);

    // determine external forces on the link in link frame
    idd_iter = inv_dyn_data.find(link);
    assert(idd_iter != inv_dyn_data.end());
    const Vector3& fext = idd_iter->second.fext;  
    const Vector3& text = idd_iter->second.text;  
    const Matrix4& T = link->get_transform();
    SVector6 fx(T.transpose_mult_vector(fext), T.transpose_mult_vector(text));

    // transform external forces and subtract from Z.A. vector
    SpatialTransform X_0_i = link->get_spatial_transform_link_to_global();
    Z[idx] -= X_0_i.transform(fx);

    FILE_LOG(LOG_DYNAMICS) << " -- processing link " << link->id << endl;
    FILE_LOG(LOG_DYNAMICS) << "   external force / torque: " << fext << " / " << text << endl;
    FILE_LOG(LOG_DYNAMICS) << "   ZA vector: " << Z[idx] << endl;
    FILE_LOG(LOG_DYNAMICS) << "   isolated spatial-inertia: " << endl << Iiso[idx];
  }
  
  // *** compute composite inertias and zero acceleration vectors

  // setup vector that indicates when links have been processed
  vector<bool> processed(links.size(), false);

  // put all leaf links into the queue
  for (unsigned i=0; i< links.size(); i++)
    if (links[i]->num_child_links() == 0)
      link_queue.push(links[i]);

  // process all links
  while (!link_queue.empty())
  {
    // get the link off of the front of the queue
    RigidBodyPtr link = link_queue.front();
    link_queue.pop();

    // get the index for this link
    unsigned i = link->get_index();
    
    // see whether this link has already been processed
    if (processed[i])
      continue;
    
    // process the parent link, if possible
    RigidBodyPtr parent(link->get_parent_link());
    if (parent)
    {
      // put the parent on the queue
      link_queue.push(parent);
    
      // get the parent index
      unsigned im1 = parent->get_index();
    
      // add this inertia and Z.A. force to its parent
      I[im1] += I[i];
      Z[im1] += Z[i];

      // indicate that the link has been processed
      processed[i] = true;
    }
  }

  // ** STEP 3: compute base acceleration
  a.front() = I.front().inverse_mult(-Z.front());
  
  SpatialTransform X_i_0 = base->get_spatial_transform_global_to_link(); 
  FILE_LOG(LOG_DYNAMICS) << "  Composite inertia for the base: " << endl << I.front();
  FILE_LOG(LOG_DYNAMICS) << "  ZA vector for the base (link frame): " << X_i_0.transform(Z.front()) << endl;
  FILE_LOG(LOG_DYNAMICS) << "  Determined base acceleration (link frame): " << X_i_0.transform(a.front()) << endl;

  // ** STEP 4: compute joint forces
  
  // setup the map of actuator forces
  map<JointPtr, VectorN> actuator_forces;

  // compute the forces
  for (unsigned i=1; i< links.size(); i++)
  {
    unsigned idx = links[i]->get_index();
    JointPtr joint(links[i]->get_inner_joint_implicit());
    const SMatrix6N& s = joint->get_spatial_axes(rftype);
    VectorN& Q = actuator_forces[joint];
    s.transpose_mult((I[idx] * a.front()) + Z[idx], Q);

    FILE_LOG(LOG_DYNAMICS) << "  processing link: " << links[i]->id << endl;
    FILE_LOG(LOG_DYNAMICS) << "    spatial axis: " << endl << s;
    FILE_LOG(LOG_DYNAMICS) << "    I: " << endl << I[idx];
    FILE_LOG(LOG_DYNAMICS) << "    Z: " << endl << Z[idx];
    FILE_LOG(LOG_DYNAMICS) << "    actuator force: " << actuator_forces[joint] << endl;
  }

  FILE_LOG(LOG_DYNAMICS) << "RNEAlgorithm::calc_inv_dyn_floating_base() exited" << endl;

  return actuator_forces;
}
Exemplo n.º 6
0
/**
 * Computed joint actuator forces are stored in inv_dyn_data.
 */
map<JointPtr, VectorN> RNEAlgorithm::calc_inv_dyn_fixed_base(RCArticulatedBodyPtr body, const map<RigidBodyPtr, RCArticulatedBodyInvDynData>& inv_dyn_data) const
{
  queue<RigidBodyPtr> link_queue;
  map<RigidBodyPtr, RCArticulatedBodyInvDynData>::const_iterator idd_iter;
  vector<SpatialRBInertia> Iiso;

  FILE_LOG(LOG_DYNAMICS) << "RNEAlgorithm::calc_inv_dyn_fixed_base() entered" << endl;

  // get the reference frame for computation
  ReferenceFrameType rftype = body->computation_frame_type;

  // ** STEP 0: compute isolated inertias 

  // get the set of links
  const vector<RigidBodyPtr>& links = body->get_links();

  // get the isolated inertiae
  Iiso.resize(links.size());
  for (unsigned i=1; i< links.size(); i++)
  {
    unsigned idx = links[i]->get_index();
    Iiso[idx] = links[i]->get_spatial_iso_inertia(rftype); 
  }

  // ** STEP 1: compute velocities and accelerations

  // get the base link
  RigidBodyPtr base = links.front();

  // setup the vector of link accelerations
  vector<SVector6> accels(links.size(), ZEROS_6);
  
  // add all child links of the base to the processing queue
  list<RigidBodyPtr> child_links;
  base->get_child_links(std::back_inserter(child_links)); 
  BOOST_FOREACH(RigidBodyPtr rb, child_links)
    link_queue.push(rb);
  
  // process all links
  while (!link_queue.empty())
  {
    // get the link off of the front of the queue 
    RigidBodyPtr link = link_queue.front();
    link_queue.pop();    
    unsigned idx = link->get_index();

    // push all children of the link onto the queue
    child_links.clear();
    link->get_child_links(std::back_inserter(child_links)); 
    BOOST_FOREACH(RigidBodyPtr rb, child_links)
      link_queue.push(rb);

    // get the link's parent
    RigidBodyPtr parent(link->get_parent_link());
    unsigned pidx = parent->get_index();

    // get the joint for this link
    JointPtr joint(link->get_inner_joint_implicit());

    // get the spatial link velocity
    const SVector6& v = link->get_spatial_velocity(rftype); 

    // get the reference to the spatial link acceleration
    SVector6& a = accels[idx];
 
    // get spatial axes for this link's inner joint
    const SMatrix6N& s = joint->get_spatial_axes(rftype);

    // get derivative of the spatial axes for this link's inner joint
    const SMatrix6N& s_dot = joint->get_spatial_axes_dot(rftype);

    // get the current joint velocity
    const VectorN& qd = joint->qd;

    // **** compute acceleration

    // get the desired joint acceleration
    idd_iter = inv_dyn_data.find(link);
    assert(idd_iter != inv_dyn_data.end());
    const VectorN& qdd_des = idd_iter->second.qdd;  

    // add this link's contribution
    a += SVector6::spatial_cross(v, s.mult(qd)) + s.mult(qdd_des) + s_dot.mult(qd);

    // now add parent's contribution
    if (rftype == eGlobal)
      a += accels[pidx];
    else
    {
      SpatialTransform X_i_im1 = link->get_spatial_transform_forward();
      a += X_i_im1.transform(accels[pidx]);
    }

    FILE_LOG(LOG_DYNAMICS) << " computing link velocity / acceleration; processing link " << link->id << endl;
    FILE_LOG(LOG_DYNAMICS) << "  spatial axis: " << s << endl;
    FILE_LOG(LOG_DYNAMICS) << "  spatial joint velocity: " << s.mult(qd) << endl;
    FILE_LOG(LOG_DYNAMICS) << "  link velocity: " << v << endl;
    FILE_LOG(LOG_DYNAMICS) << "  link accel: " << a << endl;
  }
  
  // ** STEP 2: compute link forces -- backward recursion
  vector<bool> processed(links.size(), false);
  vector<SVector6> forces(links.size(), SVector6(0,0,0,0,0,0));

  // add all leaf links to the queue
  for (unsigned i=1; i< links.size(); i++)
    if (links[i]->num_child_links() == 0)
      link_queue.push(links[i]);
      
  // process all links up to, but not including, the base
  while (!link_queue.empty())
  {
    // get the link off of the front of the queue
    RigidBodyPtr link = link_queue.front();
    link_queue.pop();    
    unsigned idx = link->get_index();

    // if this link has already been processed, do not process it again
    if (processed[idx])
      continue;

    // if the link is the base, continue the loop
    if (link->is_base())
      continue;
    
    // link is not the base; add the parent to the queue for processing
    RigidBodyPtr parent(link->get_parent_link());
    link_queue.push(parent);
    unsigned pidx = parent->get_index();

    // get the forces for this link and this link's parent
    SVector6& fi = forces[idx];
    SVector6& fim1 = forces[pidx];
    
    FILE_LOG(LOG_DYNAMICS) << " computing necessary force; processing link " << link->id << endl;
    FILE_LOG(LOG_DYNAMICS) << "  currently determined link force: " << fi << endl;    
    FILE_LOG(LOG_DYNAMICS) << "  I * a = " << (Iiso[idx] * accels[idx]) << endl;

    // get the spatial velocity for this link
    const SVector6& v = link->get_spatial_velocity(rftype);

    // add I*a to the link force
    fi += Iiso[idx] * accels[idx];

    // update the determined force to this link w/Coriolis + centrifugal terms
    fi += SVector6::spatial_cross(v, Iiso[idx] * v);

    FILE_LOG(LOG_DYNAMICS) << "  force (+ I*a): " << fi << endl;    

    // determine external forces in link frame
    idd_iter = inv_dyn_data.find(link);
    assert(idd_iter != inv_dyn_data.end());
    const Vector3& fext = idd_iter->second.fext;  
    const Vector3& text = idd_iter->second.text;  
    const Matrix4& T = link->get_transform();
    SVector6 fx(T.transpose_mult_vector(fext), T.transpose_mult_vector(text));

    // subtract external forces in the appropriate frame
    if (rftype == eGlobal)
    {
      SpatialTransform X_0_i = link->get_spatial_transform_link_to_global();
      fi -= X_0_i.transform(fx);
    }
    else
      fi -= fx;

    FILE_LOG(LOG_DYNAMICS) << "  force on link after subtracting external force: " << fi << endl;

    // indicate that this link has been processed
    processed[idx] = true;

    // update the parent force, if the parent is not the base
    if (parent->is_base())
      continue;
    else 
      if (rftype == eGlobal)
        fim1 += fi;
      else
        fim1 += link->get_spatial_transform_backward().transform(fi);
  }
  
  // ** STEP 3: compute joint forces

  // setup a map from joints to actuator forces
  map<JointPtr, VectorN> actuator_forces;

  // compute actuator forces
  for (unsigned i=1; i< links.size(); i++)
  {
    RigidBodyPtr link = links[i];
    JointPtr joint(link->get_inner_joint_implicit());
    const SMatrix6N& s = joint->get_spatial_axes(rftype);
    VectorN& Q = actuator_forces[joint];  
    s.transpose_mult(forces[link->get_index()], Q);
  
    FILE_LOG(LOG_DYNAMICS) << "joint " << joint->id << " inner joint force: " << actuator_forces[joint] << endl;
  }

  FILE_LOG(LOG_DYNAMICS) << "RNEAlgorithm::calc_inv_dyn_fixed_base() exited" << endl;

  return actuator_forces;
}
Exemplo n.º 7
0
/**
 * \pre Uses joint accelerations computed by forward dynamics, so the 
 *      appropriate forward dynamics function must be run first.
 */
void RNEAlgorithm::calc_constraint_forces(RCArticulatedBodyPtr body)
{
  queue<RigidBodyPtr> link_queue;
  SMatrix6N s;
  vector<SpatialRBInertia> Iiso;

  FILE_LOG(LOG_DYNAMICS) << "RNEAlgorithm::calc_constraint_forces() entered" << endl;

  // get the reference frame for computation
  ReferenceFrameType rftype = body->computation_frame_type;

  // ** STEP 0: compute isolated inertias 

  // get the set of links
  const vector<RigidBodyPtr>& links = body->get_links();

  // get the isolated inertiae
  Iiso.resize(links.size());
  for (unsigned i=1; i< links.size(); i++)
  {
    unsigned idx = links[i]->get_index();
    Iiso[idx] = links[i]->get_spatial_iso_inertia(rftype); 
  }

   // ** STEP 1: compute velocities and accelerations

  // get the base link
  RigidBodyPtr base = links.front();

  // setup the vector of link accelerations
  vector<SVector6> accels(links.size(), ZEROS_6);
  
  // add all child links of the base to the processing queue
  list<RigidBodyPtr> child_links;
  base->get_child_links(std::back_inserter(child_links)); 
  BOOST_FOREACH(RigidBodyPtr rb, child_links)
    link_queue.push(rb);

  // ** STEP 1: compute link forces -- backward recursion
  vector<bool> processed(links.size(), false);
  vector<SVector6> forces(links.size(), ZEROS_6);

  // add all leaf links to the queue
  for (unsigned i=1; i< links.size(); i++)
    if (links[i]->num_child_links() == 0)
      link_queue.push(links[i]);
      
  // process all links up to, but not including, the base
  while (!link_queue.empty())
  {
    // get the link off of the front of the queue and push all children of the link onto the queue
    RigidBodyPtr link = link_queue.front();
    link_queue.pop();    
    unsigned idx = link->get_index();

    // if this link has already been processed, do not process it again
    if (processed[idx])
      continue;

    // if the link is the base, continue the loop
    if (link->is_base())
      continue;
    
    // link is not the base; add the parent to the queue for processing
    RigidBodyPtr parent(link->get_parent_link());
    link_queue.push(parent);
    unsigned pidx = parent->get_index();

    // get the forces for this link and this link's parent
    SVector6& fi = forces[idx];
    SVector6& fim1 = forces[pidx];

    // get this link's acceleration
    SVector6 a = link->get_spatial_accel(rftype);
    
    FILE_LOG(LOG_DYNAMICS) << " computing necessary force; processing link " << link->id << endl;
    FILE_LOG(LOG_DYNAMICS) << "  currently determined link force: " << fi << endl;    
    FILE_LOG(LOG_DYNAMICS) << "  I * a = " << (Iiso[idx] * a) << endl;

    // get the spatial velocity for this link
    const SVector6& v = link->get_spatial_velocity(rftype);

    // add I*a to the link force
    fi += Iiso[idx] * a;

    // update the determined force to this link w/Coriolis + centrifugal terms
    fi += SVector6::spatial_cross(v, Iiso[idx] * v);

    FILE_LOG(LOG_DYNAMICS) << "  force (+ I*a): " << fi << endl;    

    // determine external forces in link frame
    const Vector3& fext = link->sum_forces();  
    const Vector3& text = link->sum_torques();  
    const Matrix4& T = link->get_transform();
    SVector6 fx(T.transpose_mult_vector(fext), T.transpose_mult_vector(text));

    // subtract external forces in the appropriate frame
    if (rftype == eGlobal)
    {
      SpatialTransform X_0_i = link->get_spatial_transform_link_to_global();
      fi -= X_0_i.transform(fx);
    }
    else
      fi -= fx;

    FILE_LOG(LOG_DYNAMICS) << "  force on link after subtracting external force: " << fi << endl;

    // indicate that this link has been processed
    processed[idx] = true;

    // update the parent force, if the parent is not the base
    if (parent->is_base())
      continue;
    else
    { 
      if (rftype == eGlobal)
        fim1 += fi;
      else
        fim1 += link->get_spatial_transform_backward().transform(fi);
    }
  }
  
  // ** STEP 2: compute constraint forces

  // compute actuator forces
  for (unsigned i=1; i< links.size(); i++)
  {
    RigidBodyPtr link = links[i];
    JointPtr joint(link->get_inner_joint_implicit());
    joint->get_spatial_constraints(rftype, s);
    s.transpose_mult(forces[link->get_index()], joint->lambda);
  
    FILE_LOG(LOG_DYNAMICS) << "joint " << joint->id << " constraint force: " << joint->lambda << endl;
  }

  FILE_LOG(LOG_DYNAMICS) << "RNEAlgorithm::calc_constraint_forces() exited" << endl;
}