bool Interchange::runOnScop(Scop &S) { if (std::distance(S.begin(), S.end()) != 2) // One statement besides the final statement return false; for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) { ScopStmt *Stmt = *SI; if (!Stmt->isReduction()) continue; isl_map *Scattering = isl_map_copy(Stmt->getScattering()); const std::string MapString = "{scattering[i0, i1, i2, i3, i4] -> scattering[i0, i3, i2, i1, i4]}"; isl_map *Map = isl_map_read_from_str(Stmt->getIslContext(), MapString.c_str(), -1); isl_map_add_dims(Map, isl_dim_param, Stmt->getNumParams()); Scattering = isl_map_apply_range(Scattering, Map); Stmt->setScattering(Scattering); DEBUG( isl_printer *p = isl_printer_to_str(S.getCtx()); isl_printer_print_map(p, Scattering); dbgs() << isl_printer_get_str(p) << '\n'; isl_printer_flush(p); isl_printer_free(p); ); }
void Dependences::collectInfo(Scop &S, isl_union_map **Read, isl_union_map **Write, isl_union_map **MayWrite, isl_union_map **Schedule) { isl_space *Space = S.getParamSpace(); *Read = isl_union_map_empty(isl_space_copy(Space)); *Write = isl_union_map_empty(isl_space_copy(Space)); *MayWrite = isl_union_map_empty(isl_space_copy(Space)); *Schedule = isl_union_map_empty(Space); for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) { ScopStmt *Stmt = *SI; for (ScopStmt::memacc_iterator MI = Stmt->memacc_begin(), ME = Stmt->memacc_end(); MI != ME; ++MI) { isl_set *domcp = Stmt->getDomain(); isl_map *accdom = (*MI)->getAccessRelation(); accdom = isl_map_intersect_domain(accdom, domcp); if ((*MI)->isRead()) *Read = isl_union_map_add_map(*Read, accdom); else *Write = isl_union_map_add_map(*Write, accdom); } *Schedule = isl_union_map_add_map(*Schedule, Stmt->getScattering()); } }
CloogUnionDomain *Cloog::buildCloogUnionDomain() { CloogUnionDomain *DU = cloog_union_domain_alloc(S->getNumParams()); for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) { ScopStmt *Stmt = *SI; CloogScattering *Scattering; CloogDomain *Domain; Scattering = cloog_scattering_from_isl_map(Stmt->getScattering()); Domain = cloog_domain_from_isl_set(Stmt->getDomain()); std::string entryName = Stmt->getBaseName(); DU = cloog_union_domain_add_domain(DU, entryName.c_str(), Domain, Scattering, Stmt); } return DU; }
void IslScheduleOptimizer::extendScattering(Scop &S, unsigned NewDimensions) { for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) { ScopStmt *Stmt = *SI; unsigned OldDimensions = Stmt->getNumScattering(); isl_space *Space; isl_map *Map, *New; Space = isl_space_alloc(Stmt->getIslCtx(), 0, OldDimensions, NewDimensions); Map = isl_map_universe(Space); for (unsigned i = 0; i < OldDimensions; i++) Map = isl_map_equate(Map, isl_dim_in, i, isl_dim_out, i); for (unsigned i = OldDimensions; i < NewDimensions; i++) Map = isl_map_fix_si(Map, isl_dim_out, i, 0); Map = isl_map_align_params(Map, S.getParamSpace()); New = isl_map_apply_range(Stmt->getScattering(), Map); Stmt->setScattering(New); } }
CloogUnionDomain *Cloog::buildCloogUnionDomain() { CloogUnionDomain *DU = cloog_union_domain_alloc(S->getNumParams()); for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) { ScopStmt *Stmt = *SI; if (Stmt->isFinalRead()) continue; CloogScattering *Scattering= cloog_scattering_from_isl_map(isl_map_copy(Stmt->getScattering())); CloogDomain *Domain = cloog_domain_from_isl_set(isl_set_copy(Stmt->getDomain())); std::string entryName = Stmt->getBaseName(); char *Name = (char*)malloc(sizeof(char) * (entryName.size() + 1)); strcpy(Name, entryName.c_str()); DU = cloog_union_domain_add_domain(DU, Name, Domain, Scattering, Stmt); } return DU; }
bool IslScheduleOptimizer::runOnScop(Scop &S) { Dependences *D = &getAnalysis<Dependences>(); if (!D->hasValidDependences()) return false; isl_schedule_free(LastSchedule); LastSchedule = nullptr; // Build input data. int ValidityKinds = Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; int ProximityKinds; if (OptimizeDeps == "all") ProximityKinds = Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; else if (OptimizeDeps == "raw") ProximityKinds = Dependences::TYPE_RAW; else { errs() << "Do not know how to optimize for '" << OptimizeDeps << "'" << " Falling back to optimizing all dependences.\n"; ProximityKinds = Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW; } isl_union_set *Domain = S.getDomains(); if (!Domain) return false; isl_union_map *Validity = D->getDependences(ValidityKinds); isl_union_map *Proximity = D->getDependences(ProximityKinds); // Simplify the dependences by removing the constraints introduced by the // domains. This can speed up the scheduling time significantly, as large // constant coefficients will be removed from the dependences. The // introduction of some additional dependences reduces the possible // transformations, but in most cases, such transformation do not seem to be // interesting anyway. In some cases this option may stop the scheduler to // find any schedule. if (SimplifyDeps == "yes") { Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain)); Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain)); Proximity = isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain)); Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain)); } else if (SimplifyDeps != "no") { errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' " "or 'no'. Falling back to default: 'yes'\n"; } DEBUG(dbgs() << "\n\nCompute schedule from: "); DEBUG(dbgs() << "Domain := "; isl_union_set_dump(Domain); dbgs() << ";\n"); DEBUG(dbgs() << "Proximity := "; isl_union_map_dump(Proximity); dbgs() << ";\n"); DEBUG(dbgs() << "Validity := "; isl_union_map_dump(Validity); dbgs() << ";\n"); int IslFusionStrategy; if (FusionStrategy == "max") { IslFusionStrategy = ISL_SCHEDULE_FUSE_MAX; } else if (FusionStrategy == "min") { IslFusionStrategy = ISL_SCHEDULE_FUSE_MIN; } else { errs() << "warning: Unknown fusion strategy. Falling back to maximal " "fusion.\n"; IslFusionStrategy = ISL_SCHEDULE_FUSE_MAX; } int IslMaximizeBands; if (MaximizeBandDepth == "yes") { IslMaximizeBands = 1; } else if (MaximizeBandDepth == "no") { IslMaximizeBands = 0; } else { errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'" " or 'no'. Falling back to default: 'yes'\n"; IslMaximizeBands = 1; } isl_options_set_schedule_fuse(S.getIslCtx(), IslFusionStrategy); isl_options_set_schedule_maximize_band_depth(S.getIslCtx(), IslMaximizeBands); isl_options_set_schedule_max_constant_term(S.getIslCtx(), MaxConstantTerm); isl_options_set_schedule_max_coefficient(S.getIslCtx(), MaxCoefficient); isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_CONTINUE); isl_schedule_constraints *ScheduleConstraints; ScheduleConstraints = isl_schedule_constraints_on_domain(Domain); ScheduleConstraints = isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity); ScheduleConstraints = isl_schedule_constraints_set_validity( ScheduleConstraints, isl_union_map_copy(Validity)); ScheduleConstraints = isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity); isl_schedule *Schedule; Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints); isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_ABORT); // In cases the scheduler is not able to optimize the code, we just do not // touch the schedule. if (!Schedule) return false; DEBUG(dbgs() << "Schedule := "; isl_schedule_dump(Schedule); dbgs() << ";\n"); isl_union_map *ScheduleMap = getScheduleMap(Schedule); for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) { ScopStmt *Stmt = *SI; isl_map *StmtSchedule; isl_set *Domain = Stmt->getDomain(); isl_union_map *StmtBand; StmtBand = isl_union_map_intersect_domain(isl_union_map_copy(ScheduleMap), isl_union_set_from_set(Domain)); if (isl_union_map_is_empty(StmtBand)) { StmtSchedule = isl_map_from_domain(isl_set_empty(Stmt->getDomainSpace())); isl_union_map_free(StmtBand); } else { assert(isl_union_map_n_map(StmtBand) == 1); StmtSchedule = isl_map_from_union_map(StmtBand); } Stmt->setScattering(StmtSchedule); } isl_union_map_free(ScheduleMap); LastSchedule = Schedule; unsigned MaxScatDims = 0; for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) MaxScatDims = std::max((*SI)->getNumScattering(), MaxScatDims); extendScattering(S, MaxScatDims); return false; }
bool Pocc::runTransform(Scop &S) { Dependences *D = &getAnalysis<Dependences>(); // Create the scop file. SmallString<128> TempDir; SmallString<128> ScopFile; llvm::sys::path::system_temp_directory(/*erasedOnReboot=*/true, TempDir); ScopFile = TempDir; llvm::sys::path::append(ScopFile, "polly.scop"); FILE *F = fopen(ScopFile.c_str(), "w"); arguments.clear(); if (!F) { errs() << "Cannot open file: " << TempDir.c_str() << "\n"; errs() << "Skipping export.\n"; return false; } ScopLib scoplib(&S); scoplib.print(F); fclose(F); // Execute pocc std::string pocc = sys::FindProgramByName("pocc"); arguments.push_back("pocc"); arguments.push_back("--read-scop"); arguments.push_back(ScopFile.c_str()); arguments.push_back("--pluto-tile-scat"); arguments.push_back("--candl-dep-isl-simp"); arguments.push_back("--cloogify-scheds"); arguments.push_back("--output-scop"); arguments.push_back("--pluto"); arguments.push_back("--pluto-bounds"); arguments.push_back("10"); arguments.push_back("--pluto-fuse"); arguments.push_back(PlutoFuse.c_str()); if (!DisablePollyTiling) arguments.push_back("--pluto-tile"); if (PollyVectorizerChoice != VECTORIZER_NONE) arguments.push_back("--pluto-prevector"); arguments.push_back(0); PlutoStdout = TempDir; llvm::sys::path::append(PlutoStdout, "pluto.stdout"); PlutoStderr = TempDir; llvm::sys::path::append(PlutoStderr, "pluto.stderr"); std::vector<llvm::StringRef> Redirect; Redirect.push_back(0); Redirect.push_back(PlutoStdout.c_str()); Redirect.push_back(PlutoStderr.c_str()); sys::ExecuteAndWait(pocc, &arguments[0], 0, (const llvm::StringRef **)&Redirect[0]); // Read the created scop file SmallString<128> NewScopFile; NewScopFile = TempDir; llvm::sys::path::append(NewScopFile, "polly.pocc.c.scop"); FILE *poccFile = fopen(NewScopFile.c_str(), "r"); ScopLib newScoplib(&S, poccFile, D); if (!newScoplib.updateScattering()) { errs() << "Failure when calculating the optimization with " "the following command: "; for (std::vector<const char *>::const_iterator AI = arguments.begin(), AE = arguments.end(); AI != AE; ++AI) if (*AI) errs() << " " << *AI; errs() << "\n"; return false; } else fclose(poccFile); if (PollyVectorizerChoice == VECTORIZER_NONE) return false; // Find the innermost dimension that is not a constant dimension. This // dimension will be vectorized. unsigned scatterDims = S.getScatterDim(); int lastLoop = scatterDims - 1; while (lastLoop) { bool isSingleValued = true; for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) { isl_map *scat = (*SI)->getScattering(); isl_map *projected = isl_map_project_out(scat, isl_dim_out, lastLoop, scatterDims - lastLoop); if (!isl_map_is_bijective(projected)) { isSingleValued = false; break; } } if (!isSingleValued) break; lastLoop--; } // Strip mine the innermost loop. for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) { isl_map *scat = (*SI)->getScattering(); int scatDims = (*SI)->getNumScattering(); isl_space *Space = isl_space_alloc(S.getIslCtx(), S.getNumParams(), scatDims, scatDims + 1); isl_basic_map *map = isl_basic_map_universe(isl_space_copy(Space)); isl_local_space *LSpace = isl_local_space_from_space(Space); for (int i = 0; i <= lastLoop - 1; i++) { isl_constraint *c = isl_equality_alloc(isl_local_space_copy(LSpace)); isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1); isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1); map = isl_basic_map_add_constraint(map, c); } for (int i = lastLoop; i < scatDims; i++) { isl_constraint *c = isl_equality_alloc(isl_local_space_copy(LSpace)); isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1); isl_constraint_set_coefficient_si(c, isl_dim_out, i + 1, -1); map = isl_basic_map_add_constraint(map, c); } isl_constraint *c; int vectorWidth = 4; c = isl_inequality_alloc(isl_local_space_copy(LSpace)); isl_constraint_set_coefficient_si(c, isl_dim_out, lastLoop, -vectorWidth); isl_constraint_set_coefficient_si(c, isl_dim_out, lastLoop + 1, 1); map = isl_basic_map_add_constraint(map, c); c = isl_inequality_alloc(LSpace); isl_constraint_set_coefficient_si(c, isl_dim_out, lastLoop, vectorWidth); isl_constraint_set_coefficient_si(c, isl_dim_out, lastLoop + 1, -1); isl_constraint_set_constant_si(c, vectorWidth - 1); map = isl_basic_map_add_constraint(map, c); isl_map *transform = isl_map_from_basic_map(map); transform = isl_map_set_tuple_name(transform, isl_dim_out, "scattering"); transform = isl_map_set_tuple_name(transform, isl_dim_in, "scattering"); scat = isl_map_apply_range(scat, isl_map_copy(transform)); (*SI)->setScattering(scat); } return false; }