Exemplo n.º 1
0
void Gridder::find(at::real x, at::real y, at::real range, SegmentArray& results) const {

  results.clear();

  int ix0 = (int) ((x - range - x0)/metersPerCell);
  int iy0 = (int) ((y - range - y0)/metersPerCell);

  int ix1 = (int) ((x + range - x0)/metersPerCell);
  int iy1 = (int) ((y + range - y0)/metersPerCell);

  for (int iy=iy0; iy<=iy1; ++iy) {
    for (int ix=ix0; ix<=ix1; ++ix) {

      if (ix >=0 && iy >=0 && ix < width && iy < height) {
          
        for (Segment* s = cells[sub2ind(ix,iy)]; s; s = s->nextGrid) {
          results.push_back(s);
        }

      }
        
    }
  }

}
Exemplo n.º 2
0
SegmentArray graph2SegArray(const Graph &graph, IntArray &pla, const bool *polygonEdge)
{
	IntArray sortedEdgeLabels;
	graph.topologicalSort(sortedEdgeLabels);
	SegmentArray sOrder;
	for (int i = 0; i < sortedEdgeLabels.size(); i++)
	{
		if (polygonEdge[sortedEdgeLabels[i]])
			sOrder.push_back(Segment(pla[2 * sortedEdgeLabels[i]], pla[2 * sortedEdgeLabels[i] + 1]));
	}

	int s = sOrder.size();
	return sOrder;
}
Exemplo n.º 3
0
static void center_of_mass(const SegmentArray& segments, SkPoint* c) {
    SkScalar area = 0;
    SkPoint center = {0, 0};
    int count = segments.count();
    SkPoint p0 = {0, 0};
    if (count > 2) {
        // We translate the polygon so that the first point is at the origin.
        // This avoids some precision issues with small area polygons far away
        // from the origin.
        p0 = segments[0].endPt();
        SkPoint pi;
        SkPoint pj;
        // the first and last iteration of the below loop would compute
        // zeros since the starting / ending point is (0,0). So instead we start
        // at i=1 and make the last iteration i=count-2.
        pj = segments[1].endPt() - p0;
        for (int i = 1; i < count - 1; ++i) {
            pi = pj;
            const SkPoint pj = segments[i + 1].endPt() - p0;

            SkScalar t = SkScalarMul(pi.fX, pj.fY) - SkScalarMul(pj.fX, pi.fY);
            area += t;
            center.fX += (pi.fX + pj.fX) * t;
            center.fY += (pi.fY + pj.fY) * t;

        }
    }
    // If the poly has no area then we instead return the average of
    // its points.
    if (SkScalarNearlyZero(area)) {
        SkPoint avg;
        avg.set(0, 0);
        for (int i = 0; i < count; ++i) {
            const SkPoint& pt = segments[i].endPt();
            avg.fX += pt.fX;
            avg.fY += pt.fY;
        }
        SkScalar denom = SK_Scalar1 / count;
        avg.scale(denom);
        *c = avg;
    } else {
        area *= 3;
        area = SkScalarDiv(SK_Scalar1, area);
        center.fX = SkScalarMul(center.fX, area);
        center.fY = SkScalarMul(center.fY, area);
        // undo the translate of p0 to the origin.
        *c = center + p0;
    }
    SkASSERT(!SkScalarIsNaN(c->fX) && !SkScalarIsNaN(c->fY));
}
Exemplo n.º 4
0
static void seqInitArray(SegmentArray<T> &a)
{
  for (int i = 0; i < a.getSize(); i++)
    a[i] = i;
}
Exemplo n.º 5
0
static void create_vertices(const SegmentArray&  segments,
                            const SkPoint& fanPt,
                            DrawArray*     draws,
                            QuadVertex*    verts,
                            uint16_t*      idxs) {
    Draw* draw = &draws->push_back();
    // alias just to make vert/index assignments easier to read.
    int* v = &draw->fVertexCnt;
    int* i = &draw->fIndexCnt;

    int count = segments.count();
    for (int a = 0; a < count; ++a) {
        const Segment& sega = segments[a];
        int b = (a + 1) % count;
        const Segment& segb = segments[b];

        // Check whether adding the verts for this segment to the current draw would cause index
        // values to overflow.
        int vCount = 4;
        if (Segment::kLine == segb.fType) {
            vCount += 5;
        } else {
            vCount += 6;
        }
        if (draw->fVertexCnt + vCount > (1 << 16)) {
            verts += *v;
            idxs += *i;
            draw = &draws->push_back();
            v = &draw->fVertexCnt;
            i = &draw->fIndexCnt;
        }

        // FIXME: These tris are inset in the 1 unit arc around the corner
        verts[*v + 0].fPos = sega.endPt();
        verts[*v + 1].fPos = verts[*v + 0].fPos + sega.endNorm();
        verts[*v + 2].fPos = verts[*v + 0].fPos + segb.fMid;
        verts[*v + 3].fPos = verts[*v + 0].fPos + segb.fNorms[0];
        verts[*v + 0].fUV.set(0,0);
        verts[*v + 1].fUV.set(0,-SK_Scalar1);
        verts[*v + 2].fUV.set(0,-SK_Scalar1);
        verts[*v + 3].fUV.set(0,-SK_Scalar1);
        verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1;
        verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1;
        verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1;
        verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1;

        idxs[*i + 0] = *v + 0;
        idxs[*i + 1] = *v + 2;
        idxs[*i + 2] = *v + 1;
        idxs[*i + 3] = *v + 0;
        idxs[*i + 4] = *v + 3;
        idxs[*i + 5] = *v + 2;

        *v += 4;
        *i += 6;

        if (Segment::kLine == segb.fType) {
            verts[*v + 0].fPos = fanPt;
            verts[*v + 1].fPos = sega.endPt();
            verts[*v + 2].fPos = segb.fPts[0];

            verts[*v + 3].fPos = verts[*v + 1].fPos + segb.fNorms[0];
            verts[*v + 4].fPos = verts[*v + 2].fPos + segb.fNorms[0];

            // we draw the line edge as a degenerate quad (u is 0, v is the
            // signed distance to the edge)
            SkScalar dist = fanPt.distanceToLineBetween(verts[*v + 1].fPos,
                                                        verts[*v + 2].fPos);
            verts[*v + 0].fUV.set(0, dist);
            verts[*v + 1].fUV.set(0, 0);
            verts[*v + 2].fUV.set(0, 0);
            verts[*v + 3].fUV.set(0, -SK_Scalar1);
            verts[*v + 4].fUV.set(0, -SK_Scalar1);

            verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1;
            verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1;
            verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1;
            verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1;
            verts[*v + 4].fD0 = verts[*v + 4].fD1 = -SK_Scalar1;

            idxs[*i + 0] = *v + 0;
            idxs[*i + 1] = *v + 2;
            idxs[*i + 2] = *v + 1;

            idxs[*i + 3] = *v + 3;
            idxs[*i + 4] = *v + 1;
            idxs[*i + 5] = *v + 2;

            idxs[*i + 6] = *v + 4;
            idxs[*i + 7] = *v + 3;
            idxs[*i + 8] = *v + 2;

            *v += 5;
            *i += 9;
        } else {
            SkPoint qpts[] = {sega.endPt(), segb.fPts[0], segb.fPts[1]};

            SkVector midVec = segb.fNorms[0] + segb.fNorms[1];
            midVec.normalize();

            verts[*v + 0].fPos = fanPt;
            verts[*v + 1].fPos = qpts[0];
            verts[*v + 2].fPos = qpts[2];
            verts[*v + 3].fPos = qpts[0] + segb.fNorms[0];
            verts[*v + 4].fPos = qpts[2] + segb.fNorms[1];
            verts[*v + 5].fPos = qpts[1] + midVec;

            SkScalar c = segb.fNorms[0].dot(qpts[0]);
            verts[*v + 0].fD0 =  -segb.fNorms[0].dot(fanPt) + c;
            verts[*v + 1].fD0 =  0.f;
            verts[*v + 2].fD0 =  -segb.fNorms[0].dot(qpts[2]) + c;
            verts[*v + 3].fD0 = -SK_ScalarMax/100;
            verts[*v + 4].fD0 = -SK_ScalarMax/100;
            verts[*v + 5].fD0 = -SK_ScalarMax/100;

            c = segb.fNorms[1].dot(qpts[2]);
            verts[*v + 0].fD1 =  -segb.fNorms[1].dot(fanPt) + c;
            verts[*v + 1].fD1 =  -segb.fNorms[1].dot(qpts[0]) + c;
            verts[*v + 2].fD1 =  0.f;
            verts[*v + 3].fD1 = -SK_ScalarMax/100;
            verts[*v + 4].fD1 = -SK_ScalarMax/100;
            verts[*v + 5].fD1 = -SK_ScalarMax/100;

            GrPathUtils::QuadUVMatrix toUV(qpts);
            toUV.apply<6, sizeof(QuadVertex), sizeof(SkPoint)>(verts + *v);

            idxs[*i + 0] = *v + 3;
            idxs[*i + 1] = *v + 1;
            idxs[*i + 2] = *v + 2;
            idxs[*i + 3] = *v + 4;
            idxs[*i + 4] = *v + 3;
            idxs[*i + 5] = *v + 2;

            idxs[*i + 6] = *v + 5;
            idxs[*i + 7] = *v + 3;
            idxs[*i + 8] = *v + 4;

            idxs[*i +  9] = *v + 0;
            idxs[*i + 10] = *v + 2;
            idxs[*i + 11] = *v + 1;

            *v += 6;
            *i += 12;
        }
    }
}