static bool is_linear_inner(const SkDQuad& q1, double t1s, double t1e, const SkDQuad& q2,
                            double t2s, double t2e, SkIntersections* i, bool* subDivide) {
    SkDQuad hull = q1.subDivide(t1s, t1e);
    SkDLine line = {{hull[2], hull[0]}};
    const SkDLine* testLines[] = { &line, (const SkDLine*) &hull[0], (const SkDLine*) &hull[1] };
    const size_t kTestCount = SK_ARRAY_COUNT(testLines);
    SkSTArray<kTestCount * 2, double, true> tsFound;
    for (size_t index = 0; index < kTestCount; ++index) {
        SkIntersections rootTs;
        rootTs.allowNear(false);
        int roots = rootTs.intersect(q2, *testLines[index]);
        for (int idx2 = 0; idx2 < roots; ++idx2) {
            double t = rootTs[0][idx2];
#ifdef SK_DEBUG
            SkDPoint qPt = q2.ptAtT(t);
            SkDPoint lPt = testLines[index]->ptAtT(rootTs[1][idx2]);
            SkASSERT(qPt.approximatelyEqual(lPt));
#endif
            if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) {
                continue;
            }
            tsFound.push_back(rootTs[0][idx2]);
        }
    }
    int tCount = tsFound.count();
    if (tCount <= 0) {
        return true;
    }
    double tMin, tMax;
    if (tCount == 1) {
        tMin = tMax = tsFound[0];
    } else {
        SkASSERT(tCount > 1);
        SkTQSort<double>(tsFound.begin(), tsFound.end() - 1);
        tMin = tsFound[0];
        tMax = tsFound[tsFound.count() - 1];
    }
    SkDPoint end = q2.ptAtT(t2s);
    bool startInTriangle = hull.pointInHull(end);
    if (startInTriangle) {
        tMin = t2s;
    }
    end = q2.ptAtT(t2e);
    bool endInTriangle = hull.pointInHull(end);
    if (endInTriangle) {
        tMax = t2e;
    }
    int split = 0;
    SkDVector dxy1, dxy2;
    if (tMin != tMax || tCount > 2) {
        dxy2 = q2.dxdyAtT(tMin);
        for (int index = 1; index < tCount; ++index) {
            dxy1 = dxy2;
            dxy2 = q2.dxdyAtT(tsFound[index]);
            double dot = dxy1.dot(dxy2);
            if (dot < 0) {
                split = index - 1;
                break;
            }
        }
    }
    if (split == 0) {  // there's one point
        if (add_intercept(q1, q2, tMin, tMax, i, subDivide)) {
            return true;
        }
        i->swap();
        return is_linear_inner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide);
    }
    // At this point, we have two ranges of t values -- treat each separately at the split
    bool result;
    if (add_intercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) {
        result = true;
    } else {
        i->swap();
        result = is_linear_inner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide);
    }
    if (add_intercept(q1, q2, tsFound[split], tMax, i, subDivide)) {
        result = true;
    } else {
        i->swap();
        result |= is_linear_inner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDivide);
    }
    return result;
}
Exemplo n.º 2
0
void SkIntersections::cubicNearEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2,
                         const SkDRect& bounds2) {
    SkDLine line;
    int t1Index = start ? 0 : 3;
    double testT = (double) !start;
   // don't bother if the two cubics are connnected
    static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' with this
    static const int kMaxLineCubicIntersections = 3;
    SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, double, true> tVals;
    line[0] = cubic1[t1Index];
    // this variant looks for intersections with the end point and lines parallel to other points
    for (int index = 0; index < kPointsInCubic; ++index) {
        if (index == t1Index) {
            continue;
        }
        SkDVector dxy1 = cubic1[index] - line[0];
        dxy1 /= SkDCubic::gPrecisionUnit;
        line[1] = line[0] + dxy1;
        SkDRect lineBounds;
        lineBounds.setBounds(line);
        if (!bounds2.intersects(&lineBounds)) {
            continue;
        }
        SkIntersections local;
        if (!local.intersect(cubic2, line)) {
            continue;
        }
        for (int idx2 = 0; idx2 < local.used(); ++idx2) {
            double foundT = local[0][idx2];
            if (approximately_less_than_zero(foundT)
                    || approximately_greater_than_one(foundT)) {
                continue;
            }
            if (local.pt(idx2).approximatelyEqual(line[0])) {
                if (swapped()) {  // FIXME: insert should respect swap
                    insert(foundT, testT, line[0]);
                } else {
                    insert(testT, foundT, line[0]);
                }
            } else {
                tVals.push_back(foundT);
            }
        }
    }
    if (tVals.count() == 0) {
        return;
    }
    SkTQSort<double>(tVals.begin(), tVals.end() - 1);
    double tMin1 = start ? 0 : 1 - LINE_FRACTION;
    double tMax1 = start ? LINE_FRACTION : 1;
    int tIdx = 0;
    do {
        int tLast = tIdx;
        while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) {
            ++tLast;
        }
        double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0);
        double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0);
        int lastUsed = used();
        if (start ? tMax1 < tMin2 : tMax2 < tMin1) {
            ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this);
        }
        if (lastUsed == used()) {
            tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0);
            tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0);
            if (start ? tMax1 < tMin2 : tMax2 < tMin1) {
                ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this);
            }
        }
        tIdx = tLast + 1;
    } while (tIdx < tVals.count());
    return;
}
Exemplo n.º 3
0
// FIXME: this and find chase should be merge together, along with
// other code that walks winding in angles
// OPTIMIZATION: Probably, the walked winding should be rolled into the angle structure
// so it isn't duplicated by walkers like this one
static SkOpSegment* findChaseOp(SkTDArray<SkOpSpan*>& chase, int& nextStart, int& nextEnd) {
    while (chase.count()) {
        SkOpSpan* span;
        chase.pop(&span);
        const SkOpSpan& backPtr = span->fOther->span(span->fOtherIndex);
        SkOpSegment* segment = backPtr.fOther;
        nextStart = backPtr.fOtherIndex;
        SkSTArray<SkOpAngle::kStackBasedCount, SkOpAngle, true> angles;
        int done = 0;
        if (segment->activeAngle(nextStart, &done, &angles)) {
            SkOpAngle* last = angles.end() - 1;
            nextStart = last->start();
            nextEnd = last->end();
   #if TRY_ROTATE
            *chase.insert(0) = span;
   #else
            *chase.append() = span;
   #endif
            return last->segment();
        }
        if (done == angles.count()) {
            continue;
        }
        SkSTArray<SkOpAngle::kStackBasedCount, SkOpAngle*, true> sorted;
        bool sortable = SkOpSegment::SortAngles(angles, &sorted,
                SkOpSegment::kMayBeUnordered_SortAngleKind);
        int angleCount = sorted.count();
#if DEBUG_SORT
        sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, sortable);
#endif
        if (!sortable) {
            continue;
        }
        // find first angle, initialize winding to computed fWindSum
        int firstIndex = -1;
        const SkOpAngle* angle;
        bool foundAngle = true;
        do {
            ++firstIndex;
            if (firstIndex >= angleCount) {
                foundAngle = false;
                break;
            }
            angle = sorted[firstIndex];
            segment = angle->segment();
        } while (segment->windSum(angle) == SK_MinS32);
        if (!foundAngle) {
            continue;
        }
    #if DEBUG_SORT
        segment->debugShowSort(__FUNCTION__, sorted, firstIndex, sortable);
    #endif
        int sumMiWinding = segment->updateWindingReverse(angle);
        int sumSuWinding = segment->updateOppWindingReverse(angle);
        if (segment->operand()) {
            SkTSwap<int>(sumMiWinding, sumSuWinding);
        }
        int nextIndex = firstIndex + 1;
        int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
        SkOpSegment* first = NULL;
        do {
            SkASSERT(nextIndex != firstIndex);
            if (nextIndex == angleCount) {
                nextIndex = 0;
            }
            angle = sorted[nextIndex];
            segment = angle->segment();
            int start = angle->start();
            int end = angle->end();
            int maxWinding, sumWinding, oppMaxWinding, oppSumWinding;
            segment->setUpWindings(start, end, &sumMiWinding, &sumSuWinding,
                    &maxWinding, &sumWinding, &oppMaxWinding, &oppSumWinding);
            if (!segment->done(angle)) {
                if (!first) {
                    first = segment;
                    nextStart = start;
                    nextEnd = end;
                }
                (void) segment->markAngle(maxWinding, sumWinding, oppMaxWinding,
                    oppSumWinding, angle);
            }
        } while (++nextIndex != lastIndex);
        if (first) {
       #if TRY_ROTATE
            *chase.insert(0) = span;
       #else
            *chase.append() = span;
       #endif
            return first;
        }
    }
    return NULL;
}
Exemplo n.º 4
0
SkOpSegment* FindChase(SkTDArray<SkOpSpan*>& chase, int& tIndex, int& endIndex) {
    while (chase.count()) {
        SkOpSpan* span;
        chase.pop(&span);
        const SkOpSpan& backPtr = span->fOther->span(span->fOtherIndex);
        SkOpSegment* segment = backPtr.fOther;
        tIndex = backPtr.fOtherIndex;
        SkSTArray<SkOpAngle::kStackBasedCount, SkOpAngle, true> angles;
        int done = 0;
        if (segment->activeAngle(tIndex, &done, &angles)) {
            SkOpAngle* last = angles.end() - 1;
            tIndex = last->start();
            endIndex = last->end();
   #if TRY_ROTATE
            *chase.insert(0) = span;
   #else
            *chase.append() = span;
   #endif
            return last->segment();
        }
        if (done == angles.count()) {
            continue;
        }
        SkSTArray<SkOpAngle::kStackBasedCount, SkOpAngle*, true> sorted;
        bool sortable = SkOpSegment::SortAngles(angles, &sorted,
                SkOpSegment::kMayBeUnordered_SortAngleKind);
        int angleCount = sorted.count();
#if DEBUG_SORT
        sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0);
#endif
        if (!sortable) {
            continue;
        }
        // find first angle, initialize winding to computed fWindSum
        int firstIndex = -1;
        const SkOpAngle* angle;
        int winding;
        do {
            angle = sorted[++firstIndex];
            segment = angle->segment();
            winding = segment->windSum(angle);
        } while (winding == SK_MinS32);
        int spanWinding = segment->spanSign(angle->start(), angle->end());
    #if DEBUG_WINDING
        SkDebugf("%s winding=%d spanWinding=%d\n",
                __FUNCTION__, winding, spanWinding);
    #endif
        // turn span winding into contour winding
        if (spanWinding * winding < 0) {
            winding += spanWinding;
        }
    #if DEBUG_SORT
        segment->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, 0);
    #endif
        // we care about first sign and whether wind sum indicates this
        // edge is inside or outside. Maybe need to pass span winding
        // or first winding or something into this function?
        // advance to first undone angle, then return it and winding
        // (to set whether edges are active or not)
        int nextIndex = firstIndex + 1;
        int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
        angle = sorted[firstIndex];
        winding -= angle->segment()->spanSign(angle);
        do {
            SkASSERT(nextIndex != firstIndex);
            if (nextIndex == angleCount) {
                nextIndex = 0;
            }
            angle = sorted[nextIndex];
            segment = angle->segment();
            int maxWinding = winding;
            winding -= segment->spanSign(angle);
    #if DEBUG_SORT
            SkDebugf("%s id=%d maxWinding=%d winding=%d sign=%d\n", __FUNCTION__,
                    segment->debugID(), maxWinding, winding, angle->sign());
    #endif
            tIndex = angle->start();
            endIndex = angle->end();
            int lesser = SkMin32(tIndex, endIndex);
            const SkOpSpan& nextSpan = segment->span(lesser);
            if (!nextSpan.fDone) {
            // FIXME: this be wrong? assign startWinding if edge is in
            // same direction. If the direction is opposite, winding to
            // assign is flipped sign or +/- 1?
                if (SkOpSegment::UseInnerWinding(maxWinding, winding)) {
                    maxWinding = winding;
                }
                segment->markAndChaseWinding(angle, maxWinding, 0);
                break;
            }
        } while (++nextIndex != lastIndex);
        *chase.insert(0) = span;
        return segment;
    }
    return NULL;
}