static void intersect_lines(const SkPoint& ptA, const SkVector& normA,
                            const SkPoint& ptB, const SkVector& normB,
                            SkPoint* result) {

    SkScalar lineAW = -normA.dot(ptA);
    SkScalar lineBW = -normB.dot(ptB);

    SkScalar wInv = normA.fX * normB.fY - normA.fY * normB.fX;
    wInv = SkScalarInvert(wInv);

    result->fX = normA.fY * lineBW - lineAW * normB.fY;
    result->fX *= wInv;

    result->fY = lineAW * normB.fX - normA.fX * lineBW;
    result->fY *= wInv;
}
Exemplo n.º 2
0
static void intersect_lines(const SkPoint& ptA, const SkVector& normA,
                            const SkPoint& ptB, const SkVector& normB,
                            SkPoint* result) {

    SkScalar lineAW = -normA.dot(ptA);
    SkScalar lineBW = -normB.dot(ptB);

    SkScalar wInv = SkScalarMul(normA.fX, normB.fY) -
        SkScalarMul(normA.fY, normB.fX);
    wInv = SkScalarInvert(wInv);

    result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY);
    result->fX = SkScalarMul(result->fX, wInv);

    result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW);
    result->fY = SkScalarMul(result->fY, wInv);
}
Exemplo n.º 3
0
static void intersect_lines(const SkPoint& ptA, const SkVector& normA,
                            const SkPoint& ptB, const SkVector& normB,
                            SkPoint* result) {

    SkScalar lineAW = -normA.dot(ptA);
    SkScalar lineBW = -normB.dot(ptB);

    SkScalar wInv = normA.fX * normB.fY - normA.fY * normB.fX;
    wInv = SkScalarInvert(wInv);
    if (!SkScalarIsFinite(wInv)) {
        // lines are parallel, pick the point in between
        *result = (ptA + ptB)*SK_ScalarHalf;
        *result += normA;
    } else {
        result->fX = normA.fY * lineBW - lineAW * normB.fY;
        result->fX *= wInv;

        result->fY = lineAW * normB.fX - normA.fX * lineBW;
        result->fY *= wInv;
    }
}
Exemplo n.º 4
0
static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
                       const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices]) {
    SkASSERT(!toDevice == !toSrc);
    // original quad is specified by tri a,b,c
    SkPoint a = qpts[0];
    SkPoint b = qpts[1];
    SkPoint c = qpts[2];

    if (toDevice) {
        toDevice->mapPoints(&a, 1);
        toDevice->mapPoints(&b, 1);
        toDevice->mapPoints(&c, 1);
    }
    // make a new poly where we replace a and c by a 1-pixel wide edges orthog
    // to edges ab and bc:
    //
    //   before       |        after
    //                |              b0
    //         b      |
    //                |
    //                |     a0            c0
    // a         c    |        a1       c1
    //
    // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
    // respectively.
    BezierVertex& a0 = verts[0];
    BezierVertex& a1 = verts[1];
    BezierVertex& b0 = verts[2];
    BezierVertex& c0 = verts[3];
    BezierVertex& c1 = verts[4];

    SkVector ab = b;
    ab -= a;
    SkVector ac = c;
    ac -= a;
    SkVector cb = b;
    cb -= c;

    // We should have already handled degenerates
    SkASSERT(ab.length() > 0 && cb.length() > 0);

    ab.normalize();
    SkVector abN;
    abN.setOrthog(ab, SkVector::kLeft_Side);
    if (abN.dot(ac) > 0) {
        abN.negate();
    }

    cb.normalize();
    SkVector cbN;
    cbN.setOrthog(cb, SkVector::kLeft_Side);
    if (cbN.dot(ac) < 0) {
        cbN.negate();
    }

    a0.fPos = a;
    a0.fPos += abN;
    a1.fPos = a;
    a1.fPos -= abN;

    c0.fPos = c;
    c0.fPos += cbN;
    c1.fPos = c;
    c1.fPos -= cbN;

    intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);

    if (toSrc) {
        toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kQuadNumVertices);
    }
}
Exemplo n.º 5
0
void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) {
    SkMatrix m;
    // We want M such that M * xy_pt = uv_pt
    // We know M * control_pts = [0  1/2 1]
    //                           [0  0   1]
    //                           [1  1   1]
    // And control_pts = [x0 x1 x2]
    //                   [y0 y1 y2]
    //                   [1  1  1 ]
    // We invert the control pt matrix and post concat to both sides to get M.
    // Using the known form of the control point matrix and the result, we can
    // optimize and improve precision.

    double x0 = qPts[0].fX;
    double y0 = qPts[0].fY;
    double x1 = qPts[1].fX;
    double y1 = qPts[1].fY;
    double x2 = qPts[2].fX;
    double y2 = qPts[2].fY;
    double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;

    if (!sk_float_isfinite(det)
        || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
        // The quad is degenerate. Hopefully this is rare. Find the pts that are
        // farthest apart to compute a line (unless it is really a pt).
        SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
        int maxEdge = 0;
        SkScalar d = qPts[1].distanceToSqd(qPts[2]);
        if (d > maxD) {
            maxD = d;
            maxEdge = 1;
        }
        d = qPts[2].distanceToSqd(qPts[0]);
        if (d > maxD) {
            maxD = d;
            maxEdge = 2;
        }
        // We could have a tolerance here, not sure if it would improve anything
        if (maxD > 0) {
            // Set the matrix to give (u = 0, v = distance_to_line)
            SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
            // when looking from the point 0 down the line we want positive
            // distances to be to the left. This matches the non-degenerate
            // case.
            lineVec.setOrthog(lineVec, SkPoint::kLeft_Side);
            // first row
            fM[0] = 0;
            fM[1] = 0;
            fM[2] = 0;
            // second row
            fM[3] = lineVec.fX;
            fM[4] = lineVec.fY;
            fM[5] = -lineVec.dot(qPts[maxEdge]);
        } else {
            // It's a point. It should cover zero area. Just set the matrix such
            // that (u, v) will always be far away from the quad.
            fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
            fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
        }
    } else {
        double scale = 1.0/det;

        // compute adjugate matrix
        double a2, a3, a4, a5, a6, a7, a8;
        a2 = x1*y2-x2*y1;

        a3 = y2-y0;
        a4 = x0-x2;
        a5 = x2*y0-x0*y2;

        a6 = y0-y1;
        a7 = x1-x0;
        a8 = x0*y1-x1*y0;

        // this performs the uv_pts*adjugate(control_pts) multiply,
        // then does the scale by 1/det afterwards to improve precision
        m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
        m[SkMatrix::kMSkewX]  = (float)((0.5*a4 + a7)*scale);
        m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);

        m[SkMatrix::kMSkewY]  = (float)(a6*scale);
        m[SkMatrix::kMScaleY] = (float)(a7*scale);
        m[SkMatrix::kMTransY] = (float)(a8*scale);

        // kMPersp0 & kMPersp1 should algebraically be zero
        m[SkMatrix::kMPersp0] = 0.0f;
        m[SkMatrix::kMPersp1] = 0.0f;
        m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);

        // It may not be normalized to have 1.0 in the bottom right
        float m33 = m.get(SkMatrix::kMPersp2);
        if (1.f != m33) {
            m33 = 1.f / m33;
            fM[0] = m33 * m.get(SkMatrix::kMScaleX);
            fM[1] = m33 * m.get(SkMatrix::kMSkewX);
            fM[2] = m33 * m.get(SkMatrix::kMTransX);
            fM[3] = m33 * m.get(SkMatrix::kMSkewY);
            fM[4] = m33 * m.get(SkMatrix::kMScaleY);
            fM[5] = m33 * m.get(SkMatrix::kMTransY);
        } else {
            fM[0] = m.get(SkMatrix::kMScaleX);
            fM[1] = m.get(SkMatrix::kMSkewX);
            fM[2] = m.get(SkMatrix::kMTransX);
            fM[3] = m.get(SkMatrix::kMSkewY);
            fM[4] = m.get(SkMatrix::kMScaleY);
            fM[5] = m.get(SkMatrix::kMTransY);
        }
    }
}