Exemplo n.º 1
0
void InitHeaderSearch::AddDefaultCIncludePaths(const llvm::Triple &triple,
                                            const HeaderSearchOptions &HSOpts) {
  llvm::Triple::OSType os = triple.getOS();

  if (HSOpts.UseStandardSystemIncludes) {
    switch (os) {
    case llvm::Triple::FreeBSD:
    case llvm::Triple::NetBSD:
    case llvm::Triple::OpenBSD:
    case llvm::Triple::Bitrig:
      break;
    default:
      // FIXME: temporary hack: hard-coded paths.
      AddPath("/usr/local/include", System, false);
      break;
    }
  }

  // Builtin includes use #include_next directives and should be positioned
  // just prior C include dirs.
  if (HSOpts.UseBuiltinIncludes) {
    // Ignore the sys root, we *always* look for clang headers relative to
    // supplied path.
    SmallString<128> P = StringRef(HSOpts.ResourceDir);
    llvm::sys::path::append(P, "include");
    AddUnmappedPath(P.str(), ExternCSystem, false);
  }

  // All remaining additions are for system include directories, early exit if
  // we aren't using them.
  if (!HSOpts.UseStandardSystemIncludes)
    return;

  // Add dirs specified via 'configure --with-c-include-dirs'.
  StringRef CIncludeDirs(C_INCLUDE_DIRS);
  if (CIncludeDirs != "") {
    SmallVector<StringRef, 5> dirs;
    CIncludeDirs.split(dirs, ":");
    for (SmallVectorImpl<StringRef>::iterator i = dirs.begin();
         i != dirs.end();
         ++i)
      AddPath(*i, ExternCSystem, false);
    return;
  }

  switch (os) {
  case llvm::Triple::Linux:
  case llvm::Triple::Win32:
    llvm_unreachable("Include management is handled in the driver.");

  case llvm::Triple::Haiku:
    AddPath("/boot/common/include", System, false);
    AddPath("/boot/develop/headers/os", System, false);
    AddPath("/boot/develop/headers/os/app", System, false);
    AddPath("/boot/develop/headers/os/arch", System, false);
    AddPath("/boot/develop/headers/os/device", System, false);
    AddPath("/boot/develop/headers/os/drivers", System, false);
    AddPath("/boot/develop/headers/os/game", System, false);
    AddPath("/boot/develop/headers/os/interface", System, false);
    AddPath("/boot/develop/headers/os/kernel", System, false);
    AddPath("/boot/develop/headers/os/locale", System, false);
    AddPath("/boot/develop/headers/os/mail", System, false);
    AddPath("/boot/develop/headers/os/media", System, false);
    AddPath("/boot/develop/headers/os/midi", System, false);
    AddPath("/boot/develop/headers/os/midi2", System, false);
    AddPath("/boot/develop/headers/os/net", System, false);
    AddPath("/boot/develop/headers/os/storage", System, false);
    AddPath("/boot/develop/headers/os/support", System, false);
    AddPath("/boot/develop/headers/os/translation", System, false);
    AddPath("/boot/develop/headers/os/add-ons/graphics", System, false);
    AddPath("/boot/develop/headers/os/add-ons/input_server", System, false);
    AddPath("/boot/develop/headers/os/add-ons/screen_saver", System, false);
    AddPath("/boot/develop/headers/os/add-ons/tracker", System, false);
    AddPath("/boot/develop/headers/os/be_apps/Deskbar", System, false);
    AddPath("/boot/develop/headers/os/be_apps/NetPositive", System, false);
    AddPath("/boot/develop/headers/os/be_apps/Tracker", System, false);
    AddPath("/boot/develop/headers/cpp", System, false);
    AddPath("/boot/develop/headers/cpp/i586-pc-haiku", System, false);
    AddPath("/boot/develop/headers/3rdparty", System, false);
    AddPath("/boot/develop/headers/bsd", System, false);
    AddPath("/boot/develop/headers/glibc", System, false);
    AddPath("/boot/develop/headers/posix", System, false);
    AddPath("/boot/develop/headers",  System, false);
    break;
  case llvm::Triple::RTEMS:
    break;
  case llvm::Triple::Cygwin:
    // The headers in w32api/ are not cygwin-compatible (but native)
    //AddPath("/usr/include/w32api", System, false);
    break;
  case llvm::Triple::MinGW32: { 
      // mingw-w64 crt include paths
      // <sysroot>/i686-w64-mingw32/include
      SmallString<128> P = StringRef(HSOpts.ResourceDir);
      llvm::sys::path::append(P, "../../../i686-w64-mingw32/include");
      AddPath(P.str(), System, false);

      // <sysroot>/x86_64-w64-mingw32/include
      P.resize(HSOpts.ResourceDir.size());
      llvm::sys::path::append(P, "../../../x86_64-w64-mingw32/include");
      AddPath(P.str(), System, false);

      // mingw.org crt include paths
      // <sysroot>/include
      P.resize(HSOpts.ResourceDir.size());
      llvm::sys::path::append(P, "../../../include");
      AddPath(P.str(), System, false);
      AddPath("/mingw/include", System, false);
#if defined(_WIN32)
      AddPath("c:/mingw/include", System, false); 
#endif
    }
    break;
      
  default:
    break;
  }

  if ( os != llvm::Triple::RTEMS )
    AddPath("/usr/include", ExternCSystem, false);
}
Exemplo n.º 2
0
/// runPasses - Run the specified passes on Program, outputting a bitcode file
/// and writing the filename into OutputFile if successful.  If the
/// optimizations fail for some reason (optimizer crashes), return true,
/// otherwise return false.  If DeleteOutput is set to true, the bitcode is
/// deleted on success, and the filename string is undefined.  This prints to
/// outs() a single line message indicating whether compilation was successful
/// or failed.
///
bool BugDriver::runPasses(Module &Program,
                          const std::vector<std::string> &Passes,
                          std::string &OutputFilename, bool DeleteOutput,
                          bool Quiet, unsigned NumExtraArgs,
                          const char *const *ExtraArgs) const {
  // setup the output file name
  outs().flush();
  SmallString<128> UniqueFilename;
  std::error_code EC = sys::fs::createUniqueFile(
      OutputPrefix + "-output-%%%%%%%.bc", UniqueFilename);
  if (EC) {
    errs() << getToolName()
           << ": Error making unique filename: " << EC.message() << "\n";
    return 1;
  }
  OutputFilename = UniqueFilename.str();

  // set up the input file name
  Expected<sys::fs::TempFile> Temp =
      sys::fs::TempFile::create(OutputPrefix + "-input-%%%%%%%.bc");
  if (!Temp) {
    errs() << getToolName()
           << ": Error making unique filename: " << toString(Temp.takeError())
           << "\n";
    return 1;
  }
  DiscardTemp Discard{*Temp};
  raw_fd_ostream OS(Temp->FD, /*shouldClose*/ false);

  WriteBitcodeToFile(Program, OS, PreserveBitcodeUseListOrder);
  OS.flush();
  if (OS.has_error()) {
    errs() << "Error writing bitcode file: " << Temp->TmpName << "\n";
    OS.clear_error();
    return 1;
  }

  std::string tool = OptCmd;
  if (OptCmd.empty()) {
    if (ErrorOr<std::string> Path = sys::findProgramByName("opt"))
      tool = *Path;
    else
      errs() << Path.getError().message() << "\n";
  }
  if (tool.empty()) {
    errs() << "Cannot find `opt' in PATH!\n";
    return 1;
  }
  if (!sys::fs::exists(tool)) {
    errs() << "Specified `opt' binary does not exist: " << tool << "\n";
    return 1;
  }

  std::string Prog;
  if (UseValgrind) {
    if (ErrorOr<std::string> Path = sys::findProgramByName("valgrind"))
      Prog = *Path;
    else
      errs() << Path.getError().message() << "\n";
  } else
    Prog = tool;
  if (Prog.empty()) {
    errs() << "Cannot find `valgrind' in PATH!\n";
    return 1;
  }

  // setup the child process' arguments
  SmallVector<StringRef, 8> Args;
  if (UseValgrind) {
    Args.push_back("valgrind");
    Args.push_back("--error-exitcode=1");
    Args.push_back("-q");
    Args.push_back(tool);
  } else
    Args.push_back(tool);

  for (unsigned i = 0, e = OptArgs.size(); i != e; ++i)
    Args.push_back(OptArgs[i]);
  Args.push_back("-disable-symbolication");
  Args.push_back("-o");
  Args.push_back(OutputFilename);
  std::vector<std::string> pass_args;
  for (unsigned i = 0, e = PluginLoader::getNumPlugins(); i != e; ++i) {
    pass_args.push_back(std::string("-load"));
    pass_args.push_back(PluginLoader::getPlugin(i));
  }
  for (std::vector<std::string>::const_iterator I = Passes.begin(),
                                                E = Passes.end();
       I != E; ++I)
    pass_args.push_back(std::string("-") + (*I));
  for (std::vector<std::string>::const_iterator I = pass_args.begin(),
                                                E = pass_args.end();
       I != E; ++I)
    Args.push_back(I->c_str());
  Args.push_back(Temp->TmpName.c_str());
  for (unsigned i = 0; i < NumExtraArgs; ++i)
    Args.push_back(*ExtraArgs);

  LLVM_DEBUG(errs() << "\nAbout to run:\t";
             for (unsigned i = 0, e = Args.size() - 1; i != e; ++i) errs()
             << " " << Args[i];
             errs() << "\n";);
Exemplo n.º 3
0
void MCStreamer::EmitRawTextAsm(const Twine &T) {
  SmallString<128> Str;
  T.toVector(Str);
  EmitRawTextAsm(Str.str());
}
Exemplo n.º 4
0
const char *ArgList::MakeArgString(const Twine &T) const {
  SmallString<256> Str;
  T.toVector(Str);
  return MakeArgString(Str.str());
}
Exemplo n.º 5
0
void Preprocessor::HandlePragmaIncludeAlias(Token &Tok) {
  // We will either get a quoted filename or a bracketed filename, and we 
  // have to track which we got.  The first filename is the source name,
  // and the second name is the mapped filename.  If the first is quoted,
  // the second must be as well (cannot mix and match quotes and brackets).

  // Get the open paren
  Lex(Tok);
  if (Tok.isNot(tok::l_paren)) {
    Diag(Tok, diag::warn_pragma_include_alias_expected) << "(";
    return;
  }

  // We expect either a quoted string literal, or a bracketed name
  Token SourceFilenameTok;
  CurPPLexer->LexIncludeFilename(SourceFilenameTok);
  if (SourceFilenameTok.is(tok::eod)) {
    // The diagnostic has already been handled
    return;
  }

  StringRef SourceFileName;
  SmallString<128> FileNameBuffer;
  if (SourceFilenameTok.is(tok::string_literal) || 
      SourceFilenameTok.is(tok::angle_string_literal)) {
    SourceFileName = getSpelling(SourceFilenameTok, FileNameBuffer);
  } else if (SourceFilenameTok.is(tok::less)) {
    // This could be a path instead of just a name
    FileNameBuffer.push_back('<');
    SourceLocation End;
    if (ConcatenateIncludeName(FileNameBuffer, End))
      return; // Diagnostic already emitted
    SourceFileName = FileNameBuffer.str();
  } else {
    Diag(Tok, diag::warn_pragma_include_alias_expected_filename);
    return;
  }
  FileNameBuffer.clear();

  // Now we expect a comma, followed by another include name
  Lex(Tok);
  if (Tok.isNot(tok::comma)) {
    Diag(Tok, diag::warn_pragma_include_alias_expected) << ",";
    return;
  }

  Token ReplaceFilenameTok;
  CurPPLexer->LexIncludeFilename(ReplaceFilenameTok);
  if (ReplaceFilenameTok.is(tok::eod)) {
    // The diagnostic has already been handled
    return;
  }

  StringRef ReplaceFileName;
  if (ReplaceFilenameTok.is(tok::string_literal) || 
      ReplaceFilenameTok.is(tok::angle_string_literal)) {
    ReplaceFileName = getSpelling(ReplaceFilenameTok, FileNameBuffer);
  } else if (ReplaceFilenameTok.is(tok::less)) {
    // This could be a path instead of just a name
    FileNameBuffer.push_back('<');
    SourceLocation End;
    if (ConcatenateIncludeName(FileNameBuffer, End))
      return; // Diagnostic already emitted
    ReplaceFileName = FileNameBuffer.str();
  } else {
    Diag(Tok, diag::warn_pragma_include_alias_expected_filename);
    return;
  }

  // Finally, we expect the closing paren
  Lex(Tok);
  if (Tok.isNot(tok::r_paren)) {
    Diag(Tok, diag::warn_pragma_include_alias_expected) << ")";
    return;
  }

  // Now that we have the source and target filenames, we need to make sure
  // they're both of the same type (angled vs non-angled)
  StringRef OriginalSource = SourceFileName;

  bool SourceIsAngled = 
    GetIncludeFilenameSpelling(SourceFilenameTok.getLocation(), 
                                SourceFileName);
  bool ReplaceIsAngled =
    GetIncludeFilenameSpelling(ReplaceFilenameTok.getLocation(),
                                ReplaceFileName);
  if (!SourceFileName.empty() && !ReplaceFileName.empty() &&
      (SourceIsAngled != ReplaceIsAngled)) {
    unsigned int DiagID;
    if (SourceIsAngled)
      DiagID = diag::warn_pragma_include_alias_mismatch_angle;
    else
      DiagID = diag::warn_pragma_include_alias_mismatch_quote;

    Diag(SourceFilenameTok.getLocation(), DiagID)
      << SourceFileName 
      << ReplaceFileName;

    return;
  }

  // Now we can let the include handler know about this mapping
  getHeaderSearchInfo().AddIncludeAlias(OriginalSource, ReplaceFileName);
}
  bool WriteBundleEnd(raw_fd_ostream &OS, StringRef TargetTriple) final {
    assert(NumberOfProcessedInputs <= NumberOfInputs &&
           "Processing more inputs that actually exist!");
    assert(HostInputIndex != ~0u && "Host input index not defined.");

    // If this is not the last output, we don't have to do anything.
    if (NumberOfProcessedInputs != NumberOfInputs)
      return false;

    // Create the bitcode file name to write the resulting code to. Keep it if
    // save-temps is active.
    SmallString<128> BitcodeFileName;
    if (sys::fs::createTemporaryFile("clang-offload-bundler", "bc",
                                     BitcodeFileName)) {
      errs() << "error: unable to create temporary file.\n";
      return true;
    }

    // Dump the contents of the temporary file if that was requested.
    if (DumpTemporaryFiles) {
      errs() << ";\n; Object file bundler IR file.\n;\n";
      AuxModule.get()->print(errs(), nullptr,
                             /*ShouldPreserveUseListOrder=*/false,
                             /*IsForDebug=*/true);
      errs() << '\n';
    }

    // Find clang in order to create the bundle binary.
    StringRef Dir = sys::path::parent_path(BundlerExecutable);

    auto ClangBinary = sys::findProgramByName("clang", Dir);
    if (ClangBinary.getError()) {
      // Remove bitcode file.
      sys::fs::remove(BitcodeFileName);

      errs() << "error: unable to find 'clang' in path.\n";
      return true;
    }

    // Do the incremental linking. We write to the output file directly. So, we
    // close it and use the name to pass down to clang.
    OS.close();
    SmallString<128> TargetName = getTriple(TargetNames[HostInputIndex]);
    std::vector<StringRef> ClangArgs = {"clang",
                                        "-r",
                                        "-target",
                                        TargetName.c_str(),
                                        "-o",
                                        OutputFileNames.front().c_str(),
                                        InputFileNames[HostInputIndex].c_str(),
                                        BitcodeFileName.c_str(),
                                        "-nostdlib"};

    // If the user asked for the commands to be printed out, we do that instead
    // of executing it.
    if (PrintExternalCommands) {
      errs() << "\"" << ClangBinary.get() << "\"";
      for (StringRef Arg : ClangArgs)
        errs() << " \"" << Arg << "\"";
      errs() << "\n";
    } else {
      // Write the bitcode contents to the temporary file.
      {
        std::error_code EC;
        raw_fd_ostream BitcodeFile(BitcodeFileName, EC, sys::fs::F_None);
        if (EC) {
          errs() << "error: unable to open temporary file.\n";
          return true;
        }
        WriteBitcodeToFile(*AuxModule, BitcodeFile);
      }

      bool Failed = sys::ExecuteAndWait(ClangBinary.get(), ClangArgs);

      // Remove bitcode file.
      sys::fs::remove(BitcodeFileName);

      if (Failed) {
        errs() << "error: incremental linking by external tool failed.\n";
        return true;
      }
    }

    return false;
  }
Exemplo n.º 7
0
/// ParseInitializerWithPotentialDesignator - Parse the 'initializer' production
/// checking to see if the token stream starts with a designator.
///
///       designation:
///         designator-list '='
/// [GNU]   array-designator
/// [GNU]   identifier ':'
///
///       designator-list:
///         designator
///         designator-list designator
///
///       designator:
///         array-designator
///         '.' identifier
///
///       array-designator:
///         '[' constant-expression ']'
/// [GNU]   '[' constant-expression '...' constant-expression ']'
///
/// NOTE: [OBC] allows '[ objc-receiver objc-message-args ]' as an
/// initializer (because it is an expression).  We need to consider this case
/// when parsing array designators.
///
ExprResult Parser::ParseInitializerWithPotentialDesignator() {

  // If this is the old-style GNU extension:
  //   designation ::= identifier ':'
  // Handle it as a field designator.  Otherwise, this must be the start of a
  // normal expression.
  if (Tok.is(tok::identifier)) {
    const IdentifierInfo *FieldName = Tok.getIdentifierInfo();

    SmallString<256> NewSyntax;
    llvm::raw_svector_ostream(NewSyntax) << '.' << FieldName->getName()
                                         << " = ";

    SourceLocation NameLoc = ConsumeToken(); // Eat the identifier.

    assert(Tok.is(tok::colon) && "MayBeDesignationStart not working properly!");
    SourceLocation ColonLoc = ConsumeToken();

    Diag(NameLoc, diag::ext_gnu_old_style_field_designator)
      << FixItHint::CreateReplacement(SourceRange(NameLoc, ColonLoc),
                                      NewSyntax.str());

    Designation D;
    D.AddDesignator(Designator::getField(FieldName, SourceLocation(), NameLoc));
    return Actions.ActOnDesignatedInitializer(D, ColonLoc, true,
                                              ParseInitializer());
  }

  // Desig - This is initialized when we see our first designator.  We may have
  // an objc message send with no designator, so we don't want to create this
  // eagerly.
  Designation Desig;

  // Parse each designator in the designator list until we find an initializer.
  while (Tok.is(tok::period) || Tok.is(tok::l_square)) {
    if (Tok.is(tok::period)) {
      // designator: '.' identifier
      SourceLocation DotLoc = ConsumeToken();

      if (Tok.isNot(tok::identifier)) {
        Diag(Tok.getLocation(), diag::err_expected_field_designator);
        return ExprError();
      }

      Desig.AddDesignator(Designator::getField(Tok.getIdentifierInfo(), DotLoc,
                                               Tok.getLocation()));
      ConsumeToken(); // Eat the identifier.
      continue;
    }

    // We must have either an array designator now or an objc message send.
    assert(Tok.is(tok::l_square) && "Unexpected token!");

    // Handle the two forms of array designator:
    //   array-designator: '[' constant-expression ']'
    //   array-designator: '[' constant-expression '...' constant-expression ']'
    //
    // Also, we have to handle the case where the expression after the
    // designator an an objc message send: '[' objc-message-expr ']'.
    // Interesting cases are:
    //   [foo bar]         -> objc message send
    //   [foo]             -> array designator
    //   [foo ... bar]     -> array designator
    //   [4][foo bar]      -> obsolete GNU designation with objc message send.
    //
    // We do not need to check for an expression starting with [[ here. If it
    // contains an Objective-C message send, then it is not an ill-formed
    // attribute. If it is a lambda-expression within an array-designator, then
    // it will be rejected because a constant-expression cannot begin with a
    // lambda-expression.
    InMessageExpressionRAIIObject InMessage(*this, true);
    
    BalancedDelimiterTracker T(*this, tok::l_square);
    T.consumeOpen();
    SourceLocation StartLoc = T.getOpenLocation();

    ExprResult Idx;

    // If Objective-C is enabled and this is a typename (class message
    // send) or send to 'super', parse this as a message send
    // expression.  We handle C++ and C separately, since C++ requires
    // much more complicated parsing.
    if  (getLangOpts().ObjC1 && getLangOpts().CPlusPlus) {
      // Send to 'super'.
      if (Tok.is(tok::identifier) && Tok.getIdentifierInfo() == Ident_super &&
          NextToken().isNot(tok::period) && 
          getCurScope()->isInObjcMethodScope()) {
        CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
        return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,
                                                           ConsumeToken(),
                                                           ParsedType(), 
                                                           0);
      }

      // Parse the receiver, which is either a type or an expression.
      bool IsExpr;
      void *TypeOrExpr;
      if (ParseObjCXXMessageReceiver(IsExpr, TypeOrExpr)) {
        SkipUntil(tok::r_square);
        return ExprError();
      }
      
      // If the receiver was a type, we have a class message; parse
      // the rest of it.
      if (!IsExpr) {
        CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
        return ParseAssignmentExprWithObjCMessageExprStart(StartLoc, 
                                                           SourceLocation(), 
                                   ParsedType::getFromOpaquePtr(TypeOrExpr),
                                                           0);
      }

      // If the receiver was an expression, we still don't know
      // whether we have a message send or an array designator; just
      // adopt the expression for further analysis below.
      // FIXME: potentially-potentially evaluated expression above?
      Idx = ExprResult(static_cast<Expr*>(TypeOrExpr));
    } else if (getLangOpts().ObjC1 && Tok.is(tok::identifier)) {
      IdentifierInfo *II = Tok.getIdentifierInfo();
      SourceLocation IILoc = Tok.getLocation();
      ParsedType ReceiverType;
      // Three cases. This is a message send to a type: [type foo]
      // This is a message send to super:  [super foo]
      // This is a message sent to an expr:  [super.bar foo]
      switch (Sema::ObjCMessageKind Kind
                = Actions.getObjCMessageKind(getCurScope(), II, IILoc, 
                                             II == Ident_super,
                                             NextToken().is(tok::period),
                                             ReceiverType)) {
      case Sema::ObjCSuperMessage:
      case Sema::ObjCClassMessage:
        CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
        if (Kind == Sema::ObjCSuperMessage)
          return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,
                                                             ConsumeToken(),
                                                             ParsedType(),
                                                             0);
        ConsumeToken(); // the identifier
        if (!ReceiverType) {
          SkipUntil(tok::r_square);
          return ExprError();
        }

        return ParseAssignmentExprWithObjCMessageExprStart(StartLoc, 
                                                           SourceLocation(), 
                                                           ReceiverType, 
                                                           0);

      case Sema::ObjCInstanceMessage:
        // Fall through; we'll just parse the expression and
        // (possibly) treat this like an Objective-C message send
        // later.
        break;
      }
    }

    // Parse the index expression, if we haven't already gotten one
    // above (which can only happen in Objective-C++).
    // Note that we parse this as an assignment expression, not a constant
    // expression (allowing *=, =, etc) to handle the objc case.  Sema needs
    // to validate that the expression is a constant.
    // FIXME: We also need to tell Sema that we're in a
    // potentially-potentially evaluated context.
    if (!Idx.get()) {
      Idx = ParseAssignmentExpression();
      if (Idx.isInvalid()) {
        SkipUntil(tok::r_square);
        return Idx;
      }
    }

    // Given an expression, we could either have a designator (if the next
    // tokens are '...' or ']' or an objc message send.  If this is an objc
    // message send, handle it now.  An objc-message send is the start of
    // an assignment-expression production.
    if (getLangOpts().ObjC1 && Tok.isNot(tok::ellipsis) &&
        Tok.isNot(tok::r_square)) {
      CheckArrayDesignatorSyntax(*this, Tok.getLocation(), Desig);
      return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,
                                                         SourceLocation(),
                                                         ParsedType(),
                                                         Idx.take());
    }

    // If this is a normal array designator, remember it.
    if (Tok.isNot(tok::ellipsis)) {
      Desig.AddDesignator(Designator::getArray(Idx.release(), StartLoc));
    } else {
      // Handle the gnu array range extension.
      Diag(Tok, diag::ext_gnu_array_range);
      SourceLocation EllipsisLoc = ConsumeToken();

      ExprResult RHS(ParseConstantExpression());
      if (RHS.isInvalid()) {
        SkipUntil(tok::r_square);
        return RHS;
      }
      Desig.AddDesignator(Designator::getArrayRange(Idx.release(),
                                                    RHS.release(),
                                                    StartLoc, EllipsisLoc));
    }

    T.consumeClose();
    Desig.getDesignator(Desig.getNumDesignators() - 1).setRBracketLoc(
                                                        T.getCloseLocation());
  }

  // Okay, we're done with the designator sequence.  We know that there must be
  // at least one designator, because the only case we can get into this method
  // without a designator is when we have an objc message send.  That case is
  // handled and returned from above.
  assert(!Desig.empty() && "Designator is empty?");

  // Handle a normal designator sequence end, which is an equal.
  if (Tok.is(tok::equal)) {
    SourceLocation EqualLoc = ConsumeToken();
    return Actions.ActOnDesignatedInitializer(Desig, EqualLoc, false,
                                              ParseInitializer());
  }

  // We read some number of designators and found something that isn't an = or
  // an initializer.  If we have exactly one array designator, this
  // is the GNU 'designation: array-designator' extension.  Otherwise, it is a
  // parse error.
  if (Desig.getNumDesignators() == 1 &&
      (Desig.getDesignator(0).isArrayDesignator() ||
       Desig.getDesignator(0).isArrayRangeDesignator())) {
    Diag(Tok, diag::ext_gnu_missing_equal_designator)
      << FixItHint::CreateInsertion(Tok.getLocation(), "= ");
    return Actions.ActOnDesignatedInitializer(Desig, Tok.getLocation(),
                                              true, ParseInitializer());
  }

  Diag(Tok, diag::err_expected_equal_designator);
  return ExprError();
}
Exemplo n.º 8
0
/// getOrInsertFnSpecificMDNode - Return a NameMDNode that is suitable
/// to hold function specific information.
NamedMDNode *llvm::getOrInsertFnSpecificMDNode(Module &M, DISubprogram Fn) {
  SmallString<32> Name;
  fixupSubprogramName(Fn, Name);
  return M.getOrInsertNamedMetadata(Name.str());
}
Exemplo n.º 9
0
/// EmitMatcher - Emit bytes for the specified matcher and return
/// the number of bytes emitted.
unsigned MatcherTableEmitter::
EmitMatcher(const Matcher *N, unsigned Indent, unsigned CurrentIdx,
            raw_ostream &OS) {
  OS.indent(Indent*2);

  switch (N->getKind()) {
  case Matcher::Scope: {
    const ScopeMatcher *SM = cast<ScopeMatcher>(N);
    assert(SM->getNext() == nullptr && "Shouldn't have next after scope");

    unsigned StartIdx = CurrentIdx;

    // Emit all of the children.
    for (unsigned i = 0, e = SM->getNumChildren(); i != e; ++i) {
      if (i == 0) {
        OS << "OPC_Scope, ";
        ++CurrentIdx;
      } else  {
        if (!OmitComments) {
          OS << "/*" << format_decimal(CurrentIdx, IndexWidth) << "*/";
          OS.indent(Indent*2) << "/*Scope*/ ";
        } else
          OS.indent(Indent*2);
      }

      // We need to encode the child and the offset of the failure code before
      // emitting either of them.  Handle this by buffering the output into a
      // string while we get the size.  Unfortunately, the offset of the
      // children depends on the VBR size of the child, so for large children we
      // have to iterate a bit.
      SmallString<128> TmpBuf;
      unsigned ChildSize = 0;
      unsigned VBRSize = 0;
      do {
        VBRSize = GetVBRSize(ChildSize);

        TmpBuf.clear();
        raw_svector_ostream OS(TmpBuf);
        ChildSize = EmitMatcherList(SM->getChild(i), Indent+1,
                                    CurrentIdx+VBRSize, OS);
      } while (GetVBRSize(ChildSize) != VBRSize);

      assert(ChildSize != 0 && "Should not have a zero-sized child!");

      CurrentIdx += EmitVBRValue(ChildSize, OS);
      if (!OmitComments) {
        OS << "/*->" << CurrentIdx+ChildSize << "*/";

        if (i == 0)
          OS << " // " << SM->getNumChildren() << " children in Scope";
      }

      OS << '\n' << TmpBuf;
      CurrentIdx += ChildSize;
    }

    // Emit a zero as a sentinel indicating end of 'Scope'.
    if (!OmitComments)
      OS << "/*" << format_decimal(CurrentIdx, IndexWidth) << "*/";
    OS.indent(Indent*2) << "0, ";
    if (!OmitComments)
      OS << "/*End of Scope*/";
    OS << '\n';
    return CurrentIdx - StartIdx + 1;
  }

  case Matcher::RecordNode:
    OS << "OPC_RecordNode,";
    if (!OmitComments)
      OS << " // #"
         << cast<RecordMatcher>(N)->getResultNo() << " = "
         << cast<RecordMatcher>(N)->getWhatFor();
    OS << '\n';
    return 1;

  case Matcher::RecordChild:
    OS << "OPC_RecordChild" << cast<RecordChildMatcher>(N)->getChildNo()
       << ',';
    if (!OmitComments)
      OS << " // #"
         << cast<RecordChildMatcher>(N)->getResultNo() << " = "
         << cast<RecordChildMatcher>(N)->getWhatFor();
    OS << '\n';
    return 1;

  case Matcher::RecordMemRef:
    OS << "OPC_RecordMemRef,\n";
    return 1;

  case Matcher::CaptureGlueInput:
    OS << "OPC_CaptureGlueInput,\n";
    return 1;

  case Matcher::MoveChild: {
    const auto *MCM = cast<MoveChildMatcher>(N);

    OS << "OPC_MoveChild";
    // Handle the specialized forms.
    if (MCM->getChildNo() >= 8)
      OS << ", ";
    OS << MCM->getChildNo() << ",\n";
    return (MCM->getChildNo() >= 8) ? 2 : 1;
  }

  case Matcher::MoveParent:
    OS << "OPC_MoveParent,\n";
    return 1;

  case Matcher::CheckSame:
    OS << "OPC_CheckSame, "
       << cast<CheckSameMatcher>(N)->getMatchNumber() << ",\n";
    return 2;

  case Matcher::CheckChildSame:
    OS << "OPC_CheckChild"
       << cast<CheckChildSameMatcher>(N)->getChildNo() << "Same, "
       << cast<CheckChildSameMatcher>(N)->getMatchNumber() << ",\n";
    return 2;

  case Matcher::CheckPatternPredicate: {
    StringRef Pred =cast<CheckPatternPredicateMatcher>(N)->getPredicate();
    OS << "OPC_CheckPatternPredicate, " << getPatternPredicate(Pred) << ',';
    if (!OmitComments)
      OS << " // " << Pred;
    OS << '\n';
    return 2;
  }
  case Matcher::CheckPredicate: {
    TreePredicateFn Pred = cast<CheckPredicateMatcher>(N)->getPredicate();
    unsigned OperandBytes = 0;

    if (Pred.usesOperands()) {
      unsigned NumOps = cast<CheckPredicateMatcher>(N)->getNumOperands();
      OS << "OPC_CheckPredicateWithOperands, " << NumOps << "/*#Ops*/, ";
      for (unsigned i = 0; i < NumOps; ++i)
        OS << cast<CheckPredicateMatcher>(N)->getOperandNo(i) << ", ";
      OperandBytes = 1 + NumOps;
    } else {
      OS << "OPC_CheckPredicate, ";
    }

    OS << getNodePredicate(Pred) << ',';
    if (!OmitComments)
      OS << " // " << Pred.getFnName();
    OS << '\n';
    return 2 + OperandBytes;
  }

  case Matcher::CheckOpcode:
    OS << "OPC_CheckOpcode, TARGET_VAL("
       << cast<CheckOpcodeMatcher>(N)->getOpcode().getEnumName() << "),\n";
    return 3;

  case Matcher::SwitchOpcode:
  case Matcher::SwitchType: {
    unsigned StartIdx = CurrentIdx;

    unsigned NumCases;
    if (const SwitchOpcodeMatcher *SOM = dyn_cast<SwitchOpcodeMatcher>(N)) {
      OS << "OPC_SwitchOpcode ";
      NumCases = SOM->getNumCases();
    } else {
      OS << "OPC_SwitchType ";
      NumCases = cast<SwitchTypeMatcher>(N)->getNumCases();
    }

    if (!OmitComments)
      OS << "/*" << NumCases << " cases */";
    OS << ", ";
    ++CurrentIdx;

    // For each case we emit the size, then the opcode, then the matcher.
    for (unsigned i = 0, e = NumCases; i != e; ++i) {
      const Matcher *Child;
      unsigned IdxSize;
      if (const SwitchOpcodeMatcher *SOM = dyn_cast<SwitchOpcodeMatcher>(N)) {
        Child = SOM->getCaseMatcher(i);
        IdxSize = 2;  // size of opcode in table is 2 bytes.
      } else {
        Child = cast<SwitchTypeMatcher>(N)->getCaseMatcher(i);
        IdxSize = 1;  // size of type in table is 1 byte.
      }

      // We need to encode the opcode and the offset of the case code before
      // emitting the case code.  Handle this by buffering the output into a
      // string while we get the size.  Unfortunately, the offset of the
      // children depends on the VBR size of the child, so for large children we
      // have to iterate a bit.
      SmallString<128> TmpBuf;
      unsigned ChildSize = 0;
      unsigned VBRSize = 0;
      do {
        VBRSize = GetVBRSize(ChildSize);

        TmpBuf.clear();
        raw_svector_ostream OS(TmpBuf);
        ChildSize = EmitMatcherList(Child, Indent+1, CurrentIdx+VBRSize+IdxSize,
                                    OS);
      } while (GetVBRSize(ChildSize) != VBRSize);

      assert(ChildSize != 0 && "Should not have a zero-sized child!");

      if (i != 0) {
        if (!OmitComments)
          OS << "/*" << format_decimal(CurrentIdx, IndexWidth) << "*/";
        OS.indent(Indent*2);
        if (!OmitComments)
          OS << (isa<SwitchOpcodeMatcher>(N) ?
                     "/*SwitchOpcode*/ " : "/*SwitchType*/ ");
      }

      // Emit the VBR.
      CurrentIdx += EmitVBRValue(ChildSize, OS);

      if (const SwitchOpcodeMatcher *SOM = dyn_cast<SwitchOpcodeMatcher>(N))
        OS << "TARGET_VAL(" << SOM->getCaseOpcode(i).getEnumName() << "),";
      else
        OS << getEnumName(cast<SwitchTypeMatcher>(N)->getCaseType(i)) << ',';

      CurrentIdx += IdxSize;

      if (!OmitComments)
        OS << "// ->" << CurrentIdx+ChildSize;
      OS << '\n';
      OS << TmpBuf;
      CurrentIdx += ChildSize;
    }

    // Emit the final zero to terminate the switch.
    if (!OmitComments)
      OS << "/*" << format_decimal(CurrentIdx, IndexWidth) << "*/";
    OS.indent(Indent*2) << "0,";
    if (!OmitComments)
      OS << (isa<SwitchOpcodeMatcher>(N) ?
             " // EndSwitchOpcode" : " // EndSwitchType");

    OS << '\n';
    ++CurrentIdx;
    return CurrentIdx-StartIdx;
  }

 case Matcher::CheckType:
    if (cast<CheckTypeMatcher>(N)->getResNo() == 0) {
      OS << "OPC_CheckType, "
         << getEnumName(cast<CheckTypeMatcher>(N)->getType()) << ",\n";
      return 2;
    }
    OS << "OPC_CheckTypeRes, " << cast<CheckTypeMatcher>(N)->getResNo()
       << ", " << getEnumName(cast<CheckTypeMatcher>(N)->getType()) << ",\n";
    return 3;

  case Matcher::CheckChildType:
    OS << "OPC_CheckChild"
       << cast<CheckChildTypeMatcher>(N)->getChildNo() << "Type, "
       << getEnumName(cast<CheckChildTypeMatcher>(N)->getType()) << ",\n";
    return 2;

  case Matcher::CheckInteger: {
    OS << "OPC_CheckInteger, ";
    unsigned Bytes=1+EmitVBRValue(cast<CheckIntegerMatcher>(N)->getValue(), OS);
    OS << '\n';
    return Bytes;
  }
  case Matcher::CheckChildInteger: {
    OS << "OPC_CheckChild" << cast<CheckChildIntegerMatcher>(N)->getChildNo()
       << "Integer, ";
    unsigned Bytes=1+EmitVBRValue(cast<CheckChildIntegerMatcher>(N)->getValue(),
                                  OS);
    OS << '\n';
    return Bytes;
  }
  case Matcher::CheckCondCode:
    OS << "OPC_CheckCondCode, ISD::"
       << cast<CheckCondCodeMatcher>(N)->getCondCodeName() << ",\n";
    return 2;

  case Matcher::CheckChild2CondCode:
    OS << "OPC_CheckChild2CondCode, ISD::"
       << cast<CheckChild2CondCodeMatcher>(N)->getCondCodeName() << ",\n";
    return 2;

  case Matcher::CheckValueType:
    OS << "OPC_CheckValueType, MVT::"
       << cast<CheckValueTypeMatcher>(N)->getTypeName() << ",\n";
    return 2;

  case Matcher::CheckComplexPat: {
    const CheckComplexPatMatcher *CCPM = cast<CheckComplexPatMatcher>(N);
    const ComplexPattern &Pattern = CCPM->getPattern();
    OS << "OPC_CheckComplexPat, /*CP*/" << getComplexPat(Pattern) << ", /*#*/"
       << CCPM->getMatchNumber() << ',';

    if (!OmitComments) {
      OS << " // " << Pattern.getSelectFunc();
      OS << ":$" << CCPM->getName();
      for (unsigned i = 0, e = Pattern.getNumOperands(); i != e; ++i)
        OS << " #" << CCPM->getFirstResult()+i;

      if (Pattern.hasProperty(SDNPHasChain))
        OS << " + chain result";
    }
    OS << '\n';
    return 3;
  }

  case Matcher::CheckAndImm: {
    OS << "OPC_CheckAndImm, ";
    unsigned Bytes=1+EmitVBRValue(cast<CheckAndImmMatcher>(N)->getValue(), OS);
    OS << '\n';
    return Bytes;
  }

  case Matcher::CheckOrImm: {
    OS << "OPC_CheckOrImm, ";
    unsigned Bytes = 1+EmitVBRValue(cast<CheckOrImmMatcher>(N)->getValue(), OS);
    OS << '\n';
    return Bytes;
  }

  case Matcher::CheckFoldableChainNode:
    OS << "OPC_CheckFoldableChainNode,\n";
    return 1;

  case Matcher::CheckImmAllOnesV:
    OS << "OPC_CheckImmAllOnesV,\n";
    return 1;

  case Matcher::CheckImmAllZerosV:
    OS << "OPC_CheckImmAllZerosV,\n";
    return 1;

  case Matcher::EmitInteger: {
    int64_t Val = cast<EmitIntegerMatcher>(N)->getValue();
    OS << "OPC_EmitInteger, "
       << getEnumName(cast<EmitIntegerMatcher>(N)->getVT()) << ", ";
    unsigned Bytes = 2+EmitVBRValue(Val, OS);
    OS << '\n';
    return Bytes;
  }
  case Matcher::EmitStringInteger: {
    const std::string &Val = cast<EmitStringIntegerMatcher>(N)->getValue();
    // These should always fit into one byte.
    OS << "OPC_EmitInteger, "
      << getEnumName(cast<EmitStringIntegerMatcher>(N)->getVT()) << ", "
      << Val << ",\n";
    return 3;
  }

  case Matcher::EmitRegister: {
    const EmitRegisterMatcher *Matcher = cast<EmitRegisterMatcher>(N);
    const CodeGenRegister *Reg = Matcher->getReg();
    // If the enum value of the register is larger than one byte can handle,
    // use EmitRegister2.
    if (Reg && Reg->EnumValue > 255) {
      OS << "OPC_EmitRegister2, " << getEnumName(Matcher->getVT()) << ", ";
      OS << "TARGET_VAL(" << getQualifiedName(Reg->TheDef) << "),\n";
      return 4;
    } else {
      OS << "OPC_EmitRegister, " << getEnumName(Matcher->getVT()) << ", ";
      if (Reg) {
        OS << getQualifiedName(Reg->TheDef) << ",\n";
      } else {
        OS << "0 ";
        if (!OmitComments)
          OS << "/*zero_reg*/";
        OS << ",\n";
      }
      return 3;
    }
  }

  case Matcher::EmitConvertToTarget:
    OS << "OPC_EmitConvertToTarget, "
       << cast<EmitConvertToTargetMatcher>(N)->getSlot() << ",\n";
    return 2;

  case Matcher::EmitMergeInputChains: {
    const EmitMergeInputChainsMatcher *MN =
      cast<EmitMergeInputChainsMatcher>(N);

    // Handle the specialized forms OPC_EmitMergeInputChains1_0, 1_1, and 1_2.
    if (MN->getNumNodes() == 1 && MN->getNode(0) < 3) {
      OS << "OPC_EmitMergeInputChains1_" << MN->getNode(0) << ",\n";
      return 1;
    }

    OS << "OPC_EmitMergeInputChains, " << MN->getNumNodes() << ", ";
    for (unsigned i = 0, e = MN->getNumNodes(); i != e; ++i)
      OS << MN->getNode(i) << ", ";
    OS << '\n';
    return 2+MN->getNumNodes();
  }
  case Matcher::EmitCopyToReg:
    OS << "OPC_EmitCopyToReg, "
       << cast<EmitCopyToRegMatcher>(N)->getSrcSlot() << ", "
       << getQualifiedName(cast<EmitCopyToRegMatcher>(N)->getDestPhysReg())
       << ",\n";
    return 3;
  case Matcher::EmitNodeXForm: {
    const EmitNodeXFormMatcher *XF = cast<EmitNodeXFormMatcher>(N);
    OS << "OPC_EmitNodeXForm, " << getNodeXFormID(XF->getNodeXForm()) << ", "
       << XF->getSlot() << ',';
    if (!OmitComments)
      OS << " // "<<XF->getNodeXForm()->getName();
    OS <<'\n';
    return 3;
  }

  case Matcher::EmitNode:
  case Matcher::MorphNodeTo: {
    auto NumCoveredBytes = 0;
    if (InstrumentCoverage) {
      if (const MorphNodeToMatcher *SNT = dyn_cast<MorphNodeToMatcher>(N)) {
        NumCoveredBytes = 3;
        OS << "OPC_Coverage, ";
        std::string src =
            GetPatFromTreePatternNode(SNT->getPattern().getSrcPattern());
        std::string dst =
            GetPatFromTreePatternNode(SNT->getPattern().getDstPattern());
        Record *PatRecord = SNT->getPattern().getSrcRecord();
        std::string include_src = getIncludePath(PatRecord);
        unsigned Offset =
            getPatternIdxFromTable(src + " -> " + dst, std::move(include_src));
        OS << "TARGET_VAL(" << Offset << "),\n";
        OS.indent(FullIndexWidth + Indent * 2);
      }
    }
    const EmitNodeMatcherCommon *EN = cast<EmitNodeMatcherCommon>(N);
    OS << (isa<EmitNodeMatcher>(EN) ? "OPC_EmitNode" : "OPC_MorphNodeTo");
    bool CompressVTs = EN->getNumVTs() < 3;
    if (CompressVTs)
      OS << EN->getNumVTs();

    OS << ", TARGET_VAL(" << EN->getOpcodeName() << "), 0";

    if (EN->hasChain())   OS << "|OPFL_Chain";
    if (EN->hasInFlag())  OS << "|OPFL_GlueInput";
    if (EN->hasOutFlag()) OS << "|OPFL_GlueOutput";
    if (EN->hasMemRefs()) OS << "|OPFL_MemRefs";
    if (EN->getNumFixedArityOperands() != -1)
      OS << "|OPFL_Variadic" << EN->getNumFixedArityOperands();
    OS << ",\n";

    OS.indent(FullIndexWidth + Indent*2+4);
    if (!CompressVTs) {
      OS << EN->getNumVTs();
      if (!OmitComments)
        OS << "/*#VTs*/";
      OS << ", ";
    }
    for (unsigned i = 0, e = EN->getNumVTs(); i != e; ++i)
      OS << getEnumName(EN->getVT(i)) << ", ";

    OS << EN->getNumOperands();
    if (!OmitComments)
      OS << "/*#Ops*/";
    OS << ", ";
    unsigned NumOperandBytes = 0;
    for (unsigned i = 0, e = EN->getNumOperands(); i != e; ++i)
      NumOperandBytes += EmitVBRValue(EN->getOperand(i), OS);

    if (!OmitComments) {
      // Print the result #'s for EmitNode.
      if (const EmitNodeMatcher *E = dyn_cast<EmitNodeMatcher>(EN)) {
        if (unsigned NumResults = EN->getNumVTs()) {
          OS << " // Results =";
          unsigned First = E->getFirstResultSlot();
          for (unsigned i = 0; i != NumResults; ++i)
            OS << " #" << First+i;
        }
      }
      OS << '\n';

      if (const MorphNodeToMatcher *SNT = dyn_cast<MorphNodeToMatcher>(N)) {
        OS.indent(FullIndexWidth + Indent*2) << "// Src: "
          << *SNT->getPattern().getSrcPattern() << " - Complexity = "
          << SNT->getPattern().getPatternComplexity(CGP) << '\n';
        OS.indent(FullIndexWidth + Indent*2) << "// Dst: "
          << *SNT->getPattern().getDstPattern() << '\n';
      }
    } else
      OS << '\n';

    return 5 + !CompressVTs + EN->getNumVTs() + NumOperandBytes +
           NumCoveredBytes;
  }
  case Matcher::CompleteMatch: {
    const CompleteMatchMatcher *CM = cast<CompleteMatchMatcher>(N);
    auto NumCoveredBytes = 0;
    if (InstrumentCoverage) {
      NumCoveredBytes = 3;
      OS << "OPC_Coverage, ";
      std::string src =
          GetPatFromTreePatternNode(CM->getPattern().getSrcPattern());
      std::string dst =
          GetPatFromTreePatternNode(CM->getPattern().getDstPattern());
      Record *PatRecord = CM->getPattern().getSrcRecord();
      std::string include_src = getIncludePath(PatRecord);
      unsigned Offset =
          getPatternIdxFromTable(src + " -> " + dst, std::move(include_src));
      OS << "TARGET_VAL(" << Offset << "),\n";
      OS.indent(FullIndexWidth + Indent * 2);
    }
    OS << "OPC_CompleteMatch, " << CM->getNumResults() << ", ";
    unsigned NumResultBytes = 0;
    for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
      NumResultBytes += EmitVBRValue(CM->getResult(i), OS);
    OS << '\n';
    if (!OmitComments) {
      OS.indent(FullIndexWidth + Indent*2) << " // Src: "
        << *CM->getPattern().getSrcPattern() << " - Complexity = "
        << CM->getPattern().getPatternComplexity(CGP) << '\n';
      OS.indent(FullIndexWidth + Indent*2) << " // Dst: "
        << *CM->getPattern().getDstPattern();
    }
    OS << '\n';
    return 2 + NumResultBytes + NumCoveredBytes;
  }
  }
  llvm_unreachable("Unreachable");
}
Exemplo n.º 10
0
Arquivo: Twine.cpp Projeto: aaasz/SHP
std::string Twine::str() const {
  SmallString<256> Vec;
  toVector(Vec);
  return std::string(Vec.begin(), Vec.end());
}
Exemplo n.º 11
0
/// Returns true for failure to resolve.
static bool passCursorInfoForDecl(const ValueDecl *VD,
                                  const Module *MainModule,
                                  const Type Ty,
                                  bool IsRef,
                                  Optional<unsigned> OrigBufferID,
                                  SwiftLangSupport &Lang,
                                  const CompilerInvocation &Invok,
                            ArrayRef<ImmutableTextSnapshotRef> PreviousASTSnaps,
                             std::function<void(const CursorInfo &)> Receiver) {
  if (AvailableAttr::isUnavailable(VD))
    return true;

  SmallString<64> SS;

  unsigned NameBegin = SS.size();
  {
    llvm::raw_svector_ostream OS(SS);
    SwiftLangSupport::printDisplayName(VD, OS);
  }
  unsigned NameEnd = SS.size();

  unsigned USRBegin = SS.size();
  {
    llvm::raw_svector_ostream OS(SS);
    SwiftLangSupport::printUSR(VD, OS);
  }
  unsigned USREnd = SS.size();

  unsigned TypenameBegin = SS.size();
  if (VD->hasType()) {
    llvm::raw_svector_ostream OS(SS);
    VD->getType().print(OS);
  }
  unsigned TypenameEnd = SS.size();

  unsigned DocCommentBegin = SS.size();
  {
    llvm::raw_svector_ostream OS(SS);
    ide::getDocumentationCommentAsXML(VD, OS);
  }
  unsigned DocCommentEnd = SS.size();

  unsigned DeclBegin = SS.size();
  {
    llvm::raw_svector_ostream OS(SS);
    printAnnotatedDeclaration(VD, OS);
  }
  unsigned DeclEnd = SS.size();

  SmallVector<std::pair<unsigned, unsigned>, 4> OverUSROffs;

  ide::walkOverriddenDecls(VD,
    [&](llvm::PointerUnion<const ValueDecl*, const clang::NamedDecl*> D) {
      unsigned OverUSRBegin = SS.size();
      {
        llvm::raw_svector_ostream OS(SS);
        if (auto VD = D.dyn_cast<const ValueDecl*>()) {
          if (SwiftLangSupport::printUSR(VD, OS))
            return;
        } else {
          llvm::SmallString<128> Buf;
          if (clang::index::generateUSRForDecl(
              D.get<const clang::NamedDecl*>(), Buf))
            return;
          OS << Buf.str();
        }
      }
      unsigned OverUSREnd = SS.size();
      OverUSROffs.push_back(std::make_pair(OverUSRBegin, OverUSREnd));
  });

  SmallVector<std::pair<unsigned, unsigned>, 4> RelDeclOffs;
  walkRelatedDecls(VD, [&](const ValueDecl *RelatedDecl, bool DuplicateName) {
    unsigned RelatedDeclBegin = SS.size();
    {
      llvm::raw_svector_ostream OS(SS);
      OS<<"<RelatedName usr=\"";
      SwiftLangSupport::printUSR(RelatedDecl, OS);
      OS<<"\">";
      if (isa<AbstractFunctionDecl>(RelatedDecl) && DuplicateName) {
        // Related decls are generally overloads, so print parameter types to
        // differentiate them.
        PrintOptions PO;
        PO.SkipAttributes = true;
        PO.SkipIntroducerKeywords = true;
        PO.ArgAndParamPrinting = PrintOptions::ArgAndParamPrintingMode::ArgumentOnly;
        XMLEscapingPrinter Printer(OS);
        RelatedDecl->print(Printer, PO);
      } else {
        llvm::SmallString<128> Buf;
        {
          llvm::raw_svector_ostream OSBuf(Buf);
          SwiftLangSupport::printDisplayName(RelatedDecl, OSBuf);
        }
        llvm::markup::appendWithXMLEscaping(OS, Buf);
      }
      OS<<"</RelatedName>";
    }
    unsigned RelatedDeclEnd = SS.size();
    RelDeclOffs.push_back(std::make_pair(RelatedDeclBegin, RelatedDeclEnd));
  });

  ASTContext &Ctx = VD->getASTContext();

  ClangImporter *Importer = static_cast<ClangImporter*>(
      Ctx.getClangModuleLoader());
  std::string ModuleName;
  auto ClangNode = VD->getClangNode();
  if (ClangNode) {
    auto ClangMod = Importer->getClangOwningModule(ClangNode);
    ModuleName = ClangMod->getFullModuleName();
  } else if (VD->getLoc().isInvalid() && VD->getModuleContext() != MainModule) {
    ModuleName = VD->getModuleContext()->getName().str();
  }
  StringRef ModuleInterfaceName;
  if (auto IFaceGenRef = Lang.getIFaceGenContexts().find(ModuleName, Invok))
    ModuleInterfaceName = IFaceGenRef->getDocumentName();

  UIdent Kind = SwiftLangSupport::getUIDForDecl(VD, IsRef);
  StringRef Name = StringRef(SS.begin()+NameBegin, NameEnd-NameBegin);
  StringRef USR = StringRef(SS.begin()+USRBegin, USREnd-USRBegin);
  StringRef TypeName = StringRef(SS.begin()+TypenameBegin,
                                 TypenameEnd-TypenameBegin);
  StringRef DocComment = StringRef(SS.begin()+DocCommentBegin,
                                   DocCommentEnd-DocCommentBegin);
  StringRef AnnotatedDecl = StringRef(SS.begin()+DeclBegin,
                                      DeclEnd-DeclBegin);

  llvm::Optional<std::pair<unsigned, unsigned>> DeclarationLoc;
  StringRef Filename;
  getLocationInfo(VD, DeclarationLoc, Filename);
  if (DeclarationLoc.hasValue()) {
    DeclarationLoc = tryRemappingLocToLatestSnapshot(Lang,
                                                     *DeclarationLoc,
                                                     Filename,
                                                     PreviousASTSnaps);
    if (!DeclarationLoc.hasValue())
      return true; // failed to remap.
  }

  SmallVector<StringRef, 4> OverUSRs;
  for (auto Offs : OverUSROffs) {
    OverUSRs.push_back(StringRef(SS.begin()+Offs.first,
                                 Offs.second-Offs.first));
  }

  SmallVector<StringRef, 4> AnnotatedRelatedDecls;
  for (auto Offs : RelDeclOffs) {
    AnnotatedRelatedDecls.push_back(StringRef(SS.begin() + Offs.first,
                                              Offs.second - Offs.first));
  }

  bool IsSystem = VD->getModuleContext()->isSystemModule();
  std::string TypeInterface;

  CursorInfo Info;
  Info.Kind = Kind;
  Info.Name = Name;
  Info.USR = USR;
  Info.TypeName = TypeName;
  Info.DocComment = DocComment;
  Info.AnnotatedDeclaration = AnnotatedDecl;
  Info.ModuleName = ModuleName;
  Info.ModuleInterfaceName = ModuleInterfaceName;
  Info.DeclarationLoc = DeclarationLoc;
  Info.Filename = Filename;
  Info.OverrideUSRs = OverUSRs;
  Info.AnnotatedRelatedDeclarations = AnnotatedRelatedDecls;
  Info.IsSystem = IsSystem;
  Info.TypeInteface = ASTPrinter::printTypeInterface(Ty, VD->getDeclContext(),
                                                     TypeInterface) ?
    StringRef(TypeInterface) : StringRef();
  Receiver(Info);
  return false;
}
Exemplo n.º 12
0
/// @brief Get the length of the string that represents @p num in Radix
///        including the leading 0x or 0 for hexadecimal and octal respectively.
static size_t getNumLengthAsString(uint64_t num) {
  APInt conv(64, num);
  SmallString<32> result;
  conv.toString(result, Radix, false, true);
  return result.size();
}
Exemplo n.º 13
0
static MCSectionELF *
selectELFSectionForGlobal(MCContext &Ctx, const GlobalValue *GV,
                          SectionKind Kind, Mangler &Mang,
                          const TargetMachine &TM, bool EmitUniqueSection,
                          unsigned Flags, unsigned *NextUniqueID) {
  unsigned EntrySize = 0;
  if (Kind.isMergeableCString()) {
    if (Kind.isMergeable2ByteCString()) {
      EntrySize = 2;
    } else if (Kind.isMergeable4ByteCString()) {
      EntrySize = 4;
    } else {
      EntrySize = 1;
      assert(Kind.isMergeable1ByteCString() && "unknown string width");
    }
  } else if (Kind.isMergeableConst()) {
    if (Kind.isMergeableConst4()) {
      EntrySize = 4;
    } else if (Kind.isMergeableConst8()) {
      EntrySize = 8;
    } else {
      assert(Kind.isMergeableConst16() && "unknown data width");
      EntrySize = 16;
    }
  }

  StringRef Group = "";
  if (const Comdat *C = getELFComdat(GV)) {
    Flags |= ELF::SHF_GROUP;
    Group = C->getName();
  }

  bool UniqueSectionNames = TM.getUniqueSectionNames();
  SmallString<128> Name;
  if (Kind.isMergeableCString()) {
    // We also need alignment here.
    // FIXME: this is getting the alignment of the character, not the
    // alignment of the global!
    unsigned Align = GV->getParent()->getDataLayout().getPreferredAlignment(
        cast<GlobalVariable>(GV));

    std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
    Name = SizeSpec + utostr(Align);
  } else if (Kind.isMergeableConst()) {
    Name = ".rodata.cst";
    Name += utostr(EntrySize);
  } else {
    Name = getSectionPrefixForGlobal(Kind);
  }

  if (EmitUniqueSection && UniqueSectionNames) {
    Name.push_back('.');
    TM.getNameWithPrefix(Name, GV, Mang, true);
  }
  unsigned UniqueID = ~0;
  if (EmitUniqueSection && !UniqueSectionNames) {
    UniqueID = *NextUniqueID;
    (*NextUniqueID)++;
  }
  return Ctx.getELFSection(Name, getELFSectionType(Name, Kind), Flags,
                           EntrySize, Group, UniqueID);
}
Exemplo n.º 14
0
MCSymbol *MCContext::GetOrCreateSymbol(const Twine &Name) {
  SmallString<128> NameSV;
  Name.toVector(NameSV);
  return GetOrCreateSymbol(NameSV.str());
}
Exemplo n.º 15
0
/// PasteTokens - Tok is the LHS of a ## operator, and CurToken is the ##
/// operator.  Read the ## and RHS, and paste the LHS/RHS together.  If there
/// are more ## after it, chomp them iteratively.  Return the result as Tok.
/// If this returns true, the caller should immediately return the token.
bool TokenLexer::PasteTokens(Token &Tok) {
  SmallString<128> Buffer;
  const char *ResultTokStrPtr = nullptr;
  SourceLocation StartLoc = Tok.getLocation();
  SourceLocation PasteOpLoc;
  do {
    // Consume the ## operator if any.
    PasteOpLoc = Tokens[CurToken].getLocation();
    if (Tokens[CurToken].is(tok::hashhash))
      ++CurToken;
    assert(!isAtEnd() && "No token on the RHS of a paste operator!");

    // Get the RHS token.
    const Token &RHS = Tokens[CurToken];

    // Allocate space for the result token.  This is guaranteed to be enough for
    // the two tokens.
    Buffer.resize(Tok.getLength() + RHS.getLength());

    // Get the spelling of the LHS token in Buffer.
    const char *BufPtr = &Buffer[0];
    bool Invalid = false;
    unsigned LHSLen = PP.getSpelling(Tok, BufPtr, &Invalid);
    if (BufPtr != &Buffer[0])   // Really, we want the chars in Buffer!
      memcpy(&Buffer[0], BufPtr, LHSLen);
    if (Invalid)
      return true;

    BufPtr = Buffer.data() + LHSLen;
    unsigned RHSLen = PP.getSpelling(RHS, BufPtr, &Invalid);
    if (Invalid)
      return true;
    if (RHSLen && BufPtr != &Buffer[LHSLen])
      // Really, we want the chars in Buffer!
      memcpy(&Buffer[LHSLen], BufPtr, RHSLen);

    // Trim excess space.
    Buffer.resize(LHSLen+RHSLen);

    // Plop the pasted result (including the trailing newline and null) into a
    // scratch buffer where we can lex it.
    Token ResultTokTmp;
    ResultTokTmp.startToken();

    // Claim that the tmp token is a string_literal so that we can get the
    // character pointer back from CreateString in getLiteralData().
    ResultTokTmp.setKind(tok::string_literal);
    PP.CreateString(Buffer, ResultTokTmp);
    SourceLocation ResultTokLoc = ResultTokTmp.getLocation();
    ResultTokStrPtr = ResultTokTmp.getLiteralData();

    // Lex the resultant pasted token into Result.
    Token Result;

    if (Tok.isAnyIdentifier() && RHS.isAnyIdentifier()) {
      // Common paste case: identifier+identifier = identifier.  Avoid creating
      // a lexer and other overhead.
      PP.IncrementPasteCounter(true);
      Result.startToken();
      Result.setKind(tok::raw_identifier);
      Result.setRawIdentifierData(ResultTokStrPtr);
      Result.setLocation(ResultTokLoc);
      Result.setLength(LHSLen+RHSLen);
    } else {
      PP.IncrementPasteCounter(false);

      assert(ResultTokLoc.isFileID() &&
             "Should be a raw location into scratch buffer");
      SourceManager &SourceMgr = PP.getSourceManager();
      FileID LocFileID = SourceMgr.getFileID(ResultTokLoc);

      bool Invalid = false;
      const char *ScratchBufStart
        = SourceMgr.getBufferData(LocFileID, &Invalid).data();
      if (Invalid)
        return false;

      // Make a lexer to lex this string from.  Lex just this one token.
      // Make a lexer object so that we lex and expand the paste result.
      Lexer TL(SourceMgr.getLocForStartOfFile(LocFileID),
               PP.getLangOpts(), ScratchBufStart,
               ResultTokStrPtr, ResultTokStrPtr+LHSLen+RHSLen);

      // Lex a token in raw mode.  This way it won't look up identifiers
      // automatically, lexing off the end will return an eof token, and
      // warnings are disabled.  This returns true if the result token is the
      // entire buffer.
      bool isInvalid = !TL.LexFromRawLexer(Result);

      // If we got an EOF token, we didn't form even ONE token.  For example, we
      // did "/ ## /" to get "//".
      isInvalid |= Result.is(tok::eof);

      // If pasting the two tokens didn't form a full new token, this is an
      // error.  This occurs with "x ## +"  and other stuff.  Return with Tok
      // unmodified and with RHS as the next token to lex.
      if (isInvalid) {
        // Test for the Microsoft extension of /##/ turning into // here on the
        // error path.
        if (PP.getLangOpts().MicrosoftExt && Tok.is(tok::slash) &&
            RHS.is(tok::slash)) {
          HandleMicrosoftCommentPaste(Tok);
          return true;
        }

        // Do not emit the error when preprocessing assembler code.
        if (!PP.getLangOpts().AsmPreprocessor) {
          // Explicitly convert the token location to have proper expansion
          // information so that the user knows where it came from.
          SourceManager &SM = PP.getSourceManager();
          SourceLocation Loc =
            SM.createExpansionLoc(PasteOpLoc, ExpandLocStart, ExpandLocEnd, 2);
          // If we're in microsoft extensions mode, downgrade this from a hard
          // error to an extension that defaults to an error.  This allows
          // disabling it.
          PP.Diag(Loc, PP.getLangOpts().MicrosoftExt ? diag::ext_pp_bad_paste_ms
                                                     : diag::err_pp_bad_paste)
              << Buffer.str();
        }

        // An error has occurred so exit loop.
        break;
      }

      // Turn ## into 'unknown' to avoid # ## # from looking like a paste
      // operator.
      if (Result.is(tok::hashhash))
        Result.setKind(tok::unknown);
    }

    // Transfer properties of the LHS over the Result.
    Result.setFlagValue(Token::StartOfLine , Tok.isAtStartOfLine());
    Result.setFlagValue(Token::LeadingSpace, Tok.hasLeadingSpace());

    // Finally, replace LHS with the result, consume the RHS, and iterate.
    ++CurToken;
    Tok = Result;
  } while (!isAtEnd() && Tokens[CurToken].is(tok::hashhash));

  SourceLocation EndLoc = Tokens[CurToken - 1].getLocation();

  // The token's current location indicate where the token was lexed from.  We
  // need this information to compute the spelling of the token, but any
  // diagnostics for the expanded token should appear as if the token was
  // expanded from the full ## expression. Pull this information together into
  // a new SourceLocation that captures all of this.
  SourceManager &SM = PP.getSourceManager();
  if (StartLoc.isFileID())
    StartLoc = getExpansionLocForMacroDefLoc(StartLoc);
  if (EndLoc.isFileID())
    EndLoc = getExpansionLocForMacroDefLoc(EndLoc);
  FileID MacroFID = SM.getFileID(MacroExpansionStart);
  while (SM.getFileID(StartLoc) != MacroFID)
    StartLoc = SM.getImmediateExpansionRange(StartLoc).first;
  while (SM.getFileID(EndLoc) != MacroFID)
    EndLoc = SM.getImmediateExpansionRange(EndLoc).second;

  Tok.setLocation(SM.createExpansionLoc(Tok.getLocation(), StartLoc, EndLoc,
                                        Tok.getLength()));

  // Now that we got the result token, it will be subject to expansion.  Since
  // token pasting re-lexes the result token in raw mode, identifier information
  // isn't looked up.  As such, if the result is an identifier, look up id info.
  if (Tok.is(tok::raw_identifier)) {
    // Look up the identifier info for the token.  We disabled identifier lookup
    // by saying we're skipping contents, so we need to do this manually.
    PP.LookUpIdentifierInfo(Tok);
  }
  return false;
}
Exemplo n.º 16
0
/// This method runs "Program", capturing the output of the program to a file,
/// returning the filename of the file.  A recommended filename may be
/// optionally specified.
Expected<std::string> BugDriver::executeProgram(const Module &Program,
                                                std::string OutputFile,
                                                std::string BitcodeFile,
                                                const std::string &SharedObj,
                                                AbstractInterpreter *AI) const {
  if (!AI)
    AI = Interpreter;
  assert(AI && "Interpreter should have been created already!");
  if (BitcodeFile.empty()) {
    // Emit the program to a bitcode file...
    auto File =
        sys::fs::TempFile::create(OutputPrefix + "-test-program-%%%%%%%.bc");
    if (!File) {
      errs() << ToolName
             << ": Error making unique filename: " << toString(File.takeError())
             << "!\n";
      exit(1);
    }
    DiscardTemp Discard{*File};
    BitcodeFile = File->TmpName;

    if (writeProgramToFile(File->FD, Program)) {
      errs() << ToolName << ": Error emitting bitcode to file '" << BitcodeFile
             << "'!\n";
      exit(1);
    }
  }

  if (OutputFile.empty())
    OutputFile = OutputPrefix + "-execution-output-%%%%%%%";

  // Check to see if this is a valid output filename...
  SmallString<128> UniqueFile;
  std::error_code EC = sys::fs::createUniqueFile(OutputFile, UniqueFile);
  if (EC) {
    errs() << ToolName << ": Error making unique filename: " << EC.message()
           << "\n";
    exit(1);
  }
  OutputFile = UniqueFile.str();

  // Figure out which shared objects to run, if any.
  std::vector<std::string> SharedObjs(AdditionalSOs);
  if (!SharedObj.empty())
    SharedObjs.push_back(SharedObj);

  Expected<int> RetVal = AI->ExecuteProgram(BitcodeFile, InputArgv, InputFile,
                                            OutputFile, AdditionalLinkerArgs,
                                            SharedObjs, Timeout, MemoryLimit);
  if (Error E = RetVal.takeError())
    return std::move(E);

  if (*RetVal == -1) {
    errs() << "<timeout>";
    static bool FirstTimeout = true;
    if (FirstTimeout) {
      outs()
          << "\n"
             "*** Program execution timed out!  This mechanism is designed to "
             "handle\n"
             "    programs stuck in infinite loops gracefully.  The -timeout "
             "option\n"
             "    can be used to change the timeout threshold or disable it "
             "completely\n"
             "    (with -timeout=0).  This message is only displayed once.\n";
      FirstTimeout = false;
    }
  }

  if (AppendProgramExitCode) {
    std::ofstream outFile(OutputFile.c_str(), std::ios_base::app);
    outFile << "exit " << *RetVal << '\n';
    outFile.close();
  }

  // Return the filename we captured the output to.
  return OutputFile;
}
Exemplo n.º 17
0
static std::string getImplibPath(StringRef Path) {
  SmallString<128> Out = StringRef("lib");
  Out.append(Path);
  sys::path::replace_extension(Out, ".a");
  return Out.str();
}
Exemplo n.º 18
0
void llvm::write_double(raw_ostream &S, double N, FloatStyle Style,
                        Optional<size_t> Precision) {
  size_t Prec = Precision.getValueOr(getDefaultPrecision(Style));

  if (std::isnan(N)) {
    S << "nan";
    return;
  } else if (std::isinf(N)) {
    S << "INF";
    return;
  }

  char Letter;
  if (Style == FloatStyle::Exponent)
    Letter = 'e';
  else if (Style == FloatStyle::ExponentUpper)
    Letter = 'E';
  else
    Letter = 'f';

  SmallString<8> Spec;
  llvm::raw_svector_ostream Out(Spec);
  Out << "%." << Prec << Letter;

  if (Style == FloatStyle::Exponent || Style == FloatStyle::ExponentUpper) {
#ifdef _WIN32
// On MSVCRT and compatible, output of %e is incompatible to Posix
// by default. Number of exponent digits should be at least 2. "%+03d"
// FIXME: Implement our formatter to here or Support/Format.h!
#if defined(__MINGW32__)
    // FIXME: It should be generic to C++11.
    if (N == 0.0 && std::signbit(N)) {
      char NegativeZero[] = "-0.000000e+00";
      if (Style == FloatStyle::ExponentUpper)
        NegativeZero[strlen(NegativeZero) - 4] = 'E';
      S << NegativeZero;
      return;
    }
#else
    int fpcl = _fpclass(N);

    // negative zero
    if (fpcl == _FPCLASS_NZ) {
      char NegativeZero[] = "-0.000000e+00";
      if (Style == FloatStyle::ExponentUpper)
        NegativeZero[strlen(NegativeZero) - 4] = 'E';
      S << NegativeZero;
      return;
    }
#endif

    char buf[32];
    unsigned len;
    len = format(Spec.c_str(), N).snprint(buf, sizeof(buf));
    if (len <= sizeof(buf) - 2) {
      if (len >= 5 && (buf[len - 5] == 'e' || buf[len - 5] == 'E') &&
          buf[len - 3] == '0') {
        int cs = buf[len - 4];
        if (cs == '+' || cs == '-') {
          int c1 = buf[len - 2];
          int c0 = buf[len - 1];
          if (isdigit(static_cast<unsigned char>(c1)) &&
              isdigit(static_cast<unsigned char>(c0))) {
            // Trim leading '0': "...e+012" -> "...e+12\0"
            buf[len - 3] = c1;
            buf[len - 2] = c0;
            buf[--len] = 0;
          }
        }
      }
      S << buf;
      return;
    }
#endif
  }

  if (Style == FloatStyle::Percent)
    N *= 100.0;

  char Buf[32];
  format(Spec.c_str(), N).snprint(Buf, sizeof(Buf));
  S << Buf;
  if (Style == FloatStyle::Percent)
    S << '%';
}
Exemplo n.º 19
0
static MCSymbol *GetSymbolFromOperand(const MachineOperand &MO, AsmPrinter &AP){
  const TargetMachine &TM = AP.TM;
  Mangler *Mang = AP.Mang;
  const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
  MCContext &Ctx = AP.OutContext;
  bool isDarwin = Triple(TM.getTargetTriple()).isOSDarwin();

  SmallString<128> Name;
  StringRef Suffix;
  if (MO.getTargetFlags() == PPCII::MO_PLT_OR_STUB) {
    if (isDarwin)
      Suffix = "$stub";
  } else if (MO.getTargetFlags() & PPCII::MO_NLP_FLAG)
    Suffix = "$non_lazy_ptr";

  if (!Suffix.empty())
    Name += DL->getPrivateGlobalPrefix();

  unsigned PrefixLen = Name.size();

  if (!MO.isGlobal()) {
    assert(MO.isSymbol() && "Isn't a symbol reference");
    Mang->getNameWithPrefix(Name, MO.getSymbolName());
  } else {
    const GlobalValue *GV = MO.getGlobal();
    TM.getNameWithPrefix(Name, GV, *Mang);
  }

  unsigned OrigLen = Name.size() - PrefixLen;

  Name += Suffix;
  MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
  StringRef OrigName = StringRef(Name).substr(PrefixLen, OrigLen);

  // If the target flags on the operand changes the name of the symbol, do that
  // before we return the symbol.
  if (MO.getTargetFlags() == PPCII::MO_PLT_OR_STUB && isDarwin) {
    MachineModuleInfoImpl::StubValueTy &StubSym =
      getMachOMMI(AP).getFnStubEntry(Sym);
    if (StubSym.getPointer())
      return Sym;
    
    if (MO.isGlobal()) {
      StubSym =
      MachineModuleInfoImpl::
      StubValueTy(AP.getSymbol(MO.getGlobal()),
                  !MO.getGlobal()->hasInternalLinkage());
    } else {
      StubSym =
      MachineModuleInfoImpl::
      StubValueTy(Ctx.GetOrCreateSymbol(OrigName), false);
    }
    return Sym;
  }

  // If the symbol reference is actually to a non_lazy_ptr, not to the symbol,
  // then add the suffix.
  if (MO.getTargetFlags() & PPCII::MO_NLP_FLAG) {
    MachineModuleInfoMachO &MachO = getMachOMMI(AP);
    
    MachineModuleInfoImpl::StubValueTy &StubSym =
      (MO.getTargetFlags() & PPCII::MO_NLP_HIDDEN_FLAG) ? 
         MachO.getHiddenGVStubEntry(Sym) : MachO.getGVStubEntry(Sym);
    
    if (!StubSym.getPointer()) {
      assert(MO.isGlobal() && "Extern symbol not handled yet");
      StubSym = MachineModuleInfoImpl::
                   StubValueTy(AP.getSymbol(MO.getGlobal()),
                               !MO.getGlobal()->hasInternalLinkage());
    }
    return Sym;
  }
  
  return Sym;
}
Exemplo n.º 20
0
void MCELFStreamer::EmitInstToData(const MCInst &Inst) {
    MCAssembler &Assembler = getAssembler();
    SmallVector<MCFixup, 4> Fixups;
    SmallString<256> Code;
    raw_svector_ostream VecOS(Code);
    Assembler.getEmitter().EncodeInstruction(Inst, VecOS, Fixups);
    VecOS.flush();

    for (unsigned i = 0, e = Fixups.size(); i != e; ++i)
        fixSymbolsInTLSFixups(Fixups[i].getValue());

    // There are several possibilities here:
    //
    // If bundling is disabled, append the encoded instruction to the current data
    // fragment (or create a new such fragment if the current fragment is not a
    // data fragment).
    //
    // If bundling is enabled:
    // - If we're not in a bundle-locked group, emit the instruction into a
    //   fragment of its own. If there are no fixups registered for the
    //   instruction, emit a MCCompactEncodedInstFragment. Otherwise, emit a
    //   MCDataFragment.
    // - If we're in a bundle-locked group, append the instruction to the current
    //   data fragment because we want all the instructions in a group to get into
    //   the same fragment. Be careful not to do that for the first instruction in
    //   the group, though.
    MCDataFragment *DF;

    if (Assembler.isBundlingEnabled()) {
        MCSectionData *SD = getCurrentSectionData();
        if (SD->isBundleLocked() && !SD->isBundleGroupBeforeFirstInst())
            // If we are bundle-locked, we re-use the current fragment.
            // The bundle-locking directive ensures this is a new data fragment.
            DF = cast<MCDataFragment>(getCurrentFragment());
        else if (!SD->isBundleLocked() && Fixups.size() == 0) {
            // Optimize memory usage by emitting the instruction to a
            // MCCompactEncodedInstFragment when not in a bundle-locked group and
            // there are no fixups registered.
            MCCompactEncodedInstFragment *CEIF = new MCCompactEncodedInstFragment();
            insert(CEIF);
            CEIF->getContents().append(Code.begin(), Code.end());
            return;
        } else {
            DF = new MCDataFragment();
            insert(DF);
            if (SD->getBundleLockState() == MCSectionData::BundleLockedAlignToEnd) {
                // If this is a new fragment created for a bundle-locked group, and the
                // group was marked as "align_to_end", set a flag in the fragment.
                DF->setAlignToBundleEnd(true);
            }
        }

        // We're now emitting an instruction in a bundle group, so this flag has
        // to be turned off.
        SD->setBundleGroupBeforeFirstInst(false);
    } else {
        DF = getOrCreateDataFragment();
    }

    // Add the fixups and data.
    for (unsigned i = 0, e = Fixups.size(); i != e; ++i) {
        Fixups[i].setOffset(Fixups[i].getOffset() + DF->getContents().size());
        DF->getFixups().push_back(Fixups[i]);
    }
    DF->setHasInstructions(true);
    DF->getContents().append(Code.begin(), Code.end());
}
Exemplo n.º 21
0
void DereferenceChecker::reportBug(ProgramStateRef State, const Stmt *S,
                                   CheckerContext &C, bool IsBind) const {
  // Generate an error node.
  ExplodedNode *N = C.generateSink(State);
  if (!N)
    return;

  // We know that 'location' cannot be non-null.  This is what
  // we call an "explicit" null dereference.
  if (!BT_null)
    BT_null.reset(new BuiltinBug("Dereference of null pointer"));

  SmallString<100> buf;
  SmallVector<SourceRange, 2> Ranges;

  // Walk through lvalue casts to get the original expression
  // that syntactically caused the load.
  if (const Expr *expr = dyn_cast<Expr>(S))
    S = expr->IgnoreParenLValueCasts();

  const MemRegion *sourceR = 0;

  if (IsBind) {
    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
      if (BO->isAssignmentOp())
        S = BO->getRHS();
    } else if (const DeclStmt *DS = dyn_cast<DeclStmt>(S)) {
      assert(DS->isSingleDecl() && "We process decls one by one");
      if (const VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl()))
        if (const Expr *Init = VD->getAnyInitializer())
          S = Init;
    }
  }

  switch (S->getStmtClass()) {
  case Stmt::ArraySubscriptExprClass: {
    llvm::raw_svector_ostream os(buf);
    os << "Array access";
    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(S);
    sourceR = AddDerefSource(os, Ranges, AE->getBase()->IgnoreParenCasts(),
                             State.getPtr(), N->getLocationContext());
    os << " results in a null pointer dereference";
    break;
  }
  case Stmt::UnaryOperatorClass: {
    llvm::raw_svector_ostream os(buf);
    os << "Dereference of null pointer";
    const UnaryOperator *U = cast<UnaryOperator>(S);
    sourceR = AddDerefSource(os, Ranges, U->getSubExpr()->IgnoreParens(),
                             State.getPtr(), N->getLocationContext(), true);
    break;
  }
  case Stmt::MemberExprClass: {
    const MemberExpr *M = cast<MemberExpr>(S);
    if (M->isArrow()) {
      llvm::raw_svector_ostream os(buf);
      os << "Access to field '" << M->getMemberNameInfo()
         << "' results in a dereference of a null pointer";
      sourceR = AddDerefSource(os, Ranges, M->getBase()->IgnoreParenCasts(),
                               State.getPtr(), N->getLocationContext(), true);
    }
    break;
  }
  case Stmt::ObjCIvarRefExprClass: {
    const ObjCIvarRefExpr *IV = cast<ObjCIvarRefExpr>(S);
    if (const DeclRefExpr *DR =
        dyn_cast<DeclRefExpr>(IV->getBase()->IgnoreParenCasts())) {
      if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
        llvm::raw_svector_ostream os(buf);
        os << "Instance variable access (via '" << VD->getName()
           << "') results in a null pointer dereference";
      }
    }
    Ranges.push_back(IV->getSourceRange());
    break;
  }
  default:
    break;
  }

  BugReport *report =
    new BugReport(*BT_null,
                  buf.empty() ? BT_null->getDescription() : buf.str(),
                  N);

  bugreporter::trackNullOrUndefValue(N, bugreporter::GetDerefExpr(N), *report);

  for (SmallVectorImpl<SourceRange>::iterator
       I = Ranges.begin(), E = Ranges.end(); I!=E; ++I)
    report->addRange(*I);

  if (sourceR) {
    report->markInteresting(sourceR);
    report->markInteresting(State->getRawSVal(loc::MemRegionVal(sourceR)));
  }

  C.EmitReport(report);
}
void GlobalModuleIndexBuilder::writeIndex(llvm::BitstreamWriter &Stream) {
    using namespace llvm;

    // Emit the file header.
    Stream.Emit((unsigned)'B', 8);
    Stream.Emit((unsigned)'C', 8);
    Stream.Emit((unsigned)'G', 8);
    Stream.Emit((unsigned)'I', 8);

    // Write the block-info block, which describes the records in this bitcode
    // file.
    emitBlockInfoBlock(Stream);

    Stream.EnterSubblock(GLOBAL_INDEX_BLOCK_ID, 3);

    // Write the metadata.
    SmallVector<uint64_t, 2> Record;
    Record.push_back(CurrentVersion);
    Stream.EmitRecord(INDEX_METADATA, Record);

    // Write the set of known module files.
    for (ModuleFilesMap::iterator M = ModuleFiles.begin(),
            MEnd = ModuleFiles.end();
            M != MEnd; ++M) {
        Record.clear();
        Record.push_back(M->second.ID);
        Record.push_back(M->first->getSize());
        Record.push_back(M->first->getModificationTime());

        // File name
        StringRef Name(M->first->getName());
        Record.push_back(Name.size());
        Record.append(Name.begin(), Name.end());

        // Dependencies
        Record.push_back(M->second.Dependencies.size());
        Record.append(M->second.Dependencies.begin(), M->second.Dependencies.end());
        Stream.EmitRecord(MODULE, Record);
    }

    // Write the identifier -> module file mapping.
    {
        OnDiskChainedHashTableGenerator<IdentifierIndexWriterTrait> Generator;
        IdentifierIndexWriterTrait Trait;

        // Populate the hash table.
        for (InterestingIdentifierMap::iterator I = InterestingIdentifiers.begin(),
                IEnd = InterestingIdentifiers.end();
                I != IEnd; ++I) {
            Generator.insert(I->first(), I->second, Trait);
        }

        // Create the on-disk hash table in a buffer.
        SmallString<4096> IdentifierTable;
        uint32_t BucketOffset;
        {
            llvm::raw_svector_ostream Out(IdentifierTable);
            // Make sure that no bucket is at offset 0
            clang::io::Emit32(Out, 0);
            BucketOffset = Generator.Emit(Out, Trait);
        }

        // Create a blob abbreviation
        BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
        Abbrev->Add(BitCodeAbbrevOp(IDENTIFIER_INDEX));
        Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
        Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
        unsigned IDTableAbbrev = Stream.EmitAbbrev(Abbrev);

        // Write the identifier table
        Record.clear();
        Record.push_back(IDENTIFIER_INDEX);
        Record.push_back(BucketOffset);
        Stream.EmitRecordWithBlob(IDTableAbbrev, Record, IdentifierTable.str());
    }

    Stream.ExitBlock();
}
Exemplo n.º 23
0
/// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
/// operand to an MCSymbol.
MCSymbol *X86MCInstLower::
GetSymbolFromOperand(const MachineOperand &MO) const {
  assert((MO.isGlobal() || MO.isSymbol()) && "Isn't a symbol reference");

  SmallString<128> Name;
  
  if (!MO.isGlobal()) {
    assert(MO.isSymbol());
    Name += AsmPrinter.MAI->getGlobalPrefix();
    Name += MO.getSymbolName();
  } else {    
    const GlobalValue *GV = MO.getGlobal();
    bool isImplicitlyPrivate = false;
    if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB ||
        MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
        MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE ||
        MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE)
      isImplicitlyPrivate = true;
    
    Mang->getNameWithPrefix(Name, GV, isImplicitlyPrivate);
  }

  // If the target flags on the operand changes the name of the symbol, do that
  // before we return the symbol.
  switch (MO.getTargetFlags()) {
  default: break;
  case X86II::MO_DLLIMPORT: {
    // Handle dllimport linkage.
    const char *Prefix = "__imp_";
    Name.insert(Name.begin(), Prefix, Prefix+strlen(Prefix));
    break;
  }
  case X86II::MO_DARWIN_NONLAZY:
  case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
    Name += "$non_lazy_ptr";
    MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());

    MachineModuleInfoImpl::StubValueTy &StubSym =
      getMachOMMI().getGVStubEntry(Sym);
    if (StubSym.getPointer() == 0) {
      assert(MO.isGlobal() && "Extern symbol not handled yet");
      StubSym =
        MachineModuleInfoImpl::
        StubValueTy(AsmPrinter.Mang->getSymbol(MO.getGlobal()),
                    !MO.getGlobal()->hasInternalLinkage());
    }
    return Sym;
  }
  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: {
    Name += "$non_lazy_ptr";
    MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
    MachineModuleInfoImpl::StubValueTy &StubSym =
      getMachOMMI().getHiddenGVStubEntry(Sym);
    if (StubSym.getPointer() == 0) {
      assert(MO.isGlobal() && "Extern symbol not handled yet");
      StubSym =
        MachineModuleInfoImpl::
        StubValueTy(AsmPrinter.Mang->getSymbol(MO.getGlobal()),
                    !MO.getGlobal()->hasInternalLinkage());
    }
    return Sym;
  }
  case X86II::MO_DARWIN_STUB: {
    Name += "$stub";
    MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
    MachineModuleInfoImpl::StubValueTy &StubSym =
      getMachOMMI().getFnStubEntry(Sym);
    if (StubSym.getPointer())
      return Sym;
    
    if (MO.isGlobal()) {
      StubSym =
        MachineModuleInfoImpl::
        StubValueTy(AsmPrinter.Mang->getSymbol(MO.getGlobal()),
                    !MO.getGlobal()->hasInternalLinkage());
    } else {
      Name.erase(Name.end()-5, Name.end());
      StubSym =
        MachineModuleInfoImpl::
        StubValueTy(Ctx.GetOrCreateSymbol(Name.str()), false);
    }
    return Sym;
  }
  }

  return Ctx.GetOrCreateSymbol(Name.str());
}
bool FrontendAction::BeginSourceFile(CompilerInstance &CI,
                                     const FrontendInputFile &Input) {
  assert(!Instance && "Already processing a source file!");
  assert(!Input.isEmpty() && "Unexpected empty filename!");
  setCurrentInput(Input);
  setCompilerInstance(&CI);

  StringRef InputFile = Input.getFile();
  bool HasBegunSourceFile = false;
  if (!BeginInvocation(CI))
    goto failure;

  // AST files follow a very different path, since they share objects via the
  // AST unit.
  if (Input.getKind() == IK_AST) {
    assert(!usesPreprocessorOnly() &&
           "Attempt to pass AST file to preprocessor only action!");
    assert(hasASTFileSupport() &&
           "This action does not have AST file support!");

    IntrusiveRefCntPtr<DiagnosticsEngine> Diags(&CI.getDiagnostics());

    ASTUnit *AST = ASTUnit::LoadFromASTFile(InputFile, Diags,
                                            CI.getFileSystemOpts());
    if (!AST)
      goto failure;

    setCurrentInput(Input, AST);

    // Inform the diagnostic client we are processing a source file.
    CI.getDiagnosticClient().BeginSourceFile(CI.getLangOpts(), 0);
    HasBegunSourceFile = true;

    // Set the shared objects, these are reset when we finish processing the
    // file, otherwise the CompilerInstance will happily destroy them.
    CI.setFileManager(&AST->getFileManager());
    CI.setSourceManager(&AST->getSourceManager());
    CI.setPreprocessor(&AST->getPreprocessor());
    CI.setASTContext(&AST->getASTContext());

    // Initialize the action.
    if (!BeginSourceFileAction(CI, InputFile))
      goto failure;

    // Create the AST consumer.
    CI.setASTConsumer(CreateWrappedASTConsumer(CI, InputFile));
    if (!CI.hasASTConsumer())
      goto failure;

    return true;
  }

  // Set up the file and source managers, if needed.
  if (!CI.hasFileManager())
    CI.createFileManager();
  if (!CI.hasSourceManager())
    CI.createSourceManager(CI.getFileManager());

  // IR files bypass the rest of initialization.
  if (Input.getKind() == IK_LLVM_IR) {
    assert(hasIRSupport() &&
           "This action does not have IR file support!");

    // Inform the diagnostic client we are processing a source file.
    CI.getDiagnosticClient().BeginSourceFile(CI.getLangOpts(), 0);
    HasBegunSourceFile = true;

    // Initialize the action.
    if (!BeginSourceFileAction(CI, InputFile))
      goto failure;

    return true;
  }

  // If the implicit PCH include is actually a directory, rather than
  // a single file, search for a suitable PCH file in that directory.
  if (!CI.getPreprocessorOpts().ImplicitPCHInclude.empty()) {
    FileManager &FileMgr = CI.getFileManager();
    PreprocessorOptions &PPOpts = CI.getPreprocessorOpts();
    StringRef PCHInclude = PPOpts.ImplicitPCHInclude;
    if (const DirectoryEntry *PCHDir = FileMgr.getDirectory(PCHInclude)) {
      llvm::error_code EC;
      SmallString<128> DirNative;
      llvm::sys::path::native(PCHDir->getName(), DirNative);
      bool Found = false;
      for (llvm::sys::fs::directory_iterator Dir(DirNative.str(), EC), DirEnd;
           Dir != DirEnd && !EC; Dir.increment(EC)) {
        // Check whether this is an acceptable AST file.
        if (ASTReader::isAcceptableASTFile(Dir->path(), FileMgr,
                                           CI.getLangOpts(),
                                           CI.getTargetOpts(),
                                           CI.getPreprocessorOpts())) {
          PPOpts.ImplicitPCHInclude = Dir->path();
          Found = true;
          break;
        }
      }

      if (!Found) {
        CI.getDiagnostics().Report(diag::err_fe_no_pch_in_dir) << PCHInclude;
        return true;
      }
    }
  }

  // Set up the preprocessor.
  CI.createPreprocessor();

  // Inform the diagnostic client we are processing a source file.
  CI.getDiagnosticClient().BeginSourceFile(CI.getLangOpts(),
                                           &CI.getPreprocessor());
  HasBegunSourceFile = true;

  // Initialize the action.
  if (!BeginSourceFileAction(CI, InputFile))
    goto failure;

  // Create the AST context and consumer unless this is a preprocessor only
  // action.
  if (!usesPreprocessorOnly()) {
    CI.createASTContext();

    OwningPtr<ASTConsumer> Consumer(
                                   CreateWrappedASTConsumer(CI, InputFile));
    if (!Consumer)
      goto failure;

    CI.getASTContext().setASTMutationListener(Consumer->GetASTMutationListener());
    
    if (!CI.getPreprocessorOpts().ChainedIncludes.empty()) {
      // Convert headers to PCH and chain them.
      OwningPtr<ExternalASTSource> source;
      source.reset(ChainedIncludesSource::create(CI));
      if (!source)
        goto failure;
      CI.setModuleManager(static_cast<ASTReader*>(
         &static_cast<ChainedIncludesSource*>(source.get())->getFinalReader()));
      CI.getASTContext().setExternalSource(source);

    } else if (!CI.getPreprocessorOpts().ImplicitPCHInclude.empty()) {
      // Use PCH.
      assert(hasPCHSupport() && "This action does not have PCH support!");
      ASTDeserializationListener *DeserialListener =
          Consumer->GetASTDeserializationListener();
      if (CI.getPreprocessorOpts().DumpDeserializedPCHDecls)
        DeserialListener = new DeserializedDeclsDumper(DeserialListener);
      if (!CI.getPreprocessorOpts().DeserializedPCHDeclsToErrorOn.empty())
        DeserialListener = new DeserializedDeclsChecker(CI.getASTContext(),
                         CI.getPreprocessorOpts().DeserializedPCHDeclsToErrorOn,
                                                        DeserialListener);
      CI.createPCHExternalASTSource(
                                CI.getPreprocessorOpts().ImplicitPCHInclude,
                                CI.getPreprocessorOpts().DisablePCHValidation,
                            CI.getPreprocessorOpts().AllowPCHWithCompilerErrors,
                                DeserialListener);
      if (!CI.getASTContext().getExternalSource())
        goto failure;
    }

    CI.setASTConsumer(Consumer.take());
    if (!CI.hasASTConsumer())
      goto failure;
  }

  // Initialize built-in info as long as we aren't using an external AST
  // source.
  if (!CI.hasASTContext() || !CI.getASTContext().getExternalSource()) {
    Preprocessor &PP = CI.getPreprocessor();
    PP.getBuiltinInfo().InitializeBuiltins(PP.getIdentifierTable(),
                                           PP.getLangOpts());
  }

  // If there is a layout overrides file, attach an external AST source that
  // provides the layouts from that file.
  if (!CI.getFrontendOpts().OverrideRecordLayoutsFile.empty() && 
      CI.hasASTContext() && !CI.getASTContext().getExternalSource()) {
    OwningPtr<ExternalASTSource> 
      Override(new LayoutOverrideSource(
                     CI.getFrontendOpts().OverrideRecordLayoutsFile));
    CI.getASTContext().setExternalSource(Override);
  }
  
  return true;

  // If we failed, reset state since the client will not end up calling the
  // matching EndSourceFile().
  failure:
  if (isCurrentFileAST()) {
    CI.setASTContext(0);
    CI.setPreprocessor(0);
    CI.setSourceManager(0);
    CI.setFileManager(0);
  }

  if (HasBegunSourceFile)
    CI.getDiagnosticClient().EndSourceFile();
  CI.clearOutputFiles(/*EraseFiles=*/true);
  setCurrentInput(FrontendInputFile());
  setCompilerInstance(0);
  return false;
}
Exemplo n.º 25
0
/// \brief returns a printable representation of first item from input range
///
/// This function returns a printable representation of the next item in a line
///  of source. If the next byte begins a valid and printable character, that
///  character is returned along with 'true'.
///
/// Otherwise, if the next byte begins a valid, but unprintable character, a
///  printable, escaped representation of the character is returned, along with
///  'false'. Otherwise a printable, escaped representation of the next byte
///  is returned along with 'false'.
///
/// \note The index is updated to be used with a subsequent call to
///        printableTextForNextCharacter.
///
/// \param SourceLine The line of source
/// \param i Pointer to byte index,
/// \param TabStop used to expand tabs
/// \return pair(printable text, 'true' iff original text was printable)
///
static std::pair<SmallString<16>, bool>
printableTextForNextCharacter(StringRef SourceLine, size_t *i,
                              unsigned TabStop) {
  assert(i && "i must not be null");
  assert(*i<SourceLine.size() && "must point to a valid index");
  
  if (SourceLine[*i]=='\t') {
    assert(0 < TabStop && TabStop <= DiagnosticOptions::MaxTabStop &&
           "Invalid -ftabstop value");
    unsigned col = bytesSincePreviousTabOrLineBegin(SourceLine, *i);
    unsigned NumSpaces = TabStop - col%TabStop;
    assert(0 < NumSpaces && NumSpaces <= TabStop
           && "Invalid computation of space amt");
    ++(*i);

    SmallString<16> expandedTab;
    expandedTab.assign(NumSpaces, ' ');
    return std::make_pair(expandedTab, true);
  }

  // FIXME: this data is copied from the private implementation of ConvertUTF.h
  static const char trailingBytesForUTF8[256] = {
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
    1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
    2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5
  };

  unsigned char const *begin, *end;
  begin = reinterpret_cast<unsigned char const *>(&*(SourceLine.begin() + *i));
  end = begin + SourceLine.size();
  
  if (isLegalUTF8Sequence(begin, end)) {
    UTF32 c;
    UTF32 *cptr = &c;
    unsigned char const *original_begin = begin;
    char trailingBytes = trailingBytesForUTF8[(unsigned char)SourceLine[*i]];
    unsigned char const *cp_end = begin+trailingBytes+1;

    ConversionResult res = ConvertUTF8toUTF32(&begin, cp_end, &cptr, cptr+1,
                                              strictConversion);
    (void)res;
    assert(conversionOK==res);
    assert(0 < begin-original_begin
           && "we must be further along in the string now");
    *i += begin-original_begin;

    if (!llvm::sys::locale::isPrint(c)) {
      // If next character is valid UTF-8, but not printable
      SmallString<16> expandedCP("<U+>");
      while (c) {
        expandedCP.insert(expandedCP.begin()+3, llvm::hexdigit(c%16));
        c/=16;
      }
      while (expandedCP.size() < 8)
        expandedCP.insert(expandedCP.begin()+3, llvm::hexdigit(0));
      return std::make_pair(expandedCP, false);
    }

    // If next character is valid UTF-8, and printable
    return std::make_pair(SmallString<16>(original_begin, cp_end), true);

  }

  // If next byte is not valid UTF-8 (and therefore not printable)
  SmallString<16> expandedByte("<XX>");
  unsigned char byte = SourceLine[*i];
  expandedByte[1] = llvm::hexdigit(byte / 16);
  expandedByte[2] = llvm::hexdigit(byte % 16);
  ++(*i);
  return std::make_pair(expandedByte, false);
}
Exemplo n.º 26
0
/// DoFrameworkLookup - Do a lookup of the specified file in the current
/// DirectoryLookup, which is a framework directory.
const FileEntry *DirectoryLookup::DoFrameworkLookup(
    StringRef Filename,
    HeaderSearch &HS,
    SmallVectorImpl<char> *SearchPath,
    SmallVectorImpl<char> *RelativePath,
    ModuleMap::KnownHeader *SuggestedModule,
    bool &InUserSpecifiedSystemFramework) const
{
  FileManager &FileMgr = HS.getFileMgr();

  // Framework names must have a '/' in the filename.
  size_t SlashPos = Filename.find('/');
  if (SlashPos == StringRef::npos) return nullptr;

  // Find out if this is the home for the specified framework, by checking
  // HeaderSearch.  Possible answers are yes/no and unknown.
  HeaderSearch::FrameworkCacheEntry &CacheEntry =
    HS.LookupFrameworkCache(Filename.substr(0, SlashPos));

  // If it is known and in some other directory, fail.
  if (CacheEntry.Directory && CacheEntry.Directory != getFrameworkDir())
    return nullptr;

  // Otherwise, construct the path to this framework dir.

  // FrameworkName = "/System/Library/Frameworks/"
  SmallString<1024> FrameworkName;
  FrameworkName += getFrameworkDir()->getName();
  if (FrameworkName.empty() || FrameworkName.back() != '/')
    FrameworkName.push_back('/');

  // FrameworkName = "/System/Library/Frameworks/Cocoa"
  StringRef ModuleName(Filename.begin(), SlashPos);
  FrameworkName += ModuleName;

  // FrameworkName = "/System/Library/Frameworks/Cocoa.framework/"
  FrameworkName += ".framework/";

  // If the cache entry was unresolved, populate it now.
  if (!CacheEntry.Directory) {
    HS.IncrementFrameworkLookupCount();

    // If the framework dir doesn't exist, we fail.
    const DirectoryEntry *Dir = FileMgr.getDirectory(FrameworkName);
    if (!Dir) return nullptr;

    // Otherwise, if it does, remember that this is the right direntry for this
    // framework.
    CacheEntry.Directory = getFrameworkDir();

    // If this is a user search directory, check if the framework has been
    // user-specified as a system framework.
    if (getDirCharacteristic() == SrcMgr::C_User) {
      SmallString<1024> SystemFrameworkMarker(FrameworkName);
      SystemFrameworkMarker += ".system_framework";
      if (llvm::sys::fs::exists(SystemFrameworkMarker)) {
        CacheEntry.IsUserSpecifiedSystemFramework = true;
      }
    }
  }

  // Set the 'user-specified system framework' flag.
  InUserSpecifiedSystemFramework = CacheEntry.IsUserSpecifiedSystemFramework;

  if (RelativePath) {
    RelativePath->clear();
    RelativePath->append(Filename.begin()+SlashPos+1, Filename.end());
  }
  
  // Check "/System/Library/Frameworks/Cocoa.framework/Headers/file.h"
  unsigned OrigSize = FrameworkName.size();

  FrameworkName += "Headers/";

  if (SearchPath) {
    SearchPath->clear();
    // Without trailing '/'.
    SearchPath->append(FrameworkName.begin(), FrameworkName.end()-1);
  }

  FrameworkName.append(Filename.begin()+SlashPos+1, Filename.end());
  const FileEntry *FE = FileMgr.getFile(FrameworkName,
                                        /*openFile=*/!SuggestedModule);
  if (!FE) {
    // Check "/System/Library/Frameworks/Cocoa.framework/PrivateHeaders/file.h"
    const char *Private = "Private";
    FrameworkName.insert(FrameworkName.begin()+OrigSize, Private,
                         Private+strlen(Private));
    if (SearchPath)
      SearchPath->insert(SearchPath->begin()+OrigSize, Private,
                         Private+strlen(Private));

    FE = FileMgr.getFile(FrameworkName, /*openFile=*/!SuggestedModule);
  }

  // If we found the header and are allowed to suggest a module, do so now.
  if (FE && SuggestedModule) {
    // Find the framework in which this header occurs.
    StringRef FrameworkPath = FE->getDir()->getName();
    bool FoundFramework = false;
    do {
      // Determine whether this directory exists.
      const DirectoryEntry *Dir = FileMgr.getDirectory(FrameworkPath);
      if (!Dir)
        break;

      // If this is a framework directory, then we're a subframework of this
      // framework.
      if (llvm::sys::path::extension(FrameworkPath) == ".framework") {
        FoundFramework = true;
        break;
      }

      // Get the parent directory name.
      FrameworkPath = llvm::sys::path::parent_path(FrameworkPath);
      if (FrameworkPath.empty())
        break;
    } while (true);

    if (FoundFramework) {
      // Find the top-level framework based on this framework.
      SmallVector<std::string, 4> SubmodulePath;
      const DirectoryEntry *TopFrameworkDir
        = ::getTopFrameworkDir(FileMgr, FrameworkPath, SubmodulePath);

      // Determine the name of the top-level framework.
      StringRef ModuleName = llvm::sys::path::stem(TopFrameworkDir->getName());

      // Load this framework module. If that succeeds, find the suggested module
      // for this header, if any.
      bool IsSystem = getDirCharacteristic() != SrcMgr::C_User;
      if (HS.loadFrameworkModule(ModuleName, TopFrameworkDir, IsSystem)) {
        *SuggestedModule = HS.findModuleForHeader(FE);
      }
    } else {
      *SuggestedModule = HS.findModuleForHeader(FE);
    }
  }
  return FE;
}
Exemplo n.º 27
0
// Get the location to use for Visual Studio binaries.  The location priority
// is: %VCINSTALLDIR% > %PATH% > newest copy of Visual Studio installed on
// system (as reported by the registry).
bool MSVCToolChain::getVisualStudioBinariesFolder(const char *clangProgramPath,
                                                  std::string &path) const {
  path.clear();

  SmallString<128> BinDir;

  // First check the environment variables that vsvars32.bat sets.
  llvm::Optional<std::string> VcInstallDir =
      llvm::sys::Process::GetEnv("VCINSTALLDIR");
  if (VcInstallDir.hasValue()) {
    BinDir = VcInstallDir.getValue();
    llvm::sys::path::append(BinDir, "bin");
  } else {
    // Next walk the PATH, trying to find a cl.exe in the path.  If we find one,
    // use that.  However, make sure it's not clang's cl.exe.
    llvm::Optional<std::string> OptPath = llvm::sys::Process::GetEnv("PATH");
    if (OptPath.hasValue()) {
      const char EnvPathSeparatorStr[] = {llvm::sys::EnvPathSeparator, '\0'};
      SmallVector<StringRef, 8> PathSegments;
      llvm::SplitString(OptPath.getValue(), PathSegments, EnvPathSeparatorStr);

      for (StringRef PathSegment : PathSegments) {
        if (PathSegment.empty())
          continue;

        SmallString<128> FilePath(PathSegment);
        llvm::sys::path::append(FilePath, "cl.exe");
        if (llvm::sys::fs::can_execute(FilePath.c_str()) &&
            !llvm::sys::fs::equivalent(FilePath.c_str(), clangProgramPath)) {
          // If we found it on the PATH, use it exactly as is with no
          // modifications.
          path = PathSegment;
          return true;
        }
      }
    }

    std::string installDir;
    // With no VCINSTALLDIR and nothing on the PATH, if we can't find it in the
    // registry then we have no choice but to fail.
    if (!getVisualStudioInstallDir(installDir))
      return false;

    // Regardless of what binary we're ultimately trying to find, we make sure
    // that this is a Visual Studio directory by checking for cl.exe.  We use
    // cl.exe instead of other binaries like link.exe because programs such as
    // GnuWin32 also have a utility called link.exe, so cl.exe is the least
    // ambiguous.
    BinDir = installDir;
    llvm::sys::path::append(BinDir, "VC", "bin");
    SmallString<128> ClPath(BinDir);
    llvm::sys::path::append(ClPath, "cl.exe");

    if (!llvm::sys::fs::can_execute(ClPath.c_str()))
      return false;
  }

  if (BinDir.empty())
    return false;

  switch (getArch()) {
  case llvm::Triple::x86:
    break;
  case llvm::Triple::x86_64:
    llvm::sys::path::append(BinDir, "amd64");
    break;
  case llvm::Triple::arm:
    llvm::sys::path::append(BinDir, "arm");
    break;
  default:
    // Whatever this is, Visual Studio doesn't have a toolchain for it.
    return false;
  }
  path = BinDir.str();
  return true;
}
Exemplo n.º 28
0
/// LookupFile - Given a "foo" or \<foo> reference, look up the indicated file,
/// return null on failure.  isAngled indicates whether the file reference is
/// for system \#include's or not (i.e. using <> instead of ""). Includers, if
/// non-empty, indicates where the \#including file(s) are, in case a relative
/// search is needed. Microsoft mode will pass all \#including files.
const FileEntry *HeaderSearch::LookupFile(
    StringRef Filename, SourceLocation IncludeLoc, bool isAngled,
    const DirectoryLookup *FromDir, const DirectoryLookup *&CurDir,
    ArrayRef<std::pair<const FileEntry *, const DirectoryEntry *>> Includers,
    SmallVectorImpl<char> *SearchPath, SmallVectorImpl<char> *RelativePath,
    ModuleMap::KnownHeader *SuggestedModule, bool SkipCache) {
  if (SuggestedModule)
    *SuggestedModule = ModuleMap::KnownHeader();
    
  // If 'Filename' is absolute, check to see if it exists and no searching.
  if (llvm::sys::path::is_absolute(Filename)) {
    CurDir = nullptr;

    // If this was an #include_next "/absolute/file", fail.
    if (FromDir) return nullptr;

    if (SearchPath)
      SearchPath->clear();
    if (RelativePath) {
      RelativePath->clear();
      RelativePath->append(Filename.begin(), Filename.end());
    }
    // Otherwise, just return the file.
    return FileMgr.getFile(Filename, /*openFile=*/true);
  }

  // This is the header that MSVC's header search would have found.
  const FileEntry *MSFE = nullptr;
  ModuleMap::KnownHeader MSSuggestedModule;

  // Unless disabled, check to see if the file is in the #includer's
  // directory.  This cannot be based on CurDir, because each includer could be
  // a #include of a subdirectory (#include "foo/bar.h") and a subsequent
  // include of "baz.h" should resolve to "whatever/foo/baz.h".
  // This search is not done for <> headers.
  if (!Includers.empty() && !isAngled && !NoCurDirSearch) {
    SmallString<1024> TmpDir;
    bool First = true;
    for (const auto &IncluderAndDir : Includers) {
      const FileEntry *Includer = IncluderAndDir.first;

      // Concatenate the requested file onto the directory.
      // FIXME: Portability.  Filename concatenation should be in sys::Path.
      TmpDir = IncluderAndDir.second->getName();
      TmpDir.push_back('/');
      TmpDir.append(Filename.begin(), Filename.end());

      // FIXME: We don't cache the result of getFileInfo across the call to
      // getFileAndSuggestModule, because it's a reference to an element of
      // a container that could be reallocated across this call.
      //
      // FIXME: If we have no includer, that means we're processing a #include
      // from a module build. We should treat this as a system header if we're
      // building a [system] module.
      bool IncluderIsSystemHeader =
          Includer && getFileInfo(Includer).DirInfo != SrcMgr::C_User;
      if (const FileEntry *FE = getFileAndSuggestModule(
              *this, TmpDir, IncluderAndDir.second,
              IncluderIsSystemHeader, SuggestedModule)) {
        if (!Includer) {
          assert(First && "only first includer can have no file");
          return FE;
        }

        // Leave CurDir unset.
        // This file is a system header or C++ unfriendly if the old file is.
        //
        // Note that we only use one of FromHFI/ToHFI at once, due to potential
        // reallocation of the underlying vector potentially making the first
        // reference binding dangling.
        HeaderFileInfo &FromHFI = getFileInfo(Includer);
        unsigned DirInfo = FromHFI.DirInfo;
        bool IndexHeaderMapHeader = FromHFI.IndexHeaderMapHeader;
        StringRef Framework = FromHFI.Framework;

        HeaderFileInfo &ToHFI = getFileInfo(FE);
        ToHFI.DirInfo = DirInfo;
        ToHFI.IndexHeaderMapHeader = IndexHeaderMapHeader;
        ToHFI.Framework = Framework;

        if (SearchPath) {
          StringRef SearchPathRef(IncluderAndDir.second->getName());
          SearchPath->clear();
          SearchPath->append(SearchPathRef.begin(), SearchPathRef.end());
        }
        if (RelativePath) {
          RelativePath->clear();
          RelativePath->append(Filename.begin(), Filename.end());
        }
        if (First)
          return FE;

        // Otherwise, we found the path via MSVC header search rules.  If
        // -Wmsvc-include is enabled, we have to keep searching to see if we
        // would've found this header in -I or -isystem directories.
        if (Diags.isIgnored(diag::ext_pp_include_search_ms, IncludeLoc)) {
          return FE;
        } else {
          MSFE = FE;
          if (SuggestedModule) {
            MSSuggestedModule = *SuggestedModule;
            *SuggestedModule = ModuleMap::KnownHeader();
          }
          break;
        }
      }
      First = false;
    }
  }

  CurDir = nullptr;

  // If this is a system #include, ignore the user #include locs.
  unsigned i = isAngled ? AngledDirIdx : 0;

  // If this is a #include_next request, start searching after the directory the
  // file was found in.
  if (FromDir)
    i = FromDir-&SearchDirs[0];

  // Cache all of the lookups performed by this method.  Many headers are
  // multiply included, and the "pragma once" optimization prevents them from
  // being relex/pp'd, but they would still have to search through a
  // (potentially huge) series of SearchDirs to find it.
  LookupFileCacheInfo &CacheLookup = LookupFileCache[Filename];

  // If the entry has been previously looked up, the first value will be
  // non-zero.  If the value is equal to i (the start point of our search), then
  // this is a matching hit.
  if (!SkipCache && CacheLookup.StartIdx == i+1) {
    // Skip querying potentially lots of directories for this lookup.
    i = CacheLookup.HitIdx;
    if (CacheLookup.MappedName)
      Filename = CacheLookup.MappedName;
  } else {
    // Otherwise, this is the first query, or the previous query didn't match
    // our search start.  We will fill in our found location below, so prime the
    // start point value.
    CacheLookup.reset(/*StartIdx=*/i+1);
  }

  SmallString<64> MappedName;

  // Check each directory in sequence to see if it contains this file.
  for (; i != SearchDirs.size(); ++i) {
    bool InUserSpecifiedSystemFramework = false;
    bool HasBeenMapped = false;
    const FileEntry *FE =
      SearchDirs[i].LookupFile(Filename, *this, SearchPath, RelativePath,
                               SuggestedModule, InUserSpecifiedSystemFramework,
                               HasBeenMapped, MappedName);
    if (HasBeenMapped) {
      CacheLookup.MappedName =
          copyString(Filename, LookupFileCache.getAllocator());
    }
    if (!FE) continue;

    CurDir = &SearchDirs[i];

    // This file is a system header or C++ unfriendly if the dir is.
    HeaderFileInfo &HFI = getFileInfo(FE);
    HFI.DirInfo = CurDir->getDirCharacteristic();

    // If the directory characteristic is User but this framework was
    // user-specified to be treated as a system framework, promote the
    // characteristic.
    if (HFI.DirInfo == SrcMgr::C_User && InUserSpecifiedSystemFramework)
      HFI.DirInfo = SrcMgr::C_System;

    // If the filename matches a known system header prefix, override
    // whether the file is a system header.
    for (unsigned j = SystemHeaderPrefixes.size(); j; --j) {
      if (Filename.startswith(SystemHeaderPrefixes[j-1].first)) {
        HFI.DirInfo = SystemHeaderPrefixes[j-1].second ? SrcMgr::C_System
                                                       : SrcMgr::C_User;
        break;
      }
    }

    // If this file is found in a header map and uses the framework style of
    // includes, then this header is part of a framework we're building.
    if (CurDir->isIndexHeaderMap()) {
      size_t SlashPos = Filename.find('/');
      if (SlashPos != StringRef::npos) {
        HFI.IndexHeaderMapHeader = 1;
        HFI.Framework = getUniqueFrameworkName(StringRef(Filename.begin(), 
                                                         SlashPos));
      }
    }

    if (checkMSVCHeaderSearch(Diags, MSFE, FE, IncludeLoc)) {
      if (SuggestedModule)
        *SuggestedModule = MSSuggestedModule;
      return MSFE;
    }

    // Remember this location for the next lookup we do.
    CacheLookup.HitIdx = i;
    return FE;
  }

  // If we are including a file with a quoted include "foo.h" from inside
  // a header in a framework that is currently being built, and we couldn't
  // resolve "foo.h" any other way, change the include to <Foo/foo.h>, where
  // "Foo" is the name of the framework in which the including header was found.
  if (!Includers.empty() && Includers.front().first && !isAngled &&
      Filename.find('/') == StringRef::npos) {
    HeaderFileInfo &IncludingHFI = getFileInfo(Includers.front().first);
    if (IncludingHFI.IndexHeaderMapHeader) {
      SmallString<128> ScratchFilename;
      ScratchFilename += IncludingHFI.Framework;
      ScratchFilename += '/';
      ScratchFilename += Filename;

      const FileEntry *FE = LookupFile(
          ScratchFilename, IncludeLoc, /*isAngled=*/true, FromDir, CurDir,
          Includers.front(), SearchPath, RelativePath, SuggestedModule);

      if (checkMSVCHeaderSearch(Diags, MSFE, FE, IncludeLoc)) {
        if (SuggestedModule)
          *SuggestedModule = MSSuggestedModule;
        return MSFE;
      }

      LookupFileCacheInfo &CacheLookup = LookupFileCache[Filename];
      CacheLookup.HitIdx = LookupFileCache[ScratchFilename].HitIdx;
      // FIXME: SuggestedModule.
      return FE;
    }
  }

  if (checkMSVCHeaderSearch(Diags, MSFE, nullptr, IncludeLoc)) {
    if (SuggestedModule)
      *SuggestedModule = MSSuggestedModule;
    return MSFE;
  }

  // Otherwise, didn't find it. Remember we didn't find this.
  CacheLookup.HitIdx = SearchDirs.size();
  return nullptr;
}
Exemplo n.º 29
0
/// printSymbolOperand - Print a raw symbol reference operand.  This handles
/// jump tables, constant pools, global address and external symbols, all of
/// which print to a label with various suffixes for relocation types etc.
void X86AsmPrinter::printSymbolOperand(const MachineOperand &MO,
                                       raw_ostream &O) {
  switch (MO.getType()) {
  default: llvm_unreachable("unknown symbol type!");
  case MachineOperand::MO_JumpTableIndex:
    O << *GetJTISymbol(MO.getIndex());
    break;
  case MachineOperand::MO_ConstantPoolIndex:
    O << *GetCPISymbol(MO.getIndex());
    printOffset(MO.getOffset(), O);
    break;
  case MachineOperand::MO_GlobalAddress: {
    const GlobalValue *GV = MO.getGlobal();

    MCSymbol *GVSym;
    if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB)
      GVSym = GetSymbolWithGlobalValueBase(GV, "$stub");
    else if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
             MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE ||
             MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE)
      GVSym = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
    else
      GVSym = Mang->getSymbol(GV);

    // Handle dllimport linkage.
    if (MO.getTargetFlags() == X86II::MO_DLLIMPORT)
      GVSym = OutContext.GetOrCreateSymbol(Twine("__imp_") + GVSym->getName());

    if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
        MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE) {
      MCSymbol *Sym = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
      MachineModuleInfoImpl::StubValueTy &StubSym =
        MMI->getObjFileInfo<MachineModuleInfoMachO>().getGVStubEntry(Sym);
      if (StubSym.getPointer() == 0)
        StubSym = MachineModuleInfoImpl::
          StubValueTy(Mang->getSymbol(GV), !GV->hasInternalLinkage());
    } else if (MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE){
      MCSymbol *Sym = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
      MachineModuleInfoImpl::StubValueTy &StubSym =
        MMI->getObjFileInfo<MachineModuleInfoMachO>().getHiddenGVStubEntry(Sym);
      if (StubSym.getPointer() == 0)
        StubSym = MachineModuleInfoImpl::
          StubValueTy(Mang->getSymbol(GV), !GV->hasInternalLinkage());
    } else if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB) {
      MCSymbol *Sym = GetSymbolWithGlobalValueBase(GV, "$stub");
      MachineModuleInfoImpl::StubValueTy &StubSym =
        MMI->getObjFileInfo<MachineModuleInfoMachO>().getFnStubEntry(Sym);
      if (StubSym.getPointer() == 0)
        StubSym = MachineModuleInfoImpl::
          StubValueTy(Mang->getSymbol(GV), !GV->hasInternalLinkage());
    }

    // If the name begins with a dollar-sign, enclose it in parens.  We do this
    // to avoid having it look like an integer immediate to the assembler.
    if (GVSym->getName()[0] != '$')
      O << *GVSym;
    else
      O << '(' << *GVSym << ')';
    printOffset(MO.getOffset(), O);
    break;
  }
  case MachineOperand::MO_ExternalSymbol: {
    const MCSymbol *SymToPrint;
    if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB) {
      SmallString<128> TempNameStr;
      TempNameStr += StringRef(MO.getSymbolName());
      TempNameStr += StringRef("$stub");

      MCSymbol *Sym = GetExternalSymbolSymbol(TempNameStr.str());
      MachineModuleInfoImpl::StubValueTy &StubSym =
        MMI->getObjFileInfo<MachineModuleInfoMachO>().getFnStubEntry(Sym);
      if (StubSym.getPointer() == 0) {
        TempNameStr.erase(TempNameStr.end()-5, TempNameStr.end());
        StubSym = MachineModuleInfoImpl::
          StubValueTy(OutContext.GetOrCreateSymbol(TempNameStr.str()),
                      true);
      }
      SymToPrint = StubSym.getPointer();
    } else {
      SymToPrint = GetExternalSymbolSymbol(MO.getSymbolName());
    }

    // If the name begins with a dollar-sign, enclose it in parens.  We do this
    // to avoid having it look like an integer immediate to the assembler.
    if (SymToPrint->getName()[0] != '$')
      O << *SymToPrint;
    else
      O << '(' << *SymToPrint << '(';
    break;
  }
  }

  switch (MO.getTargetFlags()) {
  default:
    llvm_unreachable("Unknown target flag on GV operand");
  case X86II::MO_NO_FLAG:    // No flag.
    break;
  case X86II::MO_DARWIN_NONLAZY:
  case X86II::MO_DLLIMPORT:
  case X86II::MO_DARWIN_STUB:
    // These affect the name of the symbol, not any suffix.
    break;
  case X86II::MO_GOT_ABSOLUTE_ADDRESS:
    O << " + [.-" << *MF->getPICBaseSymbol() << ']';
    break;
  case X86II::MO_PIC_BASE_OFFSET:
  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
    O << '-' << *MF->getPICBaseSymbol();
    break;
  case X86II::MO_TLSGD:     O << "@TLSGD";     break;
  case X86II::MO_TLSLD:     O << "@TLSLD";     break;
  case X86II::MO_TLSLDM:    O << "@TLSLDM";    break;
  case X86II::MO_GOTTPOFF:  O << "@GOTTPOFF";  break;
  case X86II::MO_INDNTPOFF: O << "@INDNTPOFF"; break;
  case X86II::MO_TPOFF:     O << "@TPOFF";     break;
  case X86II::MO_DTPOFF:    O << "@DTPOFF";    break;
  case X86II::MO_NTPOFF:    O << "@NTPOFF";    break;
  case X86II::MO_GOTNTPOFF: O << "@GOTNTPOFF"; break;
  case X86II::MO_GOTPCREL:  O << "@GOTPCREL";  break;
  case X86II::MO_GOT:       O << "@GOT";       break;
  case X86II::MO_GOTOFF:    O << "@GOTOFF";    break;
  case X86II::MO_PLT:       O << "@PLT";       break;
  case X86II::MO_TLVP:      O << "@TLVP";      break;
  case X86II::MO_TLVP_PIC_BASE:
    O << "@TLVP" << '-' << *MF->getPICBaseSymbol();
    break;
  case X86II::MO_SECREL:      O << "@SECREL";      break;
  }
}
Exemplo n.º 30
0
/// \brief Collect the set of header includes needed to construct the given 
/// module and update the TopHeaders file set of the module.
///
/// \param Module The module we're collecting includes from.
///
/// \param Includes Will be augmented with the set of \#includes or \#imports
/// needed to load all of the named headers.
static llvm::error_code
collectModuleHeaderIncludes(const LangOptions &LangOpts, FileManager &FileMgr,
                            ModuleMap &ModMap, clang::Module *Module,
                            SmallVectorImpl<char> &Includes) {
  // Don't collect any headers for unavailable modules.
  if (!Module->isAvailable())
    return llvm::error_code::success();

  // Add includes for each of these headers.
  for (unsigned I = 0, N = Module->NormalHeaders.size(); I != N; ++I) {
    const FileEntry *Header = Module->NormalHeaders[I];
    Module->addTopHeader(Header);
    if (llvm::error_code Err =
            addHeaderInclude(Header, Includes, LangOpts, Module->IsExternC))
      return Err;
  }
  // Note that Module->PrivateHeaders will not be a TopHeader.

  if (const FileEntry *UmbrellaHeader = Module->getUmbrellaHeader()) {
    Module->addTopHeader(UmbrellaHeader);
    if (Module->Parent) {
      // Include the umbrella header for submodules.
      if (llvm::error_code Err = addHeaderInclude(UmbrellaHeader, Includes,
                                                  LangOpts, Module->IsExternC))
        return Err;
    }
  } else if (const DirectoryEntry *UmbrellaDir = Module->getUmbrellaDir()) {
    // Add all of the headers we find in this subdirectory.
    llvm::error_code EC;
    SmallString<128> DirNative;
    llvm::sys::path::native(UmbrellaDir->getName(), DirNative);
    for (llvm::sys::fs::recursive_directory_iterator Dir(DirNative.str(), EC), 
                                                     DirEnd;
         Dir != DirEnd && !EC; Dir.increment(EC)) {
      // Check whether this entry has an extension typically associated with 
      // headers.
      if (!llvm::StringSwitch<bool>(llvm::sys::path::extension(Dir->path()))
          .Cases(".h", ".H", ".hh", ".hpp", true)
          .Default(false))
        continue;
      
      // If this header is marked 'unavailable' in this module, don't include 
      // it.
      if (const FileEntry *Header = FileMgr.getFile(Dir->path())) {
        if (ModMap.isHeaderUnavailableInModule(Header, Module))
          continue;
        Module->addTopHeader(Header);
      }
      
      // Include this header as part of the umbrella directory.
      if (llvm::error_code Err = addHeaderInclude(Dir->path(), Includes,
                                                  LangOpts, Module->IsExternC))
        return Err;
    }

    if (EC)
      return EC;
  }
  
  // Recurse into submodules.
  for (clang::Module::submodule_iterator Sub = Module->submodule_begin(),
                                      SubEnd = Module->submodule_end();
       Sub != SubEnd; ++Sub)
    if (llvm::error_code Err = collectModuleHeaderIncludes(
            LangOpts, FileMgr, ModMap, *Sub, Includes))
      return Err;

  return llvm::error_code::success();
}