Exemplo n.º 1
0
int main(int argc, char* argv[])
{
  // Time measurement.
  TimePeriod cpu_time;

  cpu_time.tick();
  // Load the mesh.
  Mesh mesh, basemesh;
  H2DReader mloader;
  mloader.load("domain.mesh", &basemesh);

  // Perform initial mesh refinements.
  mesh.copy(&basemesh);
  for(int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();
  mesh.refine_towards_boundary(3, INIT_REF_NUM_BDY);

  // Create an H1 space with default shapeset.
  H1Space space(&mesh, bc_types, essential_bc_values, P_INIT);
  int ndof = Space::get_num_dofs(&space);
  info("ndof = %d.", ndof);

  // Create an H1 space for the initial coarse mesh solution.
  H1Space init_space(&basemesh, bc_types, essential_bc_values, P_INIT);

  // Create a selector which will select optimal candidate.
  H1ProjBasedSelector selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);

  // Solutions for the time stepping and the Newton's method.
  Solution sln, ref_sln, sln_prev_time;
  
  // Adapt mesh to represent initial condition with given accuracy.
  info("Mesh adaptivity to an exact function:");
  // Initialize views.
  char title_init[200];
  sprintf(title_init, "Projection of initial condition");
  ScalarView* view_init = new ScalarView(title_init, new WinGeom(0, 0, 410, 300));
  sprintf(title_init, "Initial mesh");
  OrderView* ordview_init = new OrderView(title_init, new WinGeom(420, 0, 350, 300));
  view_init->fix_scale_width(80);
  int as = 1; bool done = false;
  do
  {
    // Setup space for the reference solution.
    Space *rspace = construct_refined_space(&init_space);

    // Assign the function f() to the fine mesh.
    ref_sln.set_exact(rspace->get_mesh(), init_cond);

    // Project the function f() on the coarse mesh.
    OGProjection::project_global(&init_space, &ref_sln, &sln_prev_time, matrix_solver);

    // Calculate element errors and total error estimate.
    Adapt adaptivity(&init_space, HERMES_H1_NORM);
    bool solutions_for_adapt = true;
    double err_est_rel = adaptivity.calc_err_est(&sln_prev_time, &ref_sln, solutions_for_adapt, 
                         HERMES_TOTAL_ERROR_REL | HERMES_ELEMENT_ERROR_REL) * 100;

    info("Step %d, ndof %d, proj_error %g%%", as, Space::get_num_dofs(&init_space), err_est_rel);

    // If err_est_rel too large, adapt the mesh.
    if (err_est_rel < ERR_STOP) done = true;
    else {
      double to_be_processed = 0;
      done = adaptivity.adapt(&selector, THRESHOLD, STRATEGY, MESH_REGULARITY, to_be_processed);

      if (Space::get_num_dofs(&init_space) >= NDOF_STOP) done = true;

      view_init->show(&sln_prev_time);
      char title_init[100];
      sprintf(title_init, "Initial mesh, step %d", as);
      ordview_init->set_title(title_init);
      ordview_init->show(&init_space);
    }
    as++;
  }
  while (done == false);
  
  // Initialize the weak formulation.
  WeakForm wf;
  if (TIME_INTEGRATION == 1) {
    wf.add_matrix_form(jac_form_vol_euler, jac_form_vol_ord, HERMES_UNSYM, HERMES_ANY, 
                       &sln_prev_time);
    wf.add_matrix_form_surf(jac_form_surf_1_euler, jac_form_surf_1_ord, BDY_1);
    wf.add_matrix_form_surf(jac_form_surf_4_euler, jac_form_surf_4_ord, BDY_4);
    wf.add_matrix_form_surf(jac_form_surf_6_euler, jac_form_surf_6_ord, BDY_6);
    wf.add_vector_form(res_form_vol_euler, res_form_vol_ord, HERMES_ANY, 
                       &sln_prev_time);
    wf.add_vector_form_surf(res_form_surf_1_euler, res_form_surf_1_ord, BDY_1); 
    wf.add_vector_form_surf(res_form_surf_4_euler, res_form_surf_4_ord, BDY_4);
    wf.add_vector_form_surf(res_form_surf_6_euler, res_form_surf_6_ord, BDY_6);
  }
  else {
    wf.add_matrix_form(jac_form_vol_cranic, jac_form_vol_ord, HERMES_UNSYM, HERMES_ANY, 
                       &sln_prev_time);
    wf.add_matrix_form_surf(jac_form_surf_1_cranic, jac_form_surf_1_ord, BDY_1);
    wf.add_matrix_form_surf(jac_form_surf_4_cranic, jac_form_surf_4_ord, BDY_4);
    wf.add_matrix_form_surf(jac_form_surf_6_cranic, jac_form_surf_6_ord, BDY_6); 
    wf.add_vector_form(res_form_vol_cranic, res_form_vol_ord, HERMES_ANY, 
                       &sln_prev_time);
    wf.add_vector_form_surf(res_form_surf_1_cranic, res_form_surf_1_ord, BDY_1, 
			    &sln_prev_time);
    wf.add_vector_form_surf(res_form_surf_4_cranic, res_form_surf_4_ord, BDY_4, 
			    &sln_prev_time);
    wf.add_vector_form_surf(res_form_surf_6_cranic, res_form_surf_6_ord, BDY_6, 
			    &sln_prev_time);
  }

  // Error estimate and discrete problem size as a function of physical time.
  SimpleGraph graph_time_err_est, graph_time_err_exact, graph_time_dof, graph_time_cpu;
 
  // Visualize the projection and mesh.
  ScalarView view("Initial condition", new WinGeom(0, 0, 440, 350));
  OrderView ordview("Initial mesh", new WinGeom(450, 0, 400, 350));
  view.show(&sln_prev_time);
  ordview.show(&space);

  // Time stepping loop.
  int num_time_steps = (int)(T_FINAL/TAU + 0.5);
  for(int ts = 1; ts <= num_time_steps; ts++)
  {
    // Time measurement.
    cpu_time.tick();

    // Updating current time.
    TIME = ts*TAU;
    info("---- Time step %d:", ts);

    // Periodic global derefinements.
    if (ts > 1 && ts % UNREF_FREQ == 0) {
      info("Global mesh derefinement.");
      mesh.copy(&basemesh);
      space.set_uniform_order(P_INIT);
    }

    // Adaptivity loop (in space):
    bool done = false;
    int as = 1;
    do
    {
      info("---- Time step %d, adaptivity step %d:", ts, as);

      // Construct globally refined reference mesh
      // and setup reference space.
      Space* ref_space = construct_refined_space(&space);

      scalar* coeff_vec = new scalar[Space::get_num_dofs(ref_space)];
     
      // Calculate initial coefficient vector for Newton on the fine mesh.
      if (as == 1 && ts == 1) {
        info("Projecting coarse mesh solution to obtain initial vector on new fine mesh.");
        OGProjection::project_global(ref_space, &sln_prev_time, coeff_vec, matrix_solver);
      }
      else {
        info("Projecting previous fine mesh solution to obtain initial vector on new fine mesh.");
        OGProjection::project_global(ref_space, &ref_sln, coeff_vec, matrix_solver);
        delete ref_sln.get_mesh();
      }

      // Initialize the FE problem.
      bool is_linear = false;
      DiscreteProblem dp(&wf, ref_space, is_linear);

      // Set up the solver, matrix, and rhs according to the solver selection.
      SparseMatrix* matrix = create_matrix(matrix_solver);
      Vector* rhs = create_vector(matrix_solver);
      Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

      // Perform Newton's iteration.
      info("Solving nonlinear problem:");
      bool verbose = true;
      if (!solve_newton(coeff_vec, &dp, solver, matrix, rhs, 
          NEWTON_TOL, NEWTON_MAX_ITER, verbose)) error("Newton's iteration failed.");

      // Translate the resulting coefficient vector into the actual solutions. 
      Solution::vector_to_solution(coeff_vec, ref_space, &ref_sln);

      // Project the fine mesh solution on the coarse mesh.
      info("Projecting fine mesh solution on coarse mesh for error calculation.");
      OGProjection::project_global(&space, &ref_sln, &sln, matrix_solver);

      // Calculate element errors.
      info("Calculating error estimate."); 
      Adapt* adaptivity = new Adapt(&space, HERMES_H1_NORM);
      bool solutions_for_adapt = true;
      
      // Calculate error estimate wrt. fine mesh solution.
      double err_est_rel = adaptivity->calc_err_est(&sln, &ref_sln, solutions_for_adapt, 
                           HERMES_TOTAL_ERROR_REL | HERMES_ELEMENT_ERROR_ABS) * 100;

      // Report results.
      info("ndof_coarse: %d, ndof_fine: %d, space_err_est_rel: %g%%", 
        Space::get_num_dofs(&space), Space::get_num_dofs(ref_space), err_est_rel);

      // Add entries to convergence graphs.
      graph_time_err_est.add_values(ts*TAU, err_est_rel);
      graph_time_err_est.save("time_error_est.dat");
      graph_time_dof.add_values(ts*TAU, Space::get_num_dofs(&space));
      graph_time_dof.save("time_dof.dat");
      graph_time_cpu.add_values(ts*TAU, cpu_time.accumulated());
      graph_time_cpu.save("time_cpu.dat");

      // If space_err_est too large, adapt the mesh.
      if (err_est_rel < ERR_STOP) done = true;
      else {
        info("Adapting coarse mesh.");
        done = adaptivity->adapt(&selector, THRESHOLD, STRATEGY, MESH_REGULARITY);
        if (Space::get_num_dofs(&space) >= NDOF_STOP) {
          done = true;
          break;
        }
        as++;
      }

      // Cleanup.
      delete [] coeff_vec;
      delete solver;
      delete matrix;
      delete rhs;
      delete adaptivity;
      delete ref_space;
    }
    while (!done);

    // Visualize the solution and mesh.
    char title[100];
    sprintf(title, "Solution, time level %d", ts);
    view.set_title(title);
    view.show(&sln);
    sprintf(title, "Mesh, time level %d", ts);
    ordview.set_title(title);
    ordview.show(&space);

    // Copy new time level solution into sln_prev_time.
    sln_prev_time.copy(&ref_sln);
  }

  // Wait for all views to be closed.
  View::wait();
  return 0;
}
Exemplo n.º 2
0
int main(int argc, char* argv[])
{
  // Time measurement.
  TimePeriod cpu_time;

  cpu_time.tick();
  // Load the mesh.
  Mesh mesh, basemesh;
  H2DReader mloader;
  mloader.load("domain.mesh", &basemesh);

  // Perform initial mesh refinements.
  mesh.copy(&basemesh);
  for(int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();
  mesh.refine_towards_boundary(3, INIT_REF_NUM_BDY);

  // Create an H1 space with default shapeset.
  H1Space space(&mesh, bc_types, essential_bc_values, P_INIT);
  int ndof = Space::get_num_dofs(&space);
  info("ndof = %d.", ndof);

  // Create a selector which will select optimal candidate.
  H1ProjBasedSelector selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);

  // Solutions for the time stepping and the Newton's method.
  Solution sln, ref_sln, sln_prev_time;
  
  // Adapt mesh to represent initial condition with given accuracy.
  info("Mesh adaptivity to an exact function:");

  int as = 1; bool done = false;
  do
  {
    // Setup space for the reference solution.
    Space *rspace = construct_refined_space(&space);

    // Assign the function f() to the fine mesh.
    ref_sln.set_exact(rspace->get_mesh(), init_cond);

    // Project the function f() on the coarse mesh.
    OGProjection::project_global(&space, &ref_sln, &sln_prev_time, matrix_solver);

    // Calculate element errors and total error estimate.
    Adapt adaptivity(&space, HERMES_H1_NORM);
    bool solutions_for_adapt = true;
    double err_est_rel = adaptivity.calc_err_est(&sln_prev_time, &ref_sln, solutions_for_adapt, HERMES_TOTAL_ERROR_REL | HERMES_ELEMENT_ERROR_REL) * 100;

    info("Step %d, ndof %d, proj_error %g%%", as, Space::get_num_dofs(&space), err_est_rel);

    // If err_est_rel too large, adapt the mesh.
    if (err_est_rel < ERR_STOP) done = true;
    else {
      double to_be_processed = 0;
      done = adaptivity.adapt(&selector, THRESHOLD, STRATEGY, MESH_REGULARITY, to_be_processed);

      if (Space::get_num_dofs(&space) >= NDOF_STOP) done = true;

    }
    as++;
  }
  while (done == false);
  
  // Project the initial condition on the FE space
  // to obtain initial coefficient vector for the Newton's method.
  info("Projecting initial condition to obtain coefficient vector for Newton on coarse mesh.");
  scalar* coeff_vec_coarse = new scalar[Space::get_num_dofs(&space)];
  OGProjection::project_global(&space, init_cond, coeff_vec_coarse, matrix_solver);
  OGProjection::project_global(&space, &sln_prev_time, &sln, matrix_solver);

  // Initialize the weak formulation.
  WeakForm wf;
  if (TIME_INTEGRATION == 1) {
    wf.add_matrix_form(jac_form_vol_euler, jac_form_vol_ord, HERMES_UNSYM, HERMES_ANY, 
                       &sln_prev_time);
    wf.add_matrix_form_surf(jac_form_surf_1_euler, jac_form_surf_1_ord, BDY_1);
    wf.add_matrix_form_surf(jac_form_surf_4_euler, jac_form_surf_4_ord, BDY_4);
    wf.add_matrix_form_surf(jac_form_surf_6_euler, jac_form_surf_6_ord, BDY_6);
    wf.add_vector_form(res_form_vol_euler, res_form_vol_ord, HERMES_ANY, 
                       &sln_prev_time);
    wf.add_vector_form_surf(res_form_surf_1_euler, res_form_surf_1_ord, BDY_1); 
    wf.add_vector_form_surf(res_form_surf_4_euler, res_form_surf_4_ord, BDY_4);
    wf.add_vector_form_surf(res_form_surf_6_euler, res_form_surf_6_ord, BDY_6);
  }
  else {
    wf.add_matrix_form(jac_form_vol_cranic, jac_form_vol_ord, HERMES_UNSYM, HERMES_ANY, 
                       &sln_prev_time);
    wf.add_matrix_form_surf(jac_form_surf_1_cranic, jac_form_surf_1_ord, BDY_1);
    wf.add_matrix_form_surf(jac_form_surf_4_cranic, jac_form_surf_4_ord, BDY_4);
    wf.add_matrix_form_surf(jac_form_surf_6_cranic, jac_form_surf_6_ord, BDY_6); 
    wf.add_vector_form(res_form_vol_cranic, res_form_vol_ord, HERMES_ANY, 
                       &sln_prev_time);
    wf.add_vector_form_surf(res_form_surf_1_cranic, res_form_surf_1_ord, BDY_1, 
			    &sln_prev_time);
    wf.add_vector_form_surf(res_form_surf_4_cranic, res_form_surf_4_ord, BDY_4, 
			    &sln_prev_time);
    wf.add_vector_form_surf(res_form_surf_6_cranic, res_form_surf_6_ord, BDY_6, 
			    &sln_prev_time);
  }

  // Error estimate and discrete problem size as a function of physical time.
  SimpleGraph graph_time_err_est, graph_time_err_exact, graph_time_dof, graph_time_cpu;

  // Time stepping loop.
  int num_time_steps = (int)(T_FINAL/TAU + 0.5);
  for(int ts = 1; ts <= num_time_steps; ts++)
  {
    // Time measurement.
    cpu_time.tick();

    // Updating current time.
    TIME = ts*TAU;
    info("---- Time step %d:", ts);

    // Periodic global derefinements.
    if (ts > 1 && ts % UNREF_FREQ == 0) {
      info("Global mesh derefinement.");
      mesh.copy(&basemesh);
      space.set_uniform_order(P_INIT);

      // Project fine mesh solution on the globally derefined mesh.
      info("Projecting fine mesh solution on globally derefined mesh.");
      OGProjection::project_global(&space, &ref_sln, &sln, matrix_solver);
    }

    // Adaptivity loop (in space):
    bool done = false;
    int as = 1;
    do
    {
      info("---- Time step %d, adaptivity step %d:", ts, as);

      // Construct globally refined reference mesh
      // and setup reference space.
      Space* ref_space = construct_refined_space(&space);

      scalar* coeff_vec = new scalar[Space::get_num_dofs(ref_space)];
     
      // Calculate initial coefficient vector for Newton on the fine mesh.
      if (as == 1 && ts == 1) {
        info("Projecting coarse mesh solution to obtain initial vector on new fine mesh.");
        OGProjection::project_global(ref_space, &sln, coeff_vec, matrix_solver);
      }
      else {
        info("Projecting previous fine mesh solution to obtain initial vector on new fine mesh.");
        OGProjection::project_global(ref_space, &ref_sln, coeff_vec, matrix_solver);
      }

      // Initialize the FE problem.
      bool is_linear = false;
      DiscreteProblem dp(&wf, ref_space, is_linear);

      // Set up the solver, matrix, and rhs according to the solver selection.
      SparseMatrix* matrix = create_matrix(matrix_solver);
      Vector* rhs = create_vector(matrix_solver);
      Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

      // Perform Newton's iteration.
      int it = 1;
      while (1)
      {
        // Obtain the number of degrees of freedom.
        int ndof = Space::get_num_dofs(ref_space);

        // Assemble the Jacobian matrix and residual vector.
        dp.assemble(coeff_vec, matrix, rhs, false);

        // Multiply the residual vector with -1 since the matrix 
        // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
        for (int i = 0; i < ndof; i++) rhs->set(i, -rhs->get(i));
        
        // Calculate the l2-norm of residual vector.
        double res_l2_norm = get_l2_norm(rhs);

        // Info for user.
        info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(ref_space), res_l2_norm);

        // If l2 norm of the residual vector is within tolerance, or the maximum number 
        // of iteration has been reached, then quit.
        if (res_l2_norm < NEWTON_TOL_FINE || it > NEWTON_MAX_ITER) break;

        // Solve the linear system.
        if(!solver->solve())
          error ("Matrix solver failed.\n");

        // Add \deltaY^{n+1} to Y^n.
        for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];
        
        if (it >= NEWTON_MAX_ITER)
          error ("Newton method did not converge.");

        it++;
      }
      
      // Translate the resulting coefficient vector into the actual solutions. 
      Solution::vector_to_solutions(coeff_vec, ref_space, &ref_sln);

      // Project the fine mesh solution on the coarse mesh.
      info("Projecting fine mesh solution on coarse mesh for error calculation.");
      OGProjection::project_global(&space, &ref_sln, &sln, matrix_solver);

      // Calculate element errors.
      info("Calculating error estimate."); 
      Adapt* adaptivity = new Adapt(&space, HERMES_H1_NORM);
      bool solutions_for_adapt = true;
      
      // Calculate error estimate wrt. fine mesh solution.
      double err_est_rel = adaptivity->calc_err_est(&sln, &ref_sln, solutions_for_adapt, HERMES_TOTAL_ERROR_REL | HERMES_ELEMENT_ERROR_ABS) * 100;

      // Report results.
      info("ndof_coarse: %d, ndof_fine: %d, space_err_est_rel: %g%%", 
        Space::get_num_dofs(&space), Space::get_num_dofs(ref_space), err_est_rel);

      // Add entries to convergence graphs.
      graph_time_err_est.add_values(ts*TAU, err_est_rel);
      graph_time_err_est.save("time_error_est.dat");
      graph_time_dof.add_values(ts*TAU, Space::get_num_dofs(&space));
      graph_time_dof.save("time_dof.dat");
      graph_time_cpu.add_values(ts*TAU, cpu_time.accumulated());
      graph_time_cpu.save("time_cpu.dat");

      // If space_err_est too large, adapt the mesh.
      if (err_est_rel < ERR_STOP) done = true;
      else {
        info("Adapting coarse mesh.");
        done = adaptivity->adapt(&selector, THRESHOLD, STRATEGY, MESH_REGULARITY);
        if (Space::get_num_dofs(&space) >= NDOF_STOP) {
          done = true;
          break;
        }
        as++;
      }

      // Cleanup.
      delete [] coeff_vec;
      delete solver;
      delete matrix;
      delete rhs;
      delete adaptivity;
      delete ref_space->get_mesh();
      delete ref_space;
    }
    while (!done);

    // Copy new time level solution into sln_prev_time.
    sln_prev_time.copy(&ref_sln);
  }

  info("Coordinate ( 2,  -2.0) value = %lf", sln_prev_time.get_pt_value( 2,  -2.0));
  info("Coordinate ( 2,  -4.0) value = %lf", sln_prev_time.get_pt_value( 2,  -4.0));
  info("Coordinate ( 6,  -2.0) value = %lf", sln_prev_time.get_pt_value( 6,  -2.0));
  info("Coordinate ( 6,  -4.0) value = %lf", sln_prev_time.get_pt_value( 6,  -4.0));
  info("Coordinate ( 4,  -3.0) value = %lf", sln_prev_time.get_pt_value( 4,  -3.0));

#define ERROR_SUCCESS                                0
#define ERROR_FAILURE                               -1
  double coor_x[5] = {2.0, 2.0, 6.0, 6.0, 4.0};
  double coor_y[5] = {-2.0, -4.0, -2.0, -4.0, -3.0};
  double value[5] = {-4.821844, -2.462673, -4.000754, -1.705534, -3.257146};
  for (int i = 0; i < 5; i++)
  {
    if ((value[i] - sln_prev_time.get_pt_value(coor_x[i], coor_y[i])) < 1E-6)
    {
    }
    else
    {
      printf("Failure!\n");
      return ERROR_FAILURE;
    }
  }
  printf("Success!\n");
  return ERROR_SUCCESS;
}