bool ArtificialBeeColony::onlookerBeesPhase(StateP state, DemeP deme)
{
// jednostavni odabir, uz selFitPropOp
/*	for( uint i = 0; i < deme->getSize(); i++ ) { // for each food source
		// choose a food source depending on its fitness value (better individuals are more likely to be chosen)
		IndividualP food = selFitOp->select(*deme);
		createNewFoodSource(food, state, deme);
	}
*/


// uz vjerojatnosti, jedinka po jedinka
	calculateProbabilities(state, deme);
	int demeSize = deme->getSize();
	int i = state->getRandomizer()->getRandomInteger(demeSize);
	int n = 0;
	while( n < demeSize) {
		int fact = i++ % demeSize;
		IndividualP food = deme->at(fact);
		
		if (state->getRandomizer()->getRandomDouble() < probability_[fact]){
			n++;
			createNewFoodSource(food, state, deme);
		}			
	}

	return true;
}
		 bool createNewFoodSource(IndividualP food, StateP state, DemeP deme)
		 {  
			 //for each food source find a neighbour 
			IndividualP neighbour;
			do{
				neighbour = selRandomOp->select(*deme);
			}while(food->index == neighbour->index);

			//potential new food source
			IndividualP newFood = copy(food);

			FloatingPointP flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (food->getGenotype(0));
			std::vector< double > &foodVars = flp->realValue;
			flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (neighbour->getGenotype(0));
			std::vector< double > &neighbourVars = flp->realValue;
			flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (newFood->getGenotype(0));
			std::vector< double > &newFoodVars = flp->realValue;


			uint param = state->getRandomizer()->getRandomInteger((int)foodVars.size());
			double factor = state->getRandomizer()->getRandomDouble();
			double value = foodVars[param] * (1-2*factor)*(foodVars[param]-neighbourVars[param]);
			if (value > ubound)
				value = ubound;
			else if (value <lbound)
				value = lbound;

			//produce a modification on the food source (discover a new food source)
			newFoodVars[param] = value;
			evaluate(newFood);

			flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (food->getGenotype(1));
			double &foodTrial = flp->realValue[0];

//			d)	if the fitness value of the new food source is better than that of the original source,
//					memorize the new source, forget the old one and set trial to 0
//					otherwise keep the old one and increment trial
			if(newFood->fitness->isBetterThan( food->fitness) )
			{
				foodVars[param] = value;
				evaluate(food);
				foodTrial = 0;
			}
			else {
				foodTrial +=1;
			}
			return true;
		}
//! cross donor vectors with population members to create trial vectors
void DifferentialEvolution::crossover(DemeP deme, uint index, StateP state)
{
	// get population member and corresponding donor vector
	FloatingPoint::FloatingPoint* flp1 = (FloatingPoint::FloatingPoint*) (deme->at(index)->getGenotype().get());
	int dim = (int) flp1->realValue.size();
	FloatingPoint::FloatingPoint* flp2 = (FloatingPoint::FloatingPoint*) donor_vector[index]->getGenotype().get();

	// crossover their elements (keep the result in donor_vector)
	for(uint i = 0; i < flp1->realValue.size(); i++) {
		if (state->getRandomizer()->getRandomDouble() <= CR_ || i == state->getRandomizer()->getRandomInteger(dim)) {
		}
		else {
			flp2->realValue[i] = flp1->realValue[i];
	    }
	}

}
Exemplo n.º 4
0
		bool hypermutationPhase(StateP state, DemeP deme, std::vector<IndividualP> &clones)
		{	
			uint M;	// M - number of mutations of a single antibody 
			uint k;

			//sort 
			std::sort (clones.begin(), clones.end(), sortPopulationByFitness);

			for( uint i = 0; i < clones.size(); i++ ){ // for each antibody in vector clones
				IndividualP antibody = clones.at(i);
				
				FloatingPointP flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (antibody->getGenotype(0));
			    std::vector< double > &antibodyVars = flp->realValue;
				
				k = 1 + i/(dup+1);
				M =(int) ((1- 1/(double)(k)) * (c*dimension) + (c*dimension));
				
				// mutate M times
				for (uint j = 0; j < M; j++){
					uint param = state->getRandomizer()->getRandomInteger((int)antibodyVars.size());
					
					double randDouble1 = state->getRandomizer()->getRandomDouble();
					double randDouble2 = state->getRandomizer()->getRandomDouble();
					double value = antibodyVars[param] + (1-2*randDouble1)* 0.2 *  (ubound - lbound) * pow(2, -16*randDouble2 );
					
					if (value > ubound)
						value = ubound;
					else if (value <lbound)
						value = lbound;

					//produce a mutation on the antibody 
					antibodyVars[param] = value;
				}
				FitnessP parentFitness = antibody->fitness;
				evaluate(antibody);

				// if the clone is better than its parent, reset clone's age
				if(antibody-> fitness->isBetterThan(parentFitness)){					
					flp = boost::dynamic_pointer_cast<FloatingPoint::FloatingPoint> (antibody->getGenotype(1));
					double &age = flp->realValue[0];
					age = 0;
				} 
			}
			return true;
		}