Exemplo n.º 1
0
int main(int argc, char* argv[])
{
    SymEngine::print_stack_on_segfault();

    DenseMatrix A = DenseMatrix(3, 3, {symbol("a"), symbol("b"), symbol("c"),
        symbol("d"), symbol("e"), symbol("f"), symbol("g"), symbol("h"), symbol("i")});


    DenseMatrix B = DenseMatrix(3, 3, {symbol("x"), symbol("y"), symbol("z"), symbol("p"),
        symbol("q"), symbol("r"), symbol("u"), symbol("v"), symbol("w")});

    DenseMatrix C(3, 3);

    std::cout << "Multiplying Two Matrices; matrix dimensions: 3 x 3" << std::endl;

    unsigned N = 10000;
    auto t1 = std::chrono::high_resolution_clock::now();
    for (unsigned i = 0; i < N; i++)
        mul_dense_dense(A, B, C);
    auto t2 = std::chrono::high_resolution_clock::now();

    std::cout
        << std::chrono::duration_cast<std::chrono::microseconds>(t2-t1).count()/N
        << " microseconds" << std::endl;

    return 0;
}
Exemplo n.º 2
0
int main(int argc, char* argv[])
{
    SymEngine::print_stack_on_segfault();

    DenseMatrix A = DenseMatrix(3, 3, {symbol("a"), symbol("b"), symbol("c"), symbol("d"),
        symbol("e"), symbol("f"), symbol("g"), symbol("h"), symbol("i")});

    DenseMatrix B = DenseMatrix(3, 3, {symbol("x"), symbol("y"), symbol("z"), symbol("p"),
        symbol("q"), symbol("r"), symbol("u"), symbol("v"), symbol("w")});

    DenseMatrix C(3, 3);

    std::cout << "Adding Two Matrices; matrix dimensions: 3 x 3" << std::endl;

    // We are taking an average time since time for a single addition varied in
    // a range of 40-50 microseconds
    unsigned N = 10000;
    auto t1 = std::chrono::high_resolution_clock::now();
    for (unsigned i = 0; i < N; i++)
        add_dense_dense(A, B, C);
    auto t2 = std::chrono::high_resolution_clock::now();

    std::cout
        << std::chrono::duration_cast<std::chrono::microseconds>(t2-t1).count()/N
        << " microseconds" << std::endl;

    return 0;
}
Exemplo n.º 3
0
int main(int argc, char* argv[])
{
    Teuchos::print_stack_on_segfault();


    DenseMatrix A = DenseMatrix(4, 4, {integer(-23), integer(67), integer(3), integer(4),
                                       integer(54), integer(61), integer(7), integer(8), integer(32), integer(15),
                                       integer(12), integer(13), integer(100), integer(17), integer(15),
                                       integer(178)
                                      });


    DenseMatrix B = DenseMatrix(4, 4, {integer(12), integer(22), integer(30), integer(40),
                                       integer(45), integer(6), integer(37), integer(80), integer(91), integer(10),
                                       integer(16), integer(52), integer(45), integer(14), integer(2),
                                       integer(6)
                                      });

    DenseMatrix C(4, 4);

    std::cout << "Multiplying Two Matrices; matrix dimensions: 4 x 4" << std::endl;

    unsigned N = 10000;
    auto t1 = std::chrono::high_resolution_clock::now();
    for (unsigned i = 0; i < N; i++)
        mul_dense_dense(A, B, C);
    auto t2 = std::chrono::high_resolution_clock::now();

    std::cout
            << std::chrono::duration_cast<std::chrono::microseconds>(t2-t1).count()/N
            << " microseconds" << std::endl;

    return 0;
}
Exemplo n.º 4
0
int main(int argc, char* argv[])
{
    Teuchos::print_stack_on_segfault();

    DenseMatrix A = DenseMatrix(4, 4, {integer(1), integer(2), integer(3), integer(4),
        integer(5), integer(6), integer(7), integer(8), integer(9), integer(10),
        integer(11), integer(12), integer(13), integer(14), integer(15),
        integer(16)});

    DenseMatrix B = DenseMatrix(4, 4, {integer(1), integer(2), integer(3), integer(4),
        integer(5), integer(6), integer(7), integer(8), integer(9), integer(10),
        integer(11), integer(12), integer(13), integer(14), integer(15),
        integer(16)});

    DenseMatrix C(4, 4);

    std::cout << "Adding Two Matrices; matrix dimensions: 4 x 4" << std::endl;

    // We are taking an average time since time for a single addition varied in
    // a range of 40-50 microseconds
    unsigned N = 10000;
    auto t1 = std::chrono::high_resolution_clock::now();
    for (unsigned i = 0; i < N; i++)
        add_dense_dense(A, B, C);
    auto t2 = std::chrono::high_resolution_clock::now();

    std::cout
        << std::chrono::duration_cast<std::chrono::microseconds>(t2-t1).count()/N
        << " microseconds" << std::endl;

    return 0;
}
Exemplo n.º 5
0
    }
    // If all elements were found, then a == b
    return true;
}

TEST_CASE("test_homogeneous_lde()", "[diophantine]")
{
    std::vector<DenseMatrix> basis, true_basis;

    // First two tests are taken from the following paper:
    // Evelyne Contejean, Herve Devie. An Efficient Incremental Algorithm
    // for Solving Systems of Linear Diophantine Equations. Information and
    // computation, 113(1):143-172, August 1994.

    DenseMatrix A = DenseMatrix(2, 4, {integer(-1), integer(1), integer(2),
                                       integer(-3), integer(-1), integer(3),
                                       integer(-2), integer(-1)});
    homogeneous_lde(basis, A);
    true_basis = std::vector<DenseMatrix>{
        DenseMatrix(1, 4, {integer(0), integer(1), integer(1), integer(1)}),
        DenseMatrix(1, 4, {integer(4), integer(2), integer(1), integer(0)})};

    REQUIRE(vec_dense_matrix_eq_perm(basis, true_basis));

    basis.clear();
    A = DenseMatrix(1, 4, {integer(-1), integer(1), integer(2), integer(-3)});
    homogeneous_lde(basis, A);
    true_basis = std::vector<DenseMatrix>{
        DenseMatrix(1, 4, {integer(0), integer(0), integer(3), integer(2)}),
        DenseMatrix(1, 4, {integer(0), integer(1), integer(1), integer(1)}),
        DenseMatrix(1, 4, {integer(0), integer(3), integer(0), integer(1)}),
Exemplo n.º 6
0
void test_homogeneous_lde()
{
    std::vector<DenseMatrix> basis, true_basis;

    // First two tests are taken from the following paper:
    // Evelyne Contejean, Herve Devie. An Efficient Incremental Algorithm
    // for Solving Systems of Linear Diophantine Equations. Information and
    // computation, 113(1):143-172, August 1994.

    DenseMatrix A = DenseMatrix(2, 4, {
        integer(-1), integer(1), integer(2), integer(-3),
        integer(-1), integer(3), integer(-2), integer(-1)});
    homogeneous_lde(basis, A);
    true_basis = std::vector<DenseMatrix>{
        DenseMatrix(1, 4, {integer(0), integer(1), integer(1), integer(1)}),
        DenseMatrix(1, 4, {integer(4), integer(2), integer(1), integer(0)})
    };

    assert(vec_dense_matrix_eq_perm(basis, true_basis));

    basis.clear();
    A = DenseMatrix(1, 4, {integer(-1), integer(1), integer(2), integer(-3)});
    homogeneous_lde(basis, A);
    true_basis = std::vector<DenseMatrix>{
        DenseMatrix(1, 4, {integer(0), integer(0), integer(3), integer(2)}),
        DenseMatrix(1, 4, {integer(0), integer(1), integer(1), integer(1)}),
        DenseMatrix(1, 4, {integer(0), integer(3), integer(0), integer(1)}),
        DenseMatrix(1, 4, {integer(1), integer(0), integer(2), integer(1)}),
        DenseMatrix(1, 4, {integer(2), integer(0), integer(1), integer(0)}),
        DenseMatrix(1, 4, {integer(1), integer(1), integer(0), integer(0)})
    };

    assert(vec_dense_matrix_eq_perm(basis, true_basis));

    basis.clear();
    A = DenseMatrix(1, 2, {integer(2), integer(3)});
    homogeneous_lde(basis, A);
    true_basis = std::vector<DenseMatrix>{};

    assert(vec_dense_matrix_eq_perm(basis, true_basis));

    basis.clear();
    A = DenseMatrix(1, 2, {integer(2), integer(-3)});
    homogeneous_lde(basis, A);
    true_basis = std::vector<DenseMatrix>{
        DenseMatrix(1, 2, {integer(3), integer(2)})
    };

    assert(vec_dense_matrix_eq_perm(basis, true_basis));
}