Exemplo n.º 1
0
//
// This function returns the column being accessed from a constant matrix. The values are retrieved from
// the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input 
// to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a 
// constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure)
//
TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, TSourceLoc line)
{
    TIntermTyped* typedNode;
    TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();

    if (index >= node->getType().getNominalSize()) {
        std::stringstream extraInfoStream;
        extraInfoStream << "matrix field selection out of range '" << index << "'";
        std::string extraInfo = extraInfoStream.str();
        error(line, "", "[", extraInfo.c_str());
        recover();
        index = 0;
    }

    if (tempConstantNode) {
         ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
         int size = tempConstantNode->getType().getNominalSize();
         typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line);
    } else {
        error(line, "Cannot offset into the matrix", "Error");
        recover();

        return 0;
    }

    return typedNode;
}
Exemplo n.º 2
0
//
// This function returns the value of a particular field inside a constant structure from the symbol table. 
// If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr
// function and returns the parse-tree with the values of the embedded/nested struct.
//
TIntermTyped* TParseContext::addConstStruct(TString& identifier, TIntermTyped* node, TSourceLoc line)
{
    const TTypeList* fields = node->getType().getStruct();
    TIntermTyped *typedNode;
    int instanceSize = 0;
    unsigned int index = 0;
    TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion();

    for ( index = 0; index < fields->size(); ++index) {
        if ((*fields)[index].type->getFieldName() == identifier) {
            break;
        } else {
            instanceSize += (*fields)[index].type->getObjectSize();
        }
    }

    if (tempConstantNode) {
         ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer();

         typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function
    } else {
        error(line, "Cannot offset into the structure", "Error", "");
        recover();

        return 0;
    }

    return typedNode;
}
Exemplo n.º 3
0
//
// This function returns an element of an array accessed from a constant array. The values are retrieved from
// the symbol table and parse-tree is built for the type of the element. The input 
// to the function could either be a symbol node (a[0] where a is a constant array)that represents a 
// constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure)
//
TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, TSourceLoc line)
{
	TIntermTyped* typedNode;
	TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
	TType arrayElementType = node->getType();
	arrayElementType.clearArrayness();

	if (index >= node->getType().getArraySize()) {
		error(line, "", "[", "array field selection out of range '%d'", index);
		recover();
		index = 0;
	}

	int arrayElementSize = arrayElementType.getObjectSize();

	if (tempConstantNode) {
		 constUnion* unionArray = tempConstantNode->getUnionArrayPointer();
		 typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line);
	} else {
		error(line, "Cannot offset into the array", "Error", "");
		recover();

		return 0;
	}

	return typedNode;
}
Exemplo n.º 4
0
//
// This function returns the column being accessed from a constant matrix. The values are retrieved from
// the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input 
// to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a 
// constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure)
//
TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, TSourceLoc line)
{
    TIntermTyped* typedNode;
    TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();

    if (index >= node->getType().getNominalSize()) {
        error(line, "", "[", "matrix field selection out of range '%d'", index);
        recover();
        index = 0;
    }

    if (tempConstantNode) {
         ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
         int size = tempConstantNode->getType().getNominalSize();
         typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line);
    } else {
        error(line, "Cannot offset into the matrix", "Error", "");
        recover();

        return 0;
    }

    return typedNode;
}
Exemplo n.º 5
0
TIntermTyped* TIntermConstantUnion::fold(TOperator op, TIntermTyped* constantNode, TInfoSink& infoSink)
{
    ConstantUnion *unionArray = getUnionArrayPointer();
    int objectSize = getType().getObjectSize();

    if (constantNode) {  // binary operations
        TIntermConstantUnion *node = constantNode->getAsConstantUnion();
        ConstantUnion *rightUnionArray = node->getUnionArrayPointer();
        TType returnType = getType();

        // for a case like float f = 1.2 + vec4(2,3,4,5);
        if (constantNode->getType().getObjectSize() == 1 && objectSize > 1) {
            rightUnionArray = new ConstantUnion[objectSize];
            for (int i = 0; i < objectSize; ++i)
                rightUnionArray[i] = *node->getUnionArrayPointer();
            returnType = getType();
        } else if (constantNode->getType().getObjectSize() > 1 && objectSize == 1) {
            // for a case like float f = vec4(2,3,4,5) + 1.2;
            unionArray = new ConstantUnion[constantNode->getType().getObjectSize()];
            for (int i = 0; i < constantNode->getType().getObjectSize(); ++i)
                unionArray[i] = *getUnionArrayPointer();
            returnType = node->getType();
            objectSize = constantNode->getType().getObjectSize();
        }

        ConstantUnion* tempConstArray = 0;
        TIntermConstantUnion *tempNode;

        bool boolNodeFlag = false;
        switch(op) {
            case EOpAdd:
                tempConstArray = new ConstantUnion[objectSize];
                {// support MSVC++6.0
                    for (int i = 0; i < objectSize; i++)
                        tempConstArray[i] = unionArray[i] + rightUnionArray[i];
                }
                break;
            case EOpSub:
                tempConstArray = new ConstantUnion[objectSize];
                {// support MSVC++6.0
                    for (int i = 0; i < objectSize; i++)
                        tempConstArray[i] = unionArray[i] - rightUnionArray[i];
                }
                break;

            case EOpMul:
            case EOpVectorTimesScalar:
            case EOpMatrixTimesScalar:
                tempConstArray = new ConstantUnion[objectSize];
                {// support MSVC++6.0
                    for (int i = 0; i < objectSize; i++)
                        tempConstArray[i] = unionArray[i] * rightUnionArray[i];
                }
                break;
            case EOpMatrixTimesMatrix:
                if (getType().getBasicType() != EbtFloat || node->getBasicType() != EbtFloat) {
                    infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for matrix multiply", getLine());
                    return 0;
                }
                {// support MSVC++6.0
                    int size = getNominalSize();
                    tempConstArray = new ConstantUnion[size*size];
                    for (int row = 0; row < size; row++) {
                        for (int column = 0; column < size; column++) {
                            tempConstArray[size * column + row].setFConst(0.0f);
                            for (int i = 0; i < size; i++) {
                                tempConstArray[size * column + row].setFConst(tempConstArray[size * column + row].getFConst() + unionArray[i * size + row].getFConst() * (rightUnionArray[column * size + i].getFConst()));
                            }
                        }
                    }
                }
                break;
            case EOpDiv:
                tempConstArray = new ConstantUnion[objectSize];
                {// support MSVC++6.0
                    for (int i = 0; i < objectSize; i++) {
                        switch (getType().getBasicType()) {
            case EbtFloat:
                if (rightUnionArray[i] == 0.0f) {
                    infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
                    tempConstArray[i].setFConst(FLT_MAX);
                } else
                    tempConstArray[i].setFConst(unionArray[i].getFConst() / rightUnionArray[i].getFConst());
                break;

            case EbtInt:
                if (rightUnionArray[i] == 0) {
                    infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
                    tempConstArray[i].setIConst(INT_MAX);
                } else
                    tempConstArray[i].setIConst(unionArray[i].getIConst() / rightUnionArray[i].getIConst());
                break;
            default:
                infoSink.info.message(EPrefixInternalError, "Constant folding cannot be done for \"/\"", getLine());
                return 0;
                        }
                    }
                }
                break;

            case EOpMatrixTimesVector:
                if (node->getBasicType() != EbtFloat) {
                    infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for matrix times vector", getLine());
                    return 0;
                }
                tempConstArray = new ConstantUnion[getNominalSize()];

                {// support MSVC++6.0
                    for (int size = getNominalSize(), i = 0; i < size; i++) {
                        tempConstArray[i].setFConst(0.0f);
                        for (int j = 0; j < size; j++) {
                            tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j*size + i].getFConst()) * rightUnionArray[j].getFConst()));
                        }
                    }
                }

                tempNode = new TIntermConstantUnion(tempConstArray, node->getType());
                tempNode->setLine(getLine());

                return tempNode;

            case EOpVectorTimesMatrix:
                if (getType().getBasicType() != EbtFloat) {
                    infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for vector times matrix", getLine());
                    return 0;
                }

                tempConstArray = new ConstantUnion[getNominalSize()];
                {// support MSVC++6.0
                    for (int size = getNominalSize(), i = 0; i < size; i++) {
                        tempConstArray[i].setFConst(0.0f);
                        for (int j = 0; j < size; j++) {
                            tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j].getFConst()) * rightUnionArray[i*size + j].getFConst()));
                        }
                    }
                }
                break;

            case EOpLogicalAnd: // this code is written for possible future use, will not get executed currently
                tempConstArray = new ConstantUnion[objectSize];
                {// support MSVC++6.0
                    for (int i = 0; i < objectSize; i++)
                        tempConstArray[i] = unionArray[i] && rightUnionArray[i];
                }
                break;

            case EOpLogicalOr: // this code is written for possible future use, will not get executed currently
                tempConstArray = new ConstantUnion[objectSize];
                {// support MSVC++6.0
                    for (int i = 0; i < objectSize; i++)
                        tempConstArray[i] = unionArray[i] || rightUnionArray[i];
                }
                break;

            case EOpLogicalXor:
                tempConstArray = new ConstantUnion[objectSize];
                {// support MSVC++6.0
                    for (int i = 0; i < objectSize; i++)
                        switch (getType().getBasicType()) {
            case EbtBool: tempConstArray[i].setBConst((unionArray[i] == rightUnionArray[i]) ? false : true); break;
            default: assert(false && "Default missing");
                    }
                }
                break;

            case EOpLessThan:
                assert(objectSize == 1);
                tempConstArray = new ConstantUnion[1];
                tempConstArray->setBConst(*unionArray < *rightUnionArray);
                returnType = TType(EbtBool, EbpUndefined, EvqConst);
                break;
            case EOpGreaterThan:
                assert(objectSize == 1);
                tempConstArray = new ConstantUnion[1];
                tempConstArray->setBConst(*unionArray > *rightUnionArray);
                returnType = TType(EbtBool, EbpUndefined, EvqConst);
                break;
            case EOpLessThanEqual:
                {
                    assert(objectSize == 1);
                    ConstantUnion constant;
                    constant.setBConst(*unionArray > *rightUnionArray);
                    tempConstArray = new ConstantUnion[1];
                    tempConstArray->setBConst(!constant.getBConst());
                    returnType = TType(EbtBool, EbpUndefined, EvqConst);
                    break;
                }
            case EOpGreaterThanEqual:
                {
                    assert(objectSize == 1);
                    ConstantUnion constant;
                    constant.setBConst(*unionArray < *rightUnionArray);
                    tempConstArray = new ConstantUnion[1];
                    tempConstArray->setBConst(!constant.getBConst());
                    returnType = TType(EbtBool, EbpUndefined, EvqConst);
                    break;
                }

            case EOpEqual:
                if (getType().getBasicType() == EbtStruct) {
                    if (!CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
                        boolNodeFlag = true;
                } else {
                    for (int i = 0; i < objectSize; i++) {
                        if (unionArray[i] != rightUnionArray[i]) {
                            boolNodeFlag = true;
                            break;  // break out of for loop
                        }
                    }
                }

                tempConstArray = new ConstantUnion[1];
                if (!boolNodeFlag) {
                    tempConstArray->setBConst(true);
                }
                else {
                    tempConstArray->setBConst(false);
                }

                tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
                tempNode->setLine(getLine());

                return tempNode;

            case EOpNotEqual:
                if (getType().getBasicType() == EbtStruct) {
                    if (CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
                        boolNodeFlag = true;
                } else {
                    for (int i = 0; i < objectSize; i++) {
                        if (unionArray[i] == rightUnionArray[i]) {
                            boolNodeFlag = true;
                            break;  // break out of for loop
                        }
                    }
                }

                tempConstArray = new ConstantUnion[1];
                if (!boolNodeFlag) {
                    tempConstArray->setBConst(true);
                }
                else {
                    tempConstArray->setBConst(false);
                }

                tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
                tempNode->setLine(getLine());

                return tempNode;

            default:
                infoSink.info.message(EPrefixInternalError, "Invalid operator for constant folding", getLine());
                return 0;
        }
        tempNode = new TIntermConstantUnion(tempConstArray, returnType);
        tempNode->setLine(getLine());

        return tempNode;
    } else {
        //
        // Do unary operations
        //
        TIntermConstantUnion *newNode = 0;
        ConstantUnion* tempConstArray = new ConstantUnion[objectSize];
        for (int i = 0; i < objectSize; i++) {
            switch(op) {
                case EOpNegative:
                    switch (getType().getBasicType()) {
                        case EbtFloat: tempConstArray[i].setFConst(-unionArray[i].getFConst()); break;
                        case EbtInt:   tempConstArray[i].setIConst(-unionArray[i].getIConst()); break;
                        default:
                            infoSink.info.message(EPrefixInternalError, "Unary operation not folded into constant", getLine());
                            return 0;
                    }
                    break;
                case EOpLogicalNot: // this code is written for possible future use, will not get executed currently
                    switch (getType().getBasicType()) {
                        case EbtBool:  tempConstArray[i].setBConst(!unionArray[i].getBConst()); break;
                        default:
                            infoSink.info.message(EPrefixInternalError, "Unary operation not folded into constant", getLine());
                            return 0;
                    }
                    break;
                default:
                    return 0;
            }
        }
        newNode = new TIntermConstantUnion(tempConstArray, getType());
        newNode->setLine(getLine());
        return newNode;
    }
}
Exemplo n.º 6
0
//
// This function returns an element of an array accessed from a constant array. The values are retrieved from
// the symbol table and parse-tree is built for the type of the element. The input 
// to the function could either be a symbol node (a[0] where a is a constant array)that represents a 
// constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure)
//
TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, TSourceLoc line)
{
    TIntermTyped* typedNode;
    TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
    TType arrayElementType = node->getType();
    arrayElementType.clearArrayness();

    if (index >= node->getType().getArraySize()) {
        std::stringstream extraInfoStream;
        extraInfoStream << "array field selection out of range '" << index << "'";
        std::string extraInfo = extraInfoStream.str();
        error(line, "", "[", extraInfo.c_str());
        recover();
        index = 0;
    }

    int arrayElementSize = arrayElementType.getObjectSize();

    if (tempConstantNode) {
         ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
         typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line);
    } else {
        error(line, "Cannot offset into the array", "Error");
        recover();

        return 0;
    }

    return typedNode;
}
Exemplo n.º 7
0
//
// The fold functions see if an operation on a constant can be done in place,
// without generating run-time code.
//
// Returns the node to keep using, which may or may not be the node passed in.
//
TIntermTyped *TIntermConstantUnion::fold(
    TOperator op, TIntermTyped *constantNode, TInfoSink &infoSink)
{
    ConstantUnion *unionArray = getUnionArrayPointer();

    if (!unionArray)
        return NULL;

    size_t objectSize = getType().getObjectSize();

    if (constantNode)
    {
        // binary operations
        TIntermConstantUnion *node = constantNode->getAsConstantUnion();
        ConstantUnion *rightUnionArray = node->getUnionArrayPointer();
        TType returnType = getType();

        if (!rightUnionArray)
            return NULL;

        // for a case like float f = 1.2 + vec4(2,3,4,5);
        if (constantNode->getType().getObjectSize() == 1 && objectSize > 1)
        {
            rightUnionArray = new ConstantUnion[objectSize];
            for (size_t i = 0; i < objectSize; ++i)
            {
                rightUnionArray[i] = *node->getUnionArrayPointer();
            }
            returnType = getType();
        }
        else if (constantNode->getType().getObjectSize() > 1 && objectSize == 1)
        {
            // for a case like float f = vec4(2,3,4,5) + 1.2;
            unionArray = new ConstantUnion[constantNode->getType().getObjectSize()];
            for (size_t i = 0; i < constantNode->getType().getObjectSize(); ++i)
            {
                unionArray[i] = *getUnionArrayPointer();
            }
            returnType = node->getType();
            objectSize = constantNode->getType().getObjectSize();
        }

        ConstantUnion *tempConstArray = NULL;
        TIntermConstantUnion *tempNode;

        bool boolNodeFlag = false;
        switch(op)
        {
          case EOpAdd:
            tempConstArray = new ConstantUnion[objectSize];
            for (size_t i = 0; i < objectSize; i++)
                tempConstArray[i] = unionArray[i] + rightUnionArray[i];
            break;
          case EOpSub:
            tempConstArray = new ConstantUnion[objectSize];
            for (size_t i = 0; i < objectSize; i++)
                tempConstArray[i] = unionArray[i] - rightUnionArray[i];
            break;

          case EOpMul:
          case EOpVectorTimesScalar:
          case EOpMatrixTimesScalar:
            tempConstArray = new ConstantUnion[objectSize];
            for (size_t i = 0; i < objectSize; i++)
                tempConstArray[i] = unionArray[i] * rightUnionArray[i];
            break;

          case EOpMatrixTimesMatrix:
            {
                if (getType().getBasicType() != EbtFloat ||
                    node->getBasicType() != EbtFloat)
                {
                    infoSink.info.message(
                        EPrefixInternalError, getLine(),
                        "Constant Folding cannot be done for matrix multiply");
                    return NULL;
                }

                const int leftCols = getCols();
                const int leftRows = getRows();
                const int rightCols = constantNode->getType().getCols();
                const int rightRows = constantNode->getType().getRows();
                const int resultCols = rightCols;
                const int resultRows = leftRows;

                tempConstArray = new ConstantUnion[resultCols*resultRows];
                for (int row = 0; row < resultRows; row++)
                {
                    for (int column = 0; column < resultCols; column++)
                    {
                        tempConstArray[resultRows * column + row].setFConst(0.0f);
                        for (int i = 0; i < leftCols; i++)
                        {
                            tempConstArray[resultRows * column + row].setFConst(
                                tempConstArray[resultRows * column + row].getFConst() +
                                unionArray[i * leftRows + row].getFConst() *
                                rightUnionArray[column * rightRows + i].getFConst());
                        }
                    }
                }

                // update return type for matrix product
                returnType.setPrimarySize(resultCols);
                returnType.setSecondarySize(resultRows);
            }
            break;

          case EOpDiv:
            {
                tempConstArray = new ConstantUnion[objectSize];
                for (size_t i = 0; i < objectSize; i++)
                {
                    switch (getType().getBasicType())
                    {
                      case EbtFloat:
                        if (rightUnionArray[i] == 0.0f)
                        {
                            infoSink.info.message(
                                EPrefixWarning, getLine(),
                                "Divide by zero error during constant folding");
                            tempConstArray[i].setFConst(
                                unionArray[i].getFConst() < 0 ? -FLT_MAX : FLT_MAX);
                        }
                        else
                        {
                            tempConstArray[i].setFConst(
                                unionArray[i].getFConst() /
                                rightUnionArray[i].getFConst());
                        }
                        break;

                      case EbtInt:
                        if (rightUnionArray[i] == 0)
                        {
                            infoSink.info.message(
                                EPrefixWarning, getLine(),
                                "Divide by zero error during constant folding");
                            tempConstArray[i].setIConst(INT_MAX);
                        }
                        else
                        {
                            tempConstArray[i].setIConst(
                                unionArray[i].getIConst() /
                                rightUnionArray[i].getIConst());
                        }
                        break;

                      case EbtUInt:
                        if (rightUnionArray[i] == 0)
                        {
                            infoSink.info.message(
                                EPrefixWarning, getLine(),
                                "Divide by zero error during constant folding");
                            tempConstArray[i].setUConst(UINT_MAX);
                        }
                        else
                        {
                            tempConstArray[i].setUConst(
                                unionArray[i].getUConst() /
                                rightUnionArray[i].getUConst());
                        }
                        break;

                      default:
                        infoSink.info.message(
                            EPrefixInternalError, getLine(),
                            "Constant folding cannot be done for \"/\"");
                        return NULL;
                    }
                }
            }
            break;

          case EOpMatrixTimesVector:
            {
                if (node->getBasicType() != EbtFloat)
                {
                    infoSink.info.message(
                        EPrefixInternalError, getLine(),
                        "Constant Folding cannot be done for matrix times vector");
                    return NULL;
                }

                const int matrixCols = getCols();
                const int matrixRows = getRows();

                tempConstArray = new ConstantUnion[matrixRows];

                for (int matrixRow = 0; matrixRow < matrixRows; matrixRow++)
                {
                    tempConstArray[matrixRow].setFConst(0.0f);
                    for (int col = 0; col < matrixCols; col++)
                    {
                        tempConstArray[matrixRow].setFConst(
                            tempConstArray[matrixRow].getFConst() +
                            unionArray[col * matrixRows + matrixRow].getFConst() *
                            rightUnionArray[col].getFConst());
                    }
                }

                returnType = node->getType();
                returnType.setPrimarySize(matrixRows);

                tempNode = new TIntermConstantUnion(tempConstArray, returnType);
                tempNode->setLine(getLine());

                return tempNode;
            }

          case EOpVectorTimesMatrix:
            {
                if (getType().getBasicType() != EbtFloat)
                {
                    infoSink.info.message(
                        EPrefixInternalError, getLine(),
                        "Constant Folding cannot be done for vector times matrix");
                    return NULL;
                }

                const int matrixCols = constantNode->getType().getCols();
                const int matrixRows = constantNode->getType().getRows();

                tempConstArray = new ConstantUnion[matrixCols];

                for (int matrixCol = 0; matrixCol < matrixCols; matrixCol++)
                {
                    tempConstArray[matrixCol].setFConst(0.0f);
                    for (int matrixRow = 0; matrixRow < matrixRows; matrixRow++)
                    {
                        tempConstArray[matrixCol].setFConst(
                            tempConstArray[matrixCol].getFConst() +
                            unionArray[matrixRow].getFConst() *
                            rightUnionArray[matrixCol * matrixRows + matrixRow].getFConst());
                    }
                }

                returnType.setPrimarySize(matrixCols);
            }
            break;

          case EOpLogicalAnd:
            // this code is written for possible future use,
            // will not get executed currently
            {
                tempConstArray = new ConstantUnion[objectSize];
                for (size_t i = 0; i < objectSize; i++)
                {
                    tempConstArray[i] = unionArray[i] && rightUnionArray[i];
                }
            }
            break;

          case EOpLogicalOr:
            // this code is written for possible future use,
            // will not get executed currently
            {
                tempConstArray = new ConstantUnion[objectSize];
                for (size_t i = 0; i < objectSize; i++)
                {
                    tempConstArray[i] = unionArray[i] || rightUnionArray[i];
                }
            }
            break;

          case EOpLogicalXor:
            {
                tempConstArray = new ConstantUnion[objectSize];
                for (size_t i = 0; i < objectSize; i++)
                {
                    switch (getType().getBasicType())
                    {
                      case EbtBool:
                        tempConstArray[i].setBConst(
                            unionArray[i] == rightUnionArray[i] ? false : true);
                        break;
                      default:
                        UNREACHABLE();
                        break;
                    }
                }
            }
            break;

          case EOpLessThan:
            ASSERT(objectSize == 1);
            tempConstArray = new ConstantUnion[1];
            tempConstArray->setBConst(*unionArray < *rightUnionArray);
            returnType = TType(EbtBool, EbpUndefined, EvqConst);
            break;

          case EOpGreaterThan:
            ASSERT(objectSize == 1);
            tempConstArray = new ConstantUnion[1];
            tempConstArray->setBConst(*unionArray > *rightUnionArray);
            returnType = TType(EbtBool, EbpUndefined, EvqConst);
            break;

          case EOpLessThanEqual:
            {
                ASSERT(objectSize == 1);
                ConstantUnion constant;
                constant.setBConst(*unionArray > *rightUnionArray);
                tempConstArray = new ConstantUnion[1];
                tempConstArray->setBConst(!constant.getBConst());
                returnType = TType(EbtBool, EbpUndefined, EvqConst);
                break;
            }

          case EOpGreaterThanEqual:
            {
                ASSERT(objectSize == 1);
                ConstantUnion constant;
                constant.setBConst(*unionArray < *rightUnionArray);
                tempConstArray = new ConstantUnion[1];
                tempConstArray->setBConst(!constant.getBConst());
                returnType = TType(EbtBool, EbpUndefined, EvqConst);
                break;
            }

          case EOpEqual:
            if (getType().getBasicType() == EbtStruct)
            {
                if (!CompareStructure(node->getType(),
                                      node->getUnionArrayPointer(),
                                      unionArray))
                {
                    boolNodeFlag = true;
                }
            }
            else
            {
                for (size_t i = 0; i < objectSize; i++)
                {
                    if (unionArray[i] != rightUnionArray[i])
                    {
                        boolNodeFlag = true;
                        break;  // break out of for loop
                    }
                }
            }

            tempConstArray = new ConstantUnion[1];
            if (!boolNodeFlag)
            {
                tempConstArray->setBConst(true);
            }
            else
            {
                tempConstArray->setBConst(false);
            }

            tempNode = new TIntermConstantUnion(
                tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
            tempNode->setLine(getLine());

            return tempNode;

          case EOpNotEqual:
            if (getType().getBasicType() == EbtStruct)
            {
                if (CompareStructure(node->getType(),
                                     node->getUnionArrayPointer(),
                                     unionArray))
                {
                    boolNodeFlag = true;
                }
            }
            else
            {
                for (size_t i = 0; i < objectSize; i++)
                {
                    if (unionArray[i] == rightUnionArray[i])
                    {
                        boolNodeFlag = true;
                        break;  // break out of for loop
                    }
                }
            }

            tempConstArray = new ConstantUnion[1];
            if (!boolNodeFlag)
            {
                tempConstArray->setBConst(true);
            }
            else
            {
                tempConstArray->setBConst(false);
            }

            tempNode = new TIntermConstantUnion(
                tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
            tempNode->setLine(getLine());

            return tempNode;

          default:
            infoSink.info.message(
                EPrefixInternalError, getLine(),
                "Invalid operator for constant folding");
            return NULL;
        }
        tempNode = new TIntermConstantUnion(tempConstArray, returnType);
        tempNode->setLine(getLine());

        return tempNode;
    }
    else
    {
        //
        // Do unary operations
        //
        TIntermConstantUnion *newNode = 0;
        ConstantUnion* tempConstArray = new ConstantUnion[objectSize];
        for (size_t i = 0; i < objectSize; i++)
        {
            switch(op)
            {
              case EOpNegative:
                switch (getType().getBasicType())
                {
                  case EbtFloat:
                    tempConstArray[i].setFConst(-unionArray[i].getFConst());
                    break;
                  case EbtInt:
                    tempConstArray[i].setIConst(-unionArray[i].getIConst());
                    break;
                  case EbtUInt:
                    tempConstArray[i].setUConst(static_cast<unsigned int>(
                        -static_cast<int>(unionArray[i].getUConst())));
                    break;
                  default:
                    infoSink.info.message(
                        EPrefixInternalError, getLine(),
                        "Unary operation not folded into constant");
                    return NULL;
                }
                break;

              case EOpPositive:
                switch (getType().getBasicType())
                {
                  case EbtFloat:
                    tempConstArray[i].setFConst(unionArray[i].getFConst());
                    break;
                  case EbtInt:
                    tempConstArray[i].setIConst(unionArray[i].getIConst());
                    break;
                  case EbtUInt:
                    tempConstArray[i].setUConst(static_cast<unsigned int>(
                        static_cast<int>(unionArray[i].getUConst())));
                    break;
                  default:
                    infoSink.info.message(
                        EPrefixInternalError, getLine(),
                        "Unary operation not folded into constant");
                    return NULL;
                }
                break;

              case EOpLogicalNot:
                // this code is written for possible future use,
                // will not get executed currently
                switch (getType().getBasicType())
                {
                  case EbtBool:
                    tempConstArray[i].setBConst(!unionArray[i].getBConst());
                    break;
                  default:
                    infoSink.info.message(
                        EPrefixInternalError, getLine(),
                        "Unary operation not folded into constant");
                    return NULL;
                }
                break;

              default:
                return NULL;
            }
        }
        newNode = new TIntermConstantUnion(tempConstArray, getType());
        newNode->setLine(getLine());
        return newNode;
    }
}
Exemplo n.º 8
0
//
// Do folding between a pair of nodes
//
TIntermTyped* TIntermConstantUnion::fold(TOperator op, TIntermTyped* constantNode)
{
    TConstUnion *unionArray = getUnionArrayPointer();
    int objectSize = getType().getObjectSize();
    TConstUnion* newConstArray = 0;

    // For most cases, the return type matches the argument type, so set that
    // up and just code to exceptions below.
    TType returnType;
    returnType.shallowCopy(getType());

    //
    // A pair of nodes is to be folded together
    //

    TIntermConstantUnion *node = constantNode->getAsConstantUnion();
    TConstUnion *rightUnionArray = node->getUnionArrayPointer();

    if (constantNode->getType().getObjectSize() == 1 && objectSize > 1) {
        // for a case like float f = vec4(2,3,4,5) + 1.2;
        rightUnionArray = new TConstUnion[objectSize];
        for (int i = 0; i < objectSize; ++i)
            rightUnionArray[i] = *node->getUnionArrayPointer();
    } else if (constantNode->getType().getObjectSize() > 1 && objectSize == 1) {
        // for a case like float f = 1.2 + vec4(2,3,4,5);
        rightUnionArray = node->getUnionArrayPointer();
        unionArray = new TConstUnion[constantNode->getType().getObjectSize()];
        for (int i = 0; i < constantNode->getType().getObjectSize(); ++i)
            unionArray[i] = *getUnionArrayPointer();
        returnType.shallowCopy(node->getType());
        objectSize = constantNode->getType().getObjectSize();
    }

    int index = 0;
    bool boolNodeFlag = false;
    switch(op) {
    case EOpAdd:
        newConstArray = new TConstUnion[objectSize];
        for (int i = 0; i < objectSize; i++)
            newConstArray[i] = unionArray[i] + rightUnionArray[i];
        break;
    case EOpSub:
        newConstArray = new TConstUnion[objectSize];
        for (int i = 0; i < objectSize; i++)
            newConstArray[i] = unionArray[i] - rightUnionArray[i];
        break;

    case EOpMul:
    case EOpVectorTimesScalar:
    case EOpMatrixTimesScalar:
        newConstArray = new TConstUnion[objectSize];
        for (int i = 0; i < objectSize; i++)
            newConstArray[i] = unionArray[i] * rightUnionArray[i];
        break;
    case EOpMatrixTimesMatrix:
        newConstArray = new TConstUnion[getMatrixRows() * node->getMatrixCols()];
        for (int row = 0; row < getMatrixRows(); row++) {
            for (int column = 0; column < node->getMatrixCols(); column++) {
                double sum = 0.0f;
                for (int i = 0; i < node->getMatrixRows(); i++)
                    sum += unionArray[i * getMatrixRows() + row].getDConst() * rightUnionArray[column * node->getMatrixRows() + i].getDConst();
                newConstArray[column * getMatrixRows() + row].setDConst(sum);
            }
        }
        returnType.shallowCopy(TType(getType().getBasicType(), EvqConst, 0, getMatrixRows(), node->getMatrixCols()));
        break;
    case EOpDiv:
        newConstArray = new TConstUnion[objectSize];
        for (int i = 0; i < objectSize; i++) {
            switch (getType().getBasicType()) {
            case EbtDouble:
            case EbtFloat:
                newConstArray[i].setDConst(unionArray[i].getDConst() / rightUnionArray[i].getDConst());
                break;

            case EbtInt:
                if (rightUnionArray[i] == 0) {
                    newConstArray[i].setIConst(0xEFFFFFFF);
                } else
                    newConstArray[i].setIConst(unionArray[i].getIConst() / rightUnionArray[i].getIConst());
                break;

            case EbtUint:
                if (rightUnionArray[i] == 0) {
                    newConstArray[i].setUConst(0xFFFFFFFF);
                } else
                    newConstArray[i].setUConst(unionArray[i].getUConst() / rightUnionArray[i].getUConst());
                break;
            default:
                return 0;
            }
        }
        break;

    case EOpMatrixTimesVector:
        newConstArray = new TConstUnion[getMatrixRows()];
        for (int i = 0; i < getMatrixRows(); i++) {
            double sum = 0.0f;
            for (int j = 0; j < node->getVectorSize(); j++) {
                sum += unionArray[j*getMatrixRows() + i].getDConst() * rightUnionArray[j].getDConst();
            }
            newConstArray[i].setDConst(sum);
        }

        returnType.shallowCopy(TType(getBasicType(), EvqConst, getMatrixRows()));
        break;

    case EOpVectorTimesMatrix:
        newConstArray = new TConstUnion[node->getMatrixCols()];
        for (int i = 0; i < node->getMatrixCols(); i++) {
            double sum = 0.0f;
            for (int j = 0; j < getVectorSize(); j++)
                sum += unionArray[j].getDConst() * rightUnionArray[i*node->getMatrixRows() + j].getDConst();
            newConstArray[i].setDConst(sum);
        }

        returnType.shallowCopy(TType(getBasicType(), EvqConst, node->getMatrixCols()));
        break;

    case EOpMod:
        newConstArray = new TConstUnion[objectSize];
        for (int i = 0; i < objectSize; i++)
            newConstArray[i] = unionArray[i] % rightUnionArray[i];
        break;

    case EOpRightShift:
        newConstArray = new TConstUnion[objectSize];
        for (int i = 0; i < objectSize; i++)
            newConstArray[i] = unionArray[i] >> rightUnionArray[i];
        break;

    case EOpLeftShift:
        newConstArray = new TConstUnion[objectSize];
        for (int i = 0; i < objectSize; i++)
            newConstArray[i] = unionArray[i] << rightUnionArray[i];
        break;

    case EOpAnd:
        newConstArray = new TConstUnion[objectSize];
        for (int i = 0; i < objectSize; i++)
            newConstArray[i] = unionArray[i] & rightUnionArray[i];
        break;
    case EOpInclusiveOr:
        newConstArray = new TConstUnion[objectSize];
        for (int i = 0; i < objectSize; i++)
            newConstArray[i] = unionArray[i] | rightUnionArray[i];
        break;
    case EOpExclusiveOr:
        newConstArray = new TConstUnion[objectSize];
        for (int i = 0; i < objectSize; i++)
            newConstArray[i] = unionArray[i] ^ rightUnionArray[i];
        break;

    case EOpLogicalAnd: // this code is written for possible future use, will not get executed currently
        newConstArray = new TConstUnion[objectSize];
        for (int i = 0; i < objectSize; i++)
            newConstArray[i] = unionArray[i] && rightUnionArray[i];
        break;

    case EOpLogicalOr: // this code is written for possible future use, will not get executed currently
        newConstArray = new TConstUnion[objectSize];
        for (int i = 0; i < objectSize; i++)
            newConstArray[i] = unionArray[i] || rightUnionArray[i];
        break;

    case EOpLogicalXor:
        newConstArray = new TConstUnion[objectSize];
        for (int i = 0; i < objectSize; i++) {
            switch (getType().getBasicType()) {
            case EbtBool: newConstArray[i].setBConst((unionArray[i] == rightUnionArray[i]) ? false : true); break;
            default: assert(false && "Default missing");
            }
        }
        break;

    case EOpLessThan:
        assert(objectSize == 1);
        newConstArray = new TConstUnion[1];
        newConstArray->setBConst(*unionArray < *rightUnionArray);
        returnType.shallowCopy(TType(EbtBool, EvqConst));
        break;
    case EOpGreaterThan:
        assert(objectSize == 1);
        newConstArray = new TConstUnion[1];
        newConstArray->setBConst(*unionArray > *rightUnionArray);
        returnType.shallowCopy(TType(EbtBool, EvqConst));
        break;
    case EOpLessThanEqual:
    {
        assert(objectSize == 1);
        TConstUnion constant;
        constant.setBConst(*unionArray > *rightUnionArray);
        newConstArray = new TConstUnion[1];
        newConstArray->setBConst(!constant.getBConst());
        returnType.shallowCopy(TType(EbtBool, EvqConst));
        break;
    }
    case EOpGreaterThanEqual:
    {
        assert(objectSize == 1);
        TConstUnion constant;
        constant.setBConst(*unionArray < *rightUnionArray);
        newConstArray = new TConstUnion[1];
        newConstArray->setBConst(!constant.getBConst());
        returnType.shallowCopy(TType(EbtBool, EvqConst));
        break;
    }

    case EOpEqual:
        if (getType().getBasicType() == EbtStruct) {
            if (! CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
                boolNodeFlag = true;
        } else {
            for (int i = 0; i < objectSize; i++) {
                if (unionArray[i] != rightUnionArray[i]) {
                    boolNodeFlag = true;
                    break;  // break out of for loop
                }
            }
        }

        newConstArray = new TConstUnion[1];
        newConstArray->setBConst(! boolNodeFlag);
        returnType.shallowCopy(TType(EbtBool, EvqConst));
        break;

    case EOpNotEqual:
        if (getType().getBasicType() == EbtStruct) {
            if (CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
                boolNodeFlag = true;
        } else {
            for (int i = 0; i < objectSize; i++) {
                if (unionArray[i] == rightUnionArray[i]) {
                    boolNodeFlag = true;
                    break;  // break out of for loop
                }
            }
        }

        newConstArray = new TConstUnion[1];
        newConstArray->setBConst(! boolNodeFlag);
        returnType.shallowCopy(TType(EbtBool, EvqConst));
        break;

    default:
        return 0;
    }

    TIntermConstantUnion *newNode = new TIntermConstantUnion(newConstArray, returnType);
    newNode->setLoc(getLoc());

    return newNode;
}
Exemplo n.º 9
0
ParsedValue Parser::parseValue(TIntermTyped* e) {
    auto binary = e->getAsBinaryNode();
    auto symbol = e->getAsSymbolNode();
    auto aggregate = e->getAsAggregate();
    TIntermConstantUnion* constunion = e->getAsConstantUnion();
    if (binary != nullptr) {
        CodeOp op;
        switch (binary->getOp()) {
        case EOpAdd:
            op = CAdd;
            break;
        case EOpSub:
            op = CSub;
            break;
        case EOpMul:
            op = CMul;
            break;
        case EOpDiv:
            op = CDiv;
            break;
        case EOpLessThan:
            op = CLt;
            break;
        case EOpGreaterThan:
            op = CGt;
            break;
        case EOpLessThanEqual:
            op = CLte;
            break;
        case EOpGreaterThanEqual:
            op = CGte;
            break;
        case EOpEqual:
            op = CEq;
            break;
        case EOpNotEqual:
            op = CNeq;
            break;
        case EOpLogicalOr:
            op = COr;
            break;
        case EOpLogicalAnd:
            op = COr;
            break;
        case EOpMatrixTimesVector:
            op = CMul;
            break;
        case EOpVectorSwizzle: {
            auto field = new PField;
            field->e = parseValue(binary->getLeft());
            for (unsigned i = 0; i < binary->getRight()->getAsAggregate()->getSequence().size(); ++i) {
                int num = binary->getRight()->getAsAggregate()->getSequence()[i]->getAsConstantUnion()->getUnionArrayPointer()->getIConst();
                switch (num) {
                case 0:
                    field->field += "x";
                    break;
                case 1:
                    field->field += "y";
                    break;
                case 2:
                    field->field += "z";
                    break;
                case 3:
                    field->field += "w";
                    break;
                }
            }
            ParsedValue value;
            value.v = field;
            value.p = binary->getLine().first_line;
            return value;
        }
        //case OpMod: CMod;
        //case OpInterval: CInterval;
        default:
            error("Unsupported operation", e->getLine().first_line);
        }
        ParsedValue value;
        value.v = new POp(op, parseValue(binary->getLeft()), parseValue(binary->getRight()));
        value.p = e->getLine().first_line;
        return value;
    }
    else if (symbol != nullptr) {
        ParsedValue value;
        auto var = new PVar;
        var->v = symbol->getSymbol().c_str();
        value.v = var;
        value.p = e->getLine().first_line;
        return value;
    }
    else if (constunion != nullptr) {
        ParsedValue value;
        value.p = constunion->getLine().first_line;
        auto constVar = new PConst;
        switch (constunion->getType().getBasicType()) {
        case EbtFloat:
            constVar->c = new ConstFloat(constunion->getUnionArrayPointer()->getFConst());
            break;
        default:
            error("Unknown type", constunion->getLine().first_line);
        }
        value.v = constVar;
        return value;
    }
    else if (aggregate != nullptr) {
        switch (aggregate->getOp()) {
        case EOpConstructVec4: {
            auto vector = new PVector;
            for (size_t i = 0; i < aggregate->getSequence().size(); ++i) {
                vector->el.push_back(parseValue(aggregate->getSequence()[i]->getAsTyped()));
            }
            ParsedValue value;
            value.v = vector;
            value.p = aggregate->getLine().first_line;
            return value;
        }
        default:
            error("Unknown aggregate", constunion->getLine().first_line);
        }
    }

    error("Unsupported value expression", e->getLine().first_line);
    ParsedValue value;
    value.v = nullptr;
    value.p = e->getLine().first_line;
    return value;

    /*switch (e.expr) {
    case EField(ef, s):
    	return { v : PField(parseValue(ef),s), p : e.pos };
    case EConst(c):
    	switch( c ) {
    	case CIdent(i) #if !haxe3 , CType(i) #end:
    		switch( i ) {
    		case "null":
    			return { v : PConst(CNull), p : e.pos };
    		case "true":
    			return { v : PConst(CBool(true)), p : e.pos };
    		case "false":
    			return { v : PConst(CBool(false)), p : e.pos };
    		default:
    			return { v : PVar(i), p : e.pos };
    		}
    	case CInt(v):
    		return { v : PConst(CInt(Std.parseInt(v))), p : e.pos };
    	case CFloat(f):
    		return { v : PConst(CFloat(Std.parseFloat(f))), p : e.pos };
    	default:
    	}
    case EUnop(OpNeg, _, { expr : EConst(CInt(v)) } ):
    	return { v : PConst(CInt(-Std.parseInt(v))), p : e.pos };
    case EUnop(op, _, e1):
    	var op = switch( op ) {
    	case OpNeg: CNeg;
    	case OpNot: CNot;
    	default: error("Unsupported operation", e.pos);
    	}
    	return { v : PUnop(op,parseValue(e1)), p : e.pos };
    case ECall(c, params):
    	switch( c.expr ) {
    	case EField(v, f):
    		return makeCall(f, [v].concat(params), e.pos);
    	case EConst(c):
    		switch( c ) {
    		case CIdent(i) #if !haxe3 , CType(i) #end:
    			return makeCall(i, params, e.pos);
    		default:
    		}
    	default:
    	}
    case EArrayDecl(values):
    	var vl = [];
    	for( v in values )
    		vl.push(parseValue(v));
    	return { v : PVector(vl), p : e.pos };
    case EParenthesis(k):
    	var v = parseValue(k);
    	v.p = e.pos;
    	return v;
    case EIf(ec, eif, eelse), ETernary(ec,eif,eelse):
    	var vcond = parseValue(ec);
    	var vif = parseValue(eif);
    	if( eelse == null ) error("'if' needs an 'else'", e.pos);
    	var velse = parseValue(eelse);
    	return { v : PCond(vcond, vif, velse), p : e.pos };
    case EArray(e1, e2):
    	var e1 = parseValue(e1);
    	var e2 = parseValue(e2);
    	return { v : PRow(e1, e2), p : e.pos };
    default:
    }
    */
}