Exemplo n.º 1
0
void sim(Int_t nev=1) {

  gSystem->Load("liblhapdf");
  gSystem->Load("libEGPythia6");
  gSystem->Load("libpythia6");
  gSystem->Load("libAliPythia6");
  gSystem->Load("libhijing");
  gSystem->Load("libTHijing");
  gSystem->Load("libgeant321");

  if (gSystem->Getenv("EVENT"))
   nev = atoi(gSystem->Getenv("EVENT")) ;   
  
  AliSimulation simulator;
  simulator.SetMakeSDigits("TRD TOF PHOS HMPID EMCAL FMD ZDC PMD T0 VZERO");
  simulator.SetMakeDigitsFromHits("ITS TPC");
  simulator.SetWriteRawData("ALL","raw.root",kTRUE);

  simulator.SetDefaultStorage("local:///cvmfs/alice-ocdb.cern.ch/calibration/MC/Ideal");
  //simulator.SetDefaultStorage(Form("local://%s/OCDB", gSystem->pwd()));
  simulator.SetSpecificStorage("GRP/GRP/Data",
			       Form("local://%s",gSystem->pwd()));
  
  simulator.SetRunQA("ALL:ALL") ; 
  
  simulator.SetQARefDefaultStorage("local://$ALICE_ROOT/QAref") ;

  for (Int_t det = 0 ; det < AliQA::kNDET ; det++) {
    simulator.SetQACycles((AliQAv1::DETECTORINDEX_t)det, nev+1) ;
  }
  
  TStopwatch timer;
  timer.Start();
  simulator.Run(nev);
  timer.Stop();
  timer.Print();
}
Exemplo n.º 2
0
void write(int n) {


  TRandom R;
  TStopwatch timer;




  TFile f1("mathcoreVectorIO_F.root","RECREATE");

  // create tree
  TTree t1("t1","Tree with new Float LorentzVector");

  XYZTVectorF *v1 = new XYZTVectorF();
  t1.Branch("LV branch","ROOT::Math::XYZTVectorF",&v1);

  timer.Start();
  for (int i = 0; i < n; ++i) {
     double Px = R.Gaus(0,10);
     double Py = R.Gaus(0,10);
     double Pz = R.Gaus(0,10);
     double E  = R.Gaus(100,10);
     //CylindricalEta4D<double> & c = v1->Coordinates();
     //c.SetValues(Px,pY,pZ,E);
     v1->SetCoordinates(Px,Py,Pz,E);
     t1.Fill();
  }

  f1.Write();
  timer.Stop();
  std::cout << " Time for new Float Vector " << timer.RealTime() << "  " << timer.CpuTime() << std::endl;

  t1.Print();

}
    void run_PPToGammaGammaFiles() {

    gROOT->LoadMacro("FlatTreeMaker_Delphes_PPToGammaGammaFiles_C.so");
  
    TChain* fChain = new TChain("Delphes");
    ifstream sourceFiles("PPToGammaGammaFiles.txt");
    char line[128];
    int  count = 0;
    cout<< "Adding files from PPToGammaGammaFiles to chain..."<< endl;
     while (sourceFiles >> line) {
        fChain->Add(line);
        ++count;
     }
    cout << count<<" files added!"<<endl;
    sourceFiles.close();
    TStopwatch timer;
    timer.Start();    
    fChain->Process("FlatTreeMaker_Delphes");

    cout << "\n\nDone!" << endl;
    cout << "CPU Time : " << timer.CpuTime() <<endl;
    cout << "RealTime : " << timer.RealTime() <<endl;                             
    cout <<"\n";
}
Exemplo n.º 4
0
void makePlots() {

  gROOT->LoadMacro("analyze.C+");

  TStopwatch ts;
  ts.Start();

  TString input_ele = "ELE_FILE_TO_RUN";
  TString input_muon = "MUON_FILE_TO_RUN";
  bool addMC = true;
  int intLumi = 19712; // quote to 19.7

  double metCut = -1.;

  bool displayKStest = true;
  bool blinded = true;
  int nPhotons_req = 0;

  const int nChannels = 4;
  TString channels[nChannels] = {"ele_jjj", "ele_bjj",
				 "muon_jjj", "muon_bjj"};
  int nBtagReq[nChannels] = {0, 1,
			     0, 1};

  for(int i = 0; i < nChannels; i++) {
    if(i != 1 && i != 3) continue;
    if(i < 2) analyze(input_ele, addMC, i, intLumi, metCut, nPhotons_req, nBtagReq[i], displayKStest, blinded);
    else analyze(input_muon, addMC, i, intLumi, metCut, nPhotons_req, nBtagReq[i], displayKStest, blinded);
  }  

  ts.Stop();

  std::cout << "RealTime : " << ts.RealTime()/60.0 << " minutes" << std::endl;
  std::cout << "CPUTime  : " << ts.CpuTime()/60.0 << " minutes" << std::endl;

}
Exemplo n.º 5
0
Arquivo: sim.C Projeto: ktf/AliRoot
void sim(Int_t nev=1) {
  AliSimulation simu;
  simu.SetMakeSDigits("TRD TOF PHOS HMPID  EMCAL MUON FMD PMD T0 ZDC VZERO");
  simu.SetMakeDigits ("TRD TOF PHOS HMPID  EMCAL MUON FMD PMD T0 ZDC VZERO");
  simu.SetMakeDigitsFromHits("ITS TPC");
  simu.SetWriteRawData("ALL","raw.root",kTRUE);
  simu.SetDefaultStorage("local://$ALICE_ROOT/OCDB");
  simu.SetSpecificStorage("GRP/GRP/Data",
			  Form("local://%s",gSystem->pwd()));

  simu.SetRunQA("ALL:ALL") ; 
  simu.SetQARefDefaultStorage("local://$ALICE_ROOT/OCDB") ;

  for (Int_t det = 0 ; det < AliQA::kNDET ; det++) {
    simu.SetQACycles(det, 2) ;
  }
  
  TStopwatch timer;
  timer.Start();
  simu.Run(nev);
  WriteXsection();
  timer.Stop();
  timer.Print();
}
Exemplo n.º 6
0
int main(int argc, char **argv)
{
  TStopwatch reloj;
  reloj.Start();

  // split by ','
  string argStr = argv[1];
  vector<string> fileList;
  for (size_t i=0,n; i <= argStr.length(); i=n+1){
    n = argStr.find_first_of(',',i);
    if (n == string::npos) n = argStr.length();
    string tmp = argStr.substr(i,n-i);
    fileList.push_back(tmp);
  }

  Analysis1 o(fileList);
  o.EventsLoop();
  reloj.Stop();
  double tiempo = reloj.CpuTime();
  cout << "tiempo gastado en el calculo = " << tiempo << endl;

  return 0;

}
Exemplo n.º 7
0
Arquivo: sim.C Projeto: shahor02/FT2
void sim(Int_t nev=1) {

  gSystem->Exec(" rm itsSegmentations.root ");
  AliSimulation simulator;
  //  simulator.SetMakeSDigits("");

  //  simulator.SetMakeDigits("");

  simulator.SetDefaultStorage("local://$ALICE_ROOT/OCDB");
  simulator.SetSpecificStorage("GRP/GRP/Data",
			       Form("local://%s",gSystem->pwd()));
  simulator.SetSpecificStorage("ITS/Align/Data",
			       Form("local://%s",gSystem->pwd()));
  simulator.SetSpecificStorage("ITS/Calib/SimuParam",
			       Form("local://%s",gSystem->pwd()));
  simulator.SetRunHLT("");
  simulator.SetRunQA(":");

  TStopwatch timer;
  timer.Start();
  simulator.Run(nev);
  timer.Stop();
  timer.Print();
}
Exemplo n.º 8
0
void  testIntegPerf(double x1, double x2, int n = 100000){


   std::cout << "\n\n***************************************************************\n";
   std::cout << "Test integration performances in interval [ " << x1 << " , " << x2 << " ]\n\n";

  TStopwatch timer;

  double dx = (x2-x1)/double(n);

  //ROOT::Math::Functor1D<ROOT::Math::IGenFunction> f1(& TMath::BreitWigner);
  ROOT::Math::WrappedFunction<> f1(func);

  timer.Start();
  ROOT::Math::Integrator ig(f1 );
  double s1 = 0.0;
  nc = 0;
  for (int i = 0; i < n; ++i) {
     double x = x1 + dx*i;
     s1+= ig.Integral(x1,x);
  }
  timer.Stop();
  std::cout << "Time using ROOT::Math::Integrator        :\t" << timer.RealTime() << std::endl;
  std::cout << "Number of function calls = " << nc/n << std::endl;
  int pr = std::cout.precision(18);  std::cout << s1 << std::endl;  std::cout.precision(pr);



  //TF1 *fBW = new TF1("fBW","TMath::BreitWigner(x)",x1, x2);  //  this is faster but cannot measure number of function calls
  TF1 *fBW = new TF1("fBW",func2,x1, x2,0);

  timer.Start();
  nc = 0;
  double s2 = 0;
  for (int i = 0; i < n; ++i) {
     double x = x1 + dx*i;
     s2+= fBW->Integral(x1,x );
  }
  timer.Stop();
  std::cout << "Time using TF1::Integral :\t\t\t" << timer.RealTime() << std::endl;
  std::cout << "Number of function calls = " << nc/n << std::endl;
  pr = std::cout.precision(18);  std::cout << s1 << std::endl;  std::cout.precision(pr);


}
Exemplo n.º 9
0
// test using UNURAN string interface
void testStringAPI() {

   TH1D * h1 = new TH1D("h1G","gaussian distribution from Unuran",100,-10,10);
   TH1D * h2 = new TH1D("h2G","gaussian distribution from TRandom",100,-10,10);

   cout << "\nTest using UNURAN string API \n\n";


   TUnuran unr; 
   if (! unr.Init( "normal()", "method=arou") ) {
      cout << "Error initializing unuran" << endl;
      return;
   }

   int n = NGEN;
   TStopwatch w; 
   w.Start(); 

   for (int i = 0; i < n; ++i) {
       double x = unr.Sample(); 
       h1->Fill(  x ); 
   }

   w.Stop(); 
   cout << "Time using Unuran method " << unr.MethodName() << "\t=\t " << w.CpuTime() << endl;


   // use TRandom::Gaus
   w.Start();
   for (int i = 0; i < n; ++i) {
      double x = gRandom->Gaus(0,1); 
       h2->Fill(  x ); 
   }

   w.Stop(); 
   cout << "Time using TRandom::Gaus  \t=\t " << w.CpuTime() << endl;

   assert(c1 != 0);
   c1->cd(++izone);
   h1->Draw();
   c1->cd(++izone);
   h2->Draw();

}
Exemplo n.º 10
0
void testDiscDistr() { 

   cout << "\nTest Discrete distributions\n\n";

   TH1D * h1 = new TH1D("h1PS","Unuran Poisson prob",20,0,20);
   TH1D * h2 = new TH1D("h2PS","Poisson dist from TRandom",20,0,20);

   double mu = 5; 

   TF1 * f = new TF1("fps",poisson,1,0,1);
   f->SetParameter(0,mu);

   TUnuranDiscrDist dist2 = TUnuranDiscrDist(f);
   TUnuran unr;

   // dari method (needs also the mode and pmf sum)
   dist2.SetMode(int(mu) );
   dist2.SetProbSum(1.0);
   bool ret = unr.Init(dist2,"dari");
   if (!ret) return;

   TStopwatch w; 
   w.Start(); 

   int n = NGEN;
   for (int i = 0; i < n; ++i) {
      int k = unr.SampleDiscr(); 
      h1->Fill( double(k) ); 
   }

   w.Stop(); 
   cout << "Time using Unuran method " << unr.MethodName() << "\t=\t\t " << w.CpuTime() << endl;

   w.Start();
   for (int i = 0; i < n; ++i) {
      h2->Fill(  gRandom->Poisson(mu) ); 
   }
   cout << "Time using TRandom::Poisson " << "\t=\t\t " << w.CpuTime() << endl;

   c1->cd(++izone);
   h1->SetMarkerStyle(20);
   h1->Draw("E");
   h2->Draw("same");
   
   std::cout << " chi2 test of UNURAN vs TRandom generated histograms:  " << std::endl;
   h1->Chi2Test(h2,"UUP");

}
Exemplo n.º 11
0
void generate( R & r, TH1D * h) { 

  TStopwatch w; 

  r.SetSeed(0);
  //r.SetSeed(int(std::pow(2.0,28)));
  int m = NLOOP;
  int n = NEVT;
  for (int j = 0; j < m; ++j) { 

    //std::cout << r.GetSeed() << "   "; 

    w.Start();
//     if ( n < 40000000) iseed = std::rand();
//     iseed = 0;
    //TRandom3 r3(0);
    //r.SetSeed( 0 ); // generate random seeds
    //TRandom3 r3(0); 
    //r.SetSeed (static_cast<UInt_t> (4294967296.*r3.Rndm()) );

  // estimate PI
    double n1=0; 
    double rn[2000];
    double x; 
    double y; 
    for (int ievt = 0; ievt < n; ievt+=1000 ) { 
      r.RndmArray(2000,rn);
      for (int i=0; i < 1000; i++) { 
	x=rn[2*i];
	y=rn[2*i+1];
	if ( ( x*x + y*y ) <= 1.0 ) n1++;
      }
    }
    double piEstimate = 4.0 * double(n1)/double(n);
    double delta = piEstimate-PI; 
    h->Fill(delta); 
  }

  w.Stop();
  std::cout << std::endl; 
  std::cout << "Random:  " << typeid(r).name() 
	    << "\n\tTime = " << w.RealTime() << "  " << w.CpuTime() << std::endl;   
  std::cout << "Time/call:  " << w.CpuTime()/(2*n)*1.0E9 << std::endl; 
}
Exemplo n.º 12
0
RooAddPdf fitZToMuMuGammaMassUnbinned(
  const char *filename = "ZMuMuGammaMass_36.1ipb_EE.txt",
//   const char *filename = "ZMuMuGammaMass_2.9ipb_EB.txt",
//   const char *filename = "ZMuMuGammaMass_2.9ipb_EE.txt",
//   const char *filename = "ZMuMuGammaMass_Zmumu_Spring10_EB.txt",
//   const char *filename = "DimuonMass_data_Nov4ReReco.txt",

  const char* plotOpt = "NEU",
  const int nbins = 60)
{
  gROOT->ProcessLine(".L tdrstyle.C");
  setTDRStyle();
  gStyle->SetPadRightMargin(0.05);

  double minMass = 60;
  double maxMass = 120;
  RooRealVar  mass("mass","m(#mu#mu#gamma)", minMass, maxMass,"GeV/c^{2}");

  // Read data set

  RooDataSet *data = RooDataSet::read(filename,RooArgSet(mass));
//   RooDataSet *dataB = RooDataSet::read(filenameB,RooArgSet(mass));

// Build p.d.f.

////////////////////////////////////////////////
//             Parameters                     //
////////////////////////////////////////////////

//  Signal p.d.f. parameters
//  Parameters for a Gaussian and a Crystal Ball Lineshape
  RooRealVar  cbBias ("#Deltam_{CB}", "CB Bias", 0.05, -2, 2,"GeV/c^{2}");
  RooRealVar  cbSigma("#sigma_{CB}","CB Width", 1.38, 0.01, 10.0,"GeV/c^{2}");
  RooRealVar  cbCut  ("a_{CB}","CB Cut", 1.5, 0.1, 2.0);
  RooRealVar  cbPower("n_{CB}","CB Power", 1.3, 0.1, 20.0);

//   cbSigma.setConstant(kTRUE);
//   cbCut.setConstant(kTRUE);
//   cbPower.setConstant(kTRUE);

//  Parameters for Breit-Wigner
  RooRealVar bwMean("m_{Z}","BW Mean", 91.1876, "GeV/c^{2}");
  RooRealVar bwWidth("#Gamma_{Z}", "BW Width", 2.4952, "GeV/c^{2}");

  // Keep Breit-Wigner parameters fixed to the PDG values
//   bwMean.setConstant(kTRUE);
//   bwWidth.setConstant(kTRUE);


//  Background p.d.f. parameters
// Parameters for exponential
  RooRealVar expRate("#lambda_{exp}", "Exponential Rate", -0.119, -10, 1);

//   expRate.setConstant(kTRUE);



// fraction of signal
//  RooRealVar  frac("frac", "Signal Fraction", 0.1,0.,0.3.);
/*  RooRealVar  nsig("N_{S}", "#signal events", 9000, 0.,10000.);
  RooRealVar  nbkg("N_{B}", "#background events", 1000,2,10000.);*/
  RooRealVar  nsig("N_{S}", "#signal events", 29300, 0.1, 100000.);
  RooRealVar  nbkg("N_{B}", "#background events", 0, 0., 10000.);

//   nbkg.setConstant(kTRUE);



////////////////////////////////////////////////
//               P.D.F.s                      //
////////////////////////////////////////////////

// Di-photon mass signal p.d.f.
  RooBreitWigner bw("bw", "bw", mass, bwMean, bwWidth);
//   RooGaussian    signal("signal", "A  Gaussian Lineshape", mass, m0, sigma);
  RooCBShape     cball("cball", "A  Crystal Ball Lineshape", mass, cbBias, cbSigma, cbCut, cbPower);

  mass.setBins(100000, "fft");
  RooFFTConvPdf BWxCB("BWxCB","bw (X) crystall ball", mass, bw, cball);


// Di-photon mass background  p.d.f.
  RooExponential bg("bg","bkgd exp", mass, expRate);

// Di-photon mass model p.d.f.
  RooAddPdf      model("model", "signal + background mass model", RooArgList(BWxCB, bg), RooArgList(nsig, nbkg));


  TStopwatch t ;
  t.Start() ;
  model.fitTo(*data,FitOptions("mh"),Optimize(0),Timer(1));
//   signal->fitTo(*data,FitOptions("mh"),Optimize(0),Timer(1));

  t.Print() ;

  TCanvas *c = new TCanvas("c","Unbinned Invariant Mass Fit", 0,0,800,600);
// Plot the fit results
  RooPlot* plot = mass.frame(Range(minMass,maxMass),Bins(nbins));

// Plot 1
//   dataB->plotOn(plot, MarkerColor(kRed), LineColor(kRed));
  data->plotOn(plot);
//   model.plotOn(plot);
  model.plotOn(plot);
  //model.paramOn(plot, Format(plotOpt, AutoPrecision(1)), Parameters(RooArgSet(nsig, nbkg, m0, sigma)));
  model.paramOn(plot,
                Format(plotOpt, AutoPrecision(2) ),
                Parameters(RooArgSet(cbBias,
                                     cbSigma,
                                     cbCut,
                                     cbPower,
                                     bwMean,
                                     bwWidth,
                                     expRate,
                                     nsig,
                                     nbkg)),
                Layout(.67, 0.97, 0.97),
                ShowConstants(kTRUE) );

//   model.plotOn(plot, Components("signal"), LineStyle(kDashed), LineColor(kRed));
  model.plotOn(plot, Components("bg"), LineStyle(kDashed), LineColor(kRed));


  plot->Draw();

//   TLatex *   tex = new TLatex(0.2,0.8,"CMS preliminary");
//   tex->SetNDC();
//   tex->SetTextFont(42);
//   tex->SetLineWidth(2);
//   tex->Draw();
//   tex->DrawLatex(0.2, 0.725, "7 TeV Data, L = 258 pb^{-1}");
//
//   float fsig_peak = NormalizedIntegral(model,
//                       mass,
//                       cbBias.getVal() - 2.5*cbSigma.getVal(),
//                       cbBias.getVal() + 2.5*cbSigma.getVal()
//                     );

//   float fbkg_peak = NormalizedIntegral(bg,
//                       mass,
//                       m0.getVal() - 2.5*sigma.getVal(),
//                       m0.getVal() + 2.5*sigma.getVal()
//                     );

/*  double nsigVal = fsig_peak * nsig.getVal();
  double nsigErr = fsig_peak * nsig.getError();
  double nsigErrRel = nsigErr / nsigVal;*/
//   double nbkgVal = fbkg_peak * nbkg.getVal();
//   double nbkgErr = fbkg_peak * nbkg.getError();
//   double nbkgErrRel = nbkgErr / nbkgVal;

//   cout << "nsig " << nsigVal << " +/- " << nsigErr << endl;
//   cout << "S/B_{#pm2.5#sigma} " << nsigVal/nbkgVal << " +/- "
//     << (nsigVal/nbkgVal)*sqrt(nsigErrRel*nsigErrRel + nbkgErrRel*nbkgErrRel)
//     << endl;

//   tex->DrawLatex(0.2, 0.6, Form("N_{S} = %.0f#pm%.0f", nsigVal, nsigErr) );
//   tex->DrawLatex(0.2, 0.525, Form("S/B_{#pm2.5#sigma} = %.1f", nsigVal/nbkgVal) );
//   tex->DrawLatex(0.2, 0.45, Form("#frac{S}{#sqrt{B}}_{#pm2.5#sigma} = %.1f", nsigVal/sqrt(nbkgVal)));

//   leg = new TLegend(0.65,0.6,0.9,0.75);
//   leg->SetFillColor(kWhite);
//   leg->SetLineColor(kWhite);
//   leg->SetShadowColor(kWhite);
//   leg->SetTextFont(42);

//   TLegendEntry * ldata  = leg->AddEntry(data, "Opposite Sign");
//   TLegendEntry * ldataB = leg->AddEntry(dataB, "Same Sign");
//   ldata->SetMarkerStyle(20);
//   ldataB->SetMarkerStyle(20);
//   ldataB->SetMarkerColor(kRed);

//   leg->Draw();

  return model;

}
Exemplo n.º 13
0
// internal routine to run the inverter
HypoTestInverterResult *
RooStats::HypoTestInvTool::RunInverter(RooWorkspace * w,
                                       const char * modelSBName, const char * modelBName, 
                                       const char * dataName, int type,  int testStatType, 
                                       bool useCLs, int npoints, double poimin, double poimax, 
                                       int ntoys,
                                       bool useNumberCounting,
                                       const char * nuisPriorName ){

   std::cout << "Running HypoTestInverter on the workspace " << w->GetName() << std::endl;
  
   w->Print();
  
  
   RooAbsData * data = w->data(dataName); 
   if (!data) { 
      Error("StandardHypoTestDemo","Not existing data %s",dataName);
      return 0;
   }
   else 
      std::cout << "Using data set " << dataName << std::endl;
  
   if (mUseVectorStore) { 
      RooAbsData::setDefaultStorageType(RooAbsData::Vector);
      data->convertToVectorStore() ;
   }
  
  
   // get models from WS
   // get the modelConfig out of the file
   ModelConfig* bModel = (ModelConfig*) w->obj(modelBName);
   ModelConfig* sbModel = (ModelConfig*) w->obj(modelSBName);
  
   if (!sbModel) {
      Error("StandardHypoTestDemo","Not existing ModelConfig %s",modelSBName);
      return 0;
   }
   // check the model 
   if (!sbModel->GetPdf()) { 
      Error("StandardHypoTestDemo","Model %s has no pdf ",modelSBName);
      return 0;
   }
   if (!sbModel->GetParametersOfInterest()) {
      Error("StandardHypoTestDemo","Model %s has no poi ",modelSBName);
      return 0;
   }
   if (!sbModel->GetObservables()) {
      Error("StandardHypoTestInvDemo","Model %s has no observables ",modelSBName);
      return 0;
   }
   if (!sbModel->GetSnapshot() ) { 
      Info("StandardHypoTestInvDemo","Model %s has no snapshot  - make one using model poi",modelSBName);
      sbModel->SetSnapshot( *sbModel->GetParametersOfInterest() );
   }
  
   // case of no systematics
   // remove nuisance parameters from model
   if (noSystematics) { 
      const RooArgSet * nuisPar = sbModel->GetNuisanceParameters();
      if (nuisPar && nuisPar->getSize() > 0) { 
         std::cout << "StandardHypoTestInvDemo" << "  -  Switch off all systematics by setting them constant to their initial values" << std::endl;
         RooStats::SetAllConstant(*nuisPar);
      }
      if (bModel) { 
         const RooArgSet * bnuisPar = bModel->GetNuisanceParameters();
         if (bnuisPar) 
            RooStats::SetAllConstant(*bnuisPar);
      }
   }
  
   if (!bModel || bModel == sbModel) {
      Info("StandardHypoTestInvDemo","The background model %s does not exist",modelBName);
      Info("StandardHypoTestInvDemo","Copy it from ModelConfig %s and set POI to zero",modelSBName);
      bModel = (ModelConfig*) sbModel->Clone();
      bModel->SetName(TString(modelSBName)+TString("_with_poi_0"));      
      RooRealVar * var = dynamic_cast<RooRealVar*>(bModel->GetParametersOfInterest()->first());
      if (!var) return 0;
      double oldval = var->getVal();
      var->setVal(0);
      bModel->SetSnapshot( RooArgSet(*var)  );
      var->setVal(oldval);
   }
   else { 
      if (!bModel->GetSnapshot() ) { 
         Info("StandardHypoTestInvDemo","Model %s has no snapshot  - make one using model poi and 0 values ",modelBName);
         RooRealVar * var = dynamic_cast<RooRealVar*>(bModel->GetParametersOfInterest()->first());
         if (var) { 
            double oldval = var->getVal();
            var->setVal(0);
            bModel->SetSnapshot( RooArgSet(*var)  );
            var->setVal(oldval);
         }
         else { 
            Error("StandardHypoTestInvDemo","Model %s has no valid poi",modelBName);
            return 0;
         }         
      }
   }

   // check model  has global observables when there are nuisance pdf
   // for the hybrid case the globobs are not needed
   if (type != 1 ) { 
      bool hasNuisParam = (sbModel->GetNuisanceParameters() && sbModel->GetNuisanceParameters()->getSize() > 0);
      bool hasGlobalObs = (sbModel->GetGlobalObservables() && sbModel->GetGlobalObservables()->getSize() > 0);
      if (hasNuisParam && !hasGlobalObs ) {  
         // try to see if model has nuisance parameters first 
         RooAbsPdf * constrPdf = RooStats::MakeNuisancePdf(*sbModel,"nuisanceConstraintPdf_sbmodel");
         if (constrPdf) { 
            Warning("StandardHypoTestInvDemo","Model %s has nuisance parameters but no global observables associated",sbModel->GetName());
            Warning("StandardHypoTestInvDemo","\tThe effect of the nuisance parameters will not be treated correctly ");
         }
      }
   }


  
   // run first a data fit 
  
   const RooArgSet * poiSet = sbModel->GetParametersOfInterest();
   RooRealVar *poi = (RooRealVar*)poiSet->first();
  
   std::cout << "StandardHypoTestInvDemo : POI initial value:   " << poi->GetName() << " = " << poi->getVal()   << std::endl;  
  
   // fit the data first (need to use constraint )
   TStopwatch tw; 

   bool doFit = initialFit;
   if (testStatType == 0 && initialFit == -1) doFit = false;  // case of LEP test statistic
   if (type == 3  && initialFit == -1) doFit = false;         // case of Asymptoticcalculator with nominal Asimov
   double poihat = 0;

   if (minimizerType.size()==0) minimizerType = ROOT::Math::MinimizerOptions::DefaultMinimizerType();
   else 
      ROOT::Math::MinimizerOptions::SetDefaultMinimizer(minimizerType.c_str());
    
   Info("StandardHypoTestInvDemo","Using %s as minimizer for computing the test statistic",
        ROOT::Math::MinimizerOptions::DefaultMinimizerType().c_str() );
   
   if (doFit)  { 

      // do the fit : By doing a fit the POI snapshot (for S+B)  is set to the fit value
      // and the nuisance parameters nominal values will be set to the fit value. 
      // This is relevant when using LEP test statistics

      Info( "StandardHypoTestInvDemo"," Doing a first fit to the observed data ");
      RooArgSet constrainParams;
      if (sbModel->GetNuisanceParameters() ) constrainParams.add(*sbModel->GetNuisanceParameters());
      RooStats::RemoveConstantParameters(&constrainParams);
      tw.Start(); 
      RooFitResult * fitres = sbModel->GetPdf()->fitTo(*data,InitialHesse(false), Hesse(false),
                                                       Minimizer(minimizerType.c_str(),"Migrad"), Strategy(0), PrintLevel(mPrintLevel), Constrain(constrainParams), Save(true) );
      if (fitres->status() != 0) { 
         Warning("StandardHypoTestInvDemo","Fit to the model failed - try with strategy 1 and perform first an Hesse computation");
         fitres = sbModel->GetPdf()->fitTo(*data,InitialHesse(true), Hesse(false),Minimizer(minimizerType.c_str(),"Migrad"), Strategy(1), PrintLevel(mPrintLevel+1), Constrain(constrainParams), Save(true) );
      }
      if (fitres->status() != 0) 
         Warning("StandardHypoTestInvDemo"," Fit still failed - continue anyway.....");
  
  
      poihat  = poi->getVal();
      std::cout << "StandardHypoTestInvDemo - Best Fit value : " << poi->GetName() << " = "  
                << poihat << " +/- " << poi->getError() << std::endl;
      std::cout << "Time for fitting : "; tw.Print(); 
  
      //save best fit value in the poi snapshot 
      sbModel->SetSnapshot(*sbModel->GetParametersOfInterest());
      std::cout << "StandardHypoTestInvo: snapshot of S+B Model " << sbModel->GetName() 
                << " is set to the best fit value" << std::endl;
  
   }

   // print a message in case of LEP test statistics because it affects result by doing or not doing a fit 
   if (testStatType == 0) {
      if (!doFit) 
         Info("StandardHypoTestInvDemo","Using LEP test statistic - an initial fit is not done and the TS will use the nuisances at the model value");
      else 
         Info("StandardHypoTestInvDemo","Using LEP test statistic - an initial fit has been done and the TS will use the nuisances at the best fit value");
   }


   // build test statistics and hypotest calculators for running the inverter 
  
   SimpleLikelihoodRatioTestStat slrts(*sbModel->GetPdf(),*bModel->GetPdf());

   // null parameters must includes snapshot of poi plus the nuisance values 
   RooArgSet nullParams(*sbModel->GetSnapshot());
   if (sbModel->GetNuisanceParameters()) nullParams.add(*sbModel->GetNuisanceParameters());
   if (sbModel->GetSnapshot()) slrts.SetNullParameters(nullParams);
   RooArgSet altParams(*bModel->GetSnapshot());
   if (bModel->GetNuisanceParameters()) altParams.add(*bModel->GetNuisanceParameters());
   if (bModel->GetSnapshot()) slrts.SetAltParameters(altParams);
  
   // ratio of profile likelihood - need to pass snapshot for the alt
   RatioOfProfiledLikelihoodsTestStat 
      ropl(*sbModel->GetPdf(), *bModel->GetPdf(), bModel->GetSnapshot());
   ropl.SetSubtractMLE(false);
   if (testStatType == 11) ropl.SetSubtractMLE(true);
   ropl.SetPrintLevel(mPrintLevel);
   ropl.SetMinimizer(minimizerType.c_str());
  
   ProfileLikelihoodTestStat profll(*sbModel->GetPdf());
   if (testStatType == 3) profll.SetOneSided(true);
   if (testStatType == 4) profll.SetSigned(true);
   profll.SetMinimizer(minimizerType.c_str());
   profll.SetPrintLevel(mPrintLevel);

   profll.SetReuseNLL(mOptimize);
   slrts.SetReuseNLL(mOptimize);
   ropl.SetReuseNLL(mOptimize);

   if (mOptimize) { 
      profll.SetStrategy(0);
      ropl.SetStrategy(0);
      ROOT::Math::MinimizerOptions::SetDefaultStrategy(0);
   }
  
   if (mMaxPoi > 0) poi->setMax(mMaxPoi);  // increase limit
  
   MaxLikelihoodEstimateTestStat maxll(*sbModel->GetPdf(),*poi); 
   NumEventsTestStat nevtts;

   AsymptoticCalculator::SetPrintLevel(mPrintLevel);
  
   // create the HypoTest calculator class 
   HypoTestCalculatorGeneric *  hc = 0;
   if (type == 0) hc = new FrequentistCalculator(*data, *bModel, *sbModel);
   else if (type == 1) hc = new HybridCalculator(*data, *bModel, *sbModel);
   // else if (type == 2 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel, false, mAsimovBins);
   // else if (type == 3 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel, true, mAsimovBins);  // for using Asimov data generated with nominal values 
   else if (type == 2 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel, false );
   else if (type == 3 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel, true );  // for using Asimov data generated with nominal values 
   else {
      Error("StandardHypoTestInvDemo","Invalid - calculator type = %d supported values are only :\n\t\t\t 0 (Frequentist) , 1 (Hybrid) , 2 (Asymptotic) ",type);
      return 0;
   }
  
   // set the test statistic 
   TestStatistic * testStat = 0;
   if (testStatType == 0) testStat = &slrts;
   if (testStatType == 1 || testStatType == 11) testStat = &ropl;
   if (testStatType == 2 || testStatType == 3 || testStatType == 4) testStat = &profll;
   if (testStatType == 5) testStat = &maxll;
   if (testStatType == 6) testStat = &nevtts;

   if (testStat == 0) { 
      Error("StandardHypoTestInvDemo","Invalid - test statistic type = %d supported values are only :\n\t\t\t 0 (SLR) , 1 (Tevatron) , 2 (PLR), 3 (PLR1), 4(MLE)",testStatType);
      return 0;
   }
  
  
   ToyMCSampler *toymcs = (ToyMCSampler*)hc->GetTestStatSampler();
   if (toymcs && (type == 0 || type == 1) ) { 
      // look if pdf is number counting or extended
      if (sbModel->GetPdf()->canBeExtended() ) { 
         if (useNumberCounting)   Warning("StandardHypoTestInvDemo","Pdf is extended: but number counting flag is set: ignore it ");
      }
      else { 
         // for not extended pdf
         if (!useNumberCounting  )  { 
            int nEvents = data->numEntries();
            Info("StandardHypoTestInvDemo","Pdf is not extended: number of events to generate taken  from observed data set is %d",nEvents);
            toymcs->SetNEventsPerToy(nEvents);
         }
         else {
            Info("StandardHypoTestInvDemo","using a number counting pdf");
            toymcs->SetNEventsPerToy(1);
         }
      }

      toymcs->SetTestStatistic(testStat);
    
      if (data->isWeighted() && !mGenerateBinned) { 
         Info("StandardHypoTestInvDemo","Data set is weighted, nentries = %d and sum of weights = %8.1f but toy generation is unbinned - it would be faster to set mGenerateBinned to true\n",data->numEntries(), data->sumEntries());
      }
      toymcs->SetGenerateBinned(mGenerateBinned);
  
      toymcs->SetUseMultiGen(mOptimize);
    
      if (mGenerateBinned &&  sbModel->GetObservables()->getSize() > 2) { 
         Warning("StandardHypoTestInvDemo","generate binned is activated but the number of ovservable is %d. Too much memory could be needed for allocating all the bins",sbModel->GetObservables()->getSize() );
      }

      // set the random seed if needed
      if (mRandomSeed >= 0) RooRandom::randomGenerator()->SetSeed(mRandomSeed); 
    
   }
  
   // specify if need to re-use same toys
   if (reuseAltToys) {
      hc->UseSameAltToys();
   }
  
   if (type == 1) { 
      HybridCalculator *hhc = dynamic_cast<HybridCalculator*> (hc);
      assert(hhc);
    
      hhc->SetToys(ntoys,ntoys/mNToysRatio); // can use less ntoys for b hypothesis 
    
      // remove global observables from ModelConfig (this is probably not needed anymore in 5.32)
      bModel->SetGlobalObservables(RooArgSet() );
      sbModel->SetGlobalObservables(RooArgSet() );
    
    
      // check for nuisance prior pdf in case of nuisance parameters 
      if (bModel->GetNuisanceParameters() || sbModel->GetNuisanceParameters() ) {

         // fix for using multigen (does not work in this case)
         toymcs->SetUseMultiGen(false);
         ToyMCSampler::SetAlwaysUseMultiGen(false);

         RooAbsPdf * nuisPdf = 0; 
         if (nuisPriorName) nuisPdf = w->pdf(nuisPriorName);
         // use prior defined first in bModel (then in SbModel)
         if (!nuisPdf)  { 
            Info("StandardHypoTestInvDemo","No nuisance pdf given for the HybridCalculator - try to deduce  pdf from the model");
            if (bModel->GetPdf() && bModel->GetObservables() ) 
               nuisPdf = RooStats::MakeNuisancePdf(*bModel,"nuisancePdf_bmodel");
            else 
               nuisPdf = RooStats::MakeNuisancePdf(*sbModel,"nuisancePdf_sbmodel");
         }   
         if (!nuisPdf ) {
            if (bModel->GetPriorPdf())  { 
               nuisPdf = bModel->GetPriorPdf();
               Info("StandardHypoTestInvDemo","No nuisance pdf given - try to use %s that is defined as a prior pdf in the B model",nuisPdf->GetName());            
            }
            else { 
               Error("StandardHypoTestInvDemo","Cannnot run Hybrid calculator because no prior on the nuisance parameter is specified or can be derived");
               return 0;
            }
         }
         assert(nuisPdf);
         Info("StandardHypoTestInvDemo","Using as nuisance Pdf ... " );
         nuisPdf->Print();
      
         const RooArgSet * nuisParams = (bModel->GetNuisanceParameters() ) ? bModel->GetNuisanceParameters() : sbModel->GetNuisanceParameters();
         RooArgSet * np = nuisPdf->getObservables(*nuisParams);
         if (np->getSize() == 0) { 
            Warning("StandardHypoTestInvDemo","Prior nuisance does not depend on nuisance parameters. They will be smeared in their full range");
         }
         delete np;
      
         hhc->ForcePriorNuisanceAlt(*nuisPdf);
         hhc->ForcePriorNuisanceNull(*nuisPdf);
      
      
      }
   } 
   else if (type == 2 || type == 3) { 
      if (testStatType == 3) ((AsymptoticCalculator*) hc)->SetOneSided(true);  
      if (testStatType != 2 && testStatType != 3)  
         Warning("StandardHypoTestInvDemo","Only the PL test statistic can be used with AsymptoticCalculator - use by default a two-sided PL");
   }
   else if (type == 0 || type == 1) 
      ((FrequentistCalculator*) hc)->SetToys(ntoys,ntoys/mNToysRatio); 

  
   // Get the result
   RooMsgService::instance().getStream(1).removeTopic(RooFit::NumIntegration);
  
  
  
   HypoTestInverter calc(*hc);
   calc.SetConfidenceLevel(0.95);
  
  
   calc.UseCLs(useCLs);
   calc.SetVerbose(true);
  
   // can speed up using proof-lite
   if (mUseProof && mNWorkers > 1) { 
      ProofConfig pc(*w, mNWorkers, "", kFALSE);
      toymcs->SetProofConfig(&pc);    // enable proof
   }
  
  
   if (npoints > 0) {
      if (poimin > poimax) { 
         // if no min/max given scan between MLE and +4 sigma 
         poimin = int(poihat);
         poimax = int(poihat +  4 * poi->getError());
      }
      std::cout << "Doing a fixed scan  in interval : " << poimin << " , " << poimax << std::endl;
      calc.SetFixedScan(npoints,poimin,poimax);
   }
   else { 
      //poi->setMax(10*int( (poihat+ 10 *poi->getError() )/10 ) );
      std::cout << "Doing an  automatic scan  in interval : " << poi->getMin() << " , " << poi->getMax() << std::endl;
   }
  
   tw.Start();
   HypoTestInverterResult * r = calc.GetInterval();
   std::cout << "Time to perform limit scan \n";
   tw.Print();
  
   if (mRebuild) {
      calc.SetCloseProof(1);
      tw.Start();
      SamplingDistribution * limDist = calc.GetUpperLimitDistribution(true,mNToyToRebuild);
      std::cout << "Time to rebuild distributions " << std::endl;
      tw.Print();
    
      if (limDist) { 
         std::cout << "expected up limit " << limDist->InverseCDF(0.5) << " +/- " 
                   << limDist->InverseCDF(0.16) << "  " 
                   << limDist->InverseCDF(0.84) << "\n"; 
      
         //update r to a new updated result object containing the rebuilt expected p-values distributions
         // (it will not recompute the expected limit)
         if (r) delete r;  // need to delete previous object since GetInterval will return a cloned copy
         r = calc.GetInterval();
      
      }
      else 
         std::cout << "ERROR : failed to re-build distributions " << std::endl; 
   }
  
   return r;
}
void inflateTree(const char *name = "h42",
                 const char *in = "root://eospps.cern.ch///eos/ppsscratch/test/h1big.root",
                 const char *out = "/tmp/h1big.root",  Int_t fact = 1)
{
	TStopwatch sw;
	sw.Start();
	
   // Get the input tree from the input file
   TFile *fin = TFile::Open(in);
   if (!fin || fin->IsZombie()) {
      Printf("inflateTree", "could not open input file: %s", in);
      return;
   }
   TTree *tin = (TTree *) fin->Get(name);
   if (!tin) {
      Printf("inflateTree", "could not find tree '%s' in %s", name, in);
      delete fin;
      return;
   }
   Long64_t nin = tin->GetEntriesFast();
   Printf("Input tree '%s' has %lld entries", name, nin);
   // Create output file
   TFile *fout = TFile::Open(out, "RECREATE", 0, 1);
   if (!fout || fout->IsZombie()) {
      Printf("inflateTree", "could not open input file: %s", in);
      delete fin;
      return;
   }
   // Clone the header of the initial tree
   TTree *tout= (TTree *) tin->CloneTree(0);
   tout->SetMaxTreeSize(19000000000);


   // Duplicate all entries once
#if 0
   Int_t nc = fact;
   while (nc--) {
      Printf("Writing copy %d ...", fact - nc);
      tout->CopyEntries(tin);
   }
#else
   for (Long64_t i = 0; i < nin; ++i) {
      if (tin->LoadTree(i) < 0) {
         break;
      }
      tin->GetEntry(i);
      Int_t nc = fact;
      while (nc--) {
         tout->Fill();
      }
      if (i > 0 && !(i%1000)) {
         Printf("%d copies of %lld entries filled ...", fact, i);
      }
   }
#endif
   // Finalize the writing out
   tout->Write();
   
   // print perf stats
   

    sw.Stop();
    std::cout << "Drawing. Realtime: " <<      sw.RealTime()  << std::endl;
    std::cout << "Drawing. Cputime : " <<      sw.CpuTime()  << std::endl;
	tin->PrintCacheStats();   
   
   
   // Close the files
   fout->Close();
   fin->Close();
   // Cleanup
   delete fout;
   delete fin;
}
Exemplo n.º 15
0
void r3blandreco(Int_t nNeutrons, Int_t beamE, Int_t Erel)
{
  Int_t d;
  if(Erel == 100){
    d = 35;
  }
  else{
    d = 14;
  }
  
  // ----- Files ---------------------------------------------------------------
  char strDir[] = ".";
  char str[100];
  char str2[100];
  sprintf(str, "%1dAMeV.%1dn.%1dkeV.%1dm.root", beamE,nNeutrons, Erel, d);
  sprintf(str2, "%1dAMeV.%1dkeV.%1dm", beamE, Erel, d);
  TString inFile  = TString(strDir) + "/r3bsim." + TString(str);
  TString digiFile  = TString(strDir) + "/r3bcalibr." + TString(str);
  TString parFile  = TString(strDir) + "/r3bpar." + TString(str);
  TString calibrFile  = TString(strDir) + "/r3bcalibr." + TString(str2) + ".txt";
  TString outFile  = TString(strDir) + "/r3breco." + TString(str);
  // ---------------------------------------------------------------------------



  // ----- Timer ---------------------------------------------------------------
  TStopwatch timer;
  timer.Start();
  // ---------------------------------------------------------------------------



  // ----- Digitization --------------------------------------------------------
  FairRunAna *fRun= new FairRunAna();
  fRun->SetInputFile(inFile);
  fRun->AddFriend(digiFile);
  fRun->SetOutputFile(outFile);
  // ---------------------------------------------------------------------------


  // ---------------------------------------------------------------------------
  Double_t beamEnergy;
  Double_t beamBeta;
  if(200 == beamE) {
    beamEnergy=200.;
    beamBeta=0.5676881;
  } else if(600 == beamE) {
    beamEnergy=600.;
    beamBeta=0.7937626;
  } else if(1000 == beamE) {
    beamEnergy=1000.;
    beamBeta=0.8760237;
  }
  // ---------------------------------------------------------------------------
  
  
  
  // ----- Connect the Tracking Task -------------------------------------------
  R3BNeutronTracker2D* tracker  = new R3BNeutronTracker2D();
  tracker->UseBeam(beamEnergy, beamBeta);
  tracker->ReadCalibrFile(calibrFile.Data());
  fRun->AddTask(tracker);
  // ---------------------------------------------------------------------------



  // ----- Runtime DataBase info -----------------------------------------------
  FairRuntimeDb* rtdb = fRun->GetRuntimeDb();
  FairParRootFileIo*  parIo1 = new FairParRootFileIo();
  parIo1->open(parFile.Data());
  rtdb->setFirstInput(parIo1);
  rtdb->setOutput(parIo1);
  rtdb->saveOutput();
  // ---------------------------------------------------------------------------



  // ----- Number of events to process -----------------------------------------
  Int_t nEvents = 10000;
  // ---------------------------------------------------------------------------


  
  // ----- Intialise and run ---------------------------------------------------
  fRun->Init();
  fRun->Run(0, nEvents);
  // ---------------------------------------------------------------------------



  // ----- Finish --------------------------------------------------------------
  timer.Stop();
  Double_t rtime = timer.RealTime();
  Double_t ctime = timer.CpuTime();
  cout << endl << endl;
  cout << "Macro finished succesfully." << endl;
  cout << "Output file writen:  "    << outFile << endl;
  cout << "Parameter file writen " << parFile << endl;
  cout << "Real time " << rtime << " s, CPU time " << ctime << " s" << endl;
  cout << endl;
  // ---------------------------------------------------------------------------
}
Exemplo n.º 16
0
Arquivo: run.C Projeto: ktf/AliPhysics
void run(const Char_t *files=NULL, Bool_t mc=kFALSE, Bool_t tpid=kTRUE,  Bool_t tchg=kFALSE,  Bool_t tpp=kTRUE, Long64_t nev=1234567890, Long64_t first = 0)
{
  TStopwatch timer;
  timer.Start();

  // VERY GENERAL SETTINGS
  //AliLog::SetGlobalLogLevel(AliLog::kError);
  if(gSystem->Load("libANALYSIS.so")<0) return;
  if(gSystem->Load("libANALYSISalice.so")<0) return;
  if(gSystem->Load("libTender.so")<0) return;
  if(gSystem->Load("libTenderSupplies.so")<0) return;
//   if(gSystem->Load("libMES.so")<0) return;
    if(gSystem->Load("libPWGLFspectra.so")<0) return;

  // DEFINE DATA CHAIN
  TChain *chain = NULL;
  if(!files) chain = MakeChainLST();
  else chain = MakeChainLST(files);

  if(!chain) return;
  chain->Lookup();
  chain->GetListOfFiles()->Print();
  Long64_t nfound=chain->GetEntries();
  printf("\tENTRIES FOUND [%lli] REQUESTED [%lli]\n", nfound, nev>nfound?nfound:nev);

  // BUILD ANALYSIS MANAGER
  AliAnalysisManager *mgr = new AliAnalysisManager("Multiplicity and Event Shape");
  AliESDInputHandler *esdH = new AliESDInputHandler();
  AliMCEventHandler *mcH(NULL);
  mgr->SetInputEventHandler(esdH);
  if(mc) mgr->SetMCtruthEventHandler(mcH = new AliMCEventHandler());
  //mgr->SetDebugLevel(10);
  mgr->SetSkipTerminate(kTRUE);

  // LOAD tasks
  // *******************  PID response  ******************
  gROOT->LoadMacro("$ALICE_ROOT/ANALYSIS/macros/AddTaskPIDResponse.C");
  if(!mc) AddTaskPIDResponse();
  else AddTaskPIDResponse(kTRUE,kTRUE,kTRUE,2);

  // *******************  Tenders  ***********************
  AliTender *aliTender(NULL);
  gROOT->LoadMacro("$ALICE_PHYSICS/TENDER/TenderSupplies/AddTaskTender.C");
  if(!mc){    // for DATA
    aliTender = (AliTender*)AddTaskTender(!mc, kTRUE, kTRUE, kTRUE, kTRUE, kFALSE, kTRUE, kFALSE, kFALSE);
       // (useV0, useTPC,  !!! useTOF=kFALSE for MC !!!, useTRD, usePID, useVTX, useT0, useEmc, usePtFix)
  } else {  // for MC
    aliTender = (AliTender*)AddTaskTender(!mc, kTRUE, kFALSE, kTRUE, kTRUE, kTRUE, kTRUE, kFALSE, kFALSE);  // (useV0, useTPC,  !!! useTOF=kFALSE for MC !!!, useTRD, usePID, useVTX, useT0, useEmc, usePtFix)
  }
  aliTender->SetHandleOCDB(kTRUE);
  //aliTender->SetDefaultCDBStorage(Form("alien://folder=/alice/data/2010/OCDB?cacheFolder=%s/local", gSystem->ExpandPathName("$HOME")));
  // aliTender->SetDefaultCDBStorage(Form("local://%s/local/alice/data/2010/OCDB", gSystem->ExpandPathName("$HOME")));

// *******************  Physics Selection  *************
  gROOT->LoadMacro("$ALICE_PHYSICS/OADB/macros/AddTaskPhysicsSelection.C");
  AliPhysicsSelectionTask *physSelTask = AddTaskPhysicsSelection(mc); // 0 = real data; 1 = MC

  // *******************  MES Tender  ******************
  gROOT->LoadMacro("$ALICE_PHYSICS/PWGLF/SPECTRA/MultEvShape/AddMEStender.C");
  AddMEStender(mc);

  // *******************  MES PID task  ******************
  if(tpid){
    gROOT->LoadMacro("$ALICE_PHYSICS/PWGLF/SPECTRA/MultEvShape/AddMESpidTask.C");
	AddMESpidTask(mc);
  }
//

//   // *******************  MES CHG task  ******************
  if(tchg){
    gROOT->LoadMacro("$ALICE_PHYSICS/PWGLF/SPECTRA/MultEvShape/AddMESchgTask.C");
    AddMESchgTask(mc);
  }
//
//   // *******************  MES ppCol task  ******************
  if(tpp){
    gROOT->LoadMacro("$ALICE_PHYSICS/PWGLF/SPECTRA/MultEvShape/AddMESppColTask.C");
    AddMESppColTask(mc);
  }


  if (!mgr->InitAnalysis()) return;
  mgr->PrintStatus();
  mgr->StartAnalysis("local", chain, nev, first);
  timer.Stop();
  timer.Print();
  // verbosity
  printf("\tCLEANING TASK LIST:\n");
  mgr->GetTasks()->Delete();

  if(mcH) delete mcH;
  delete esdH;
  delete chain;
}
Exemplo n.º 17
0
void test(const char * sdir ="signal",
	  const char * bdir ="backgr") {

  TStopwatch timer;
  timer.Start();

  TString name;

  // Signal file, tree, and branch
  name = sdir;
  name += "/IlcESDs.root";
  TFile * fSig = TFile::Open(name.Data());
  TTree * tSig = (TTree*)fSig->Get("esdTree");

  IlcESDEvent * esdSig = new IlcESDEvent();// The signal ESD object is put here
  esdSig->ReadFromTree(tSig);

  // Run loader (signal events)
  name = sdir;
  name += "/gilc.root";
  IlcRunLoader* rlSig = IlcRunLoader::Open(name.Data());

  // Run loader (underlying events)
  name = bdir;
  name += "/gilc.root";
  IlcRunLoader* rlUnd = IlcRunLoader::Open(name.Data(),"Underlying");

  // gIlc
  rlSig->LoadgIlc();
  rlUnd->LoadgIlc();
  gIlc = rlSig->GetIlcRun();

  // Now load kinematics and event header
  rlSig->LoadKinematics();
  rlSig->LoadHeader();
  rlUnd->LoadKinematics();
  rlUnd->LoadHeader();

  // Loop on events: check that MC and data contain the same number of events
  Long64_t nevSig = rlSig->GetNumberOfEvents();
  Long64_t nevUnd = rlUnd->GetNumberOfEvents();
  Long64_t nSigPerUnd = nevSig/nevUnd;

  cout << nevSig << " signal events" << endl;
  cout << nevUnd << " underlying events" << endl;
  cout << nSigPerUnd << " signal events per one underlying" << endl;

  for (Int_t iev=0; iev<nevSig; iev++) {
    cout << "Signal event " << iev << endl;
    Int_t ievUnd = iev/nSigPerUnd;
    cout << "Underlying event " << ievUnd << endl;

    // Get signal ESD
    tSig->GetEntry(iev);
    // Get signal kinematics
    rlSig->GetEvent(iev);
    // Get underlying kinematics
    rlUnd->GetEvent(ievUnd);

    // Particle stack
    IlcStack * stackSig = rlSig->Stack();
    Int_t nPartSig = stackSig->GetNtrack();
    IlcStack * stackUnd = rlUnd->Stack();
    Int_t nPartUnd = stackUnd->GetNtrack();

    Int_t nrec = esdSig->GetNumberOfTracks();
    cout << nrec << " reconstructed tracks" << endl;
    for(Int_t irec=0; irec<nrec; irec++) {
      IlcESDtrack * track = esdSig->GetTrack(irec);
      UInt_t label = TMath::Abs(track->GetTPCLabel());
      if (label>=10000000) {
	// Underlying event. 10000000 is the
	// value of fkMASKSTEP in IlcRunDigitizer
// 	cout << " Track from the underlying event" << endl;
	label %=10000000;
	if (label>=nPartUnd) continue;
	TParticle * part = stackUnd->Particle(label);
 	if(part) part->Print();
      }
      else {
	cout << " Track " << label << " from the signal event" << endl;
	if (label>=nPartSig) {
	  cout <<"Strange, label outside the range "<< endl;
	  continue;
	}
	TParticle * part = stackSig->Particle(label);
	if(part) part->Print();
      }

    }

  }

  fSig->Close();

  timer.Stop();
  timer.Print();
}
Exemplo n.º 18
0
Arquivo: csv2.C Projeto: rgoldouz/tqA
void csv2() 
{   
  TString sysname ="CSV.root";
  TFile *sysinput(0);
  sysinput = TFile::Open( sysname ); // if not: download from ROOT server
  std::vector<string> variables_;
  TString name;
  variables_.push_back("BDT__zjethist");
//  variables_.push_back("BDT__phjethist");
  variables_.push_back("BDT__tbartchhist");
  variables_.push_back("BDT__tt3hist");
  variables_.push_back("BDT__ttphhist");
  variables_.push_back("BDT__wwphhist");
  variables_.push_back("BDT__zzhist");
  variables_.push_back("BDT__zgammahist");
  variables_.push_back("BDT__singleantitopphotonhist");

std::vector<TH1F*> addhists;
std::vector<TH1F*> wjetandwphjet;

wjetandwphjet.push_back((TH1F*) sysinput->Get((std::string("BDT__wjet").c_str())));
wjetandwphjet.push_back((TH1F*) sysinput->Get((std::string("BDT__wphjethist").c_str())));

std::vector<TH1F*> jesuphists;
for(unsigned int i=0; i<variables_.size(); ++i){
name=variables_[i]+"__JES__plus";
jesuphists.push_back((TH1F*) sysinput->Get(name));
}
//jesuphists.push_back((TH1F*) sysinput->Get((std::string("BDT__wjet").c_str())));
//jesuphists.push_back((TH1F*) sysinput->Get((std::string("BDT__wphjethist").c_str())));
for(unsigned int idx=1; idx<variables_.size(); ++idx){
jesuphists[idx]->Add(jesuphists[idx-1]);
}
addhists.push_back(jesuphists[variables_.size()-1]);

std::vector<TH1F*> jesdownhists;
for(unsigned int i=0; i<variables_.size(); ++i){
name=variables_[i]+"__JES__minus";
jesdownhists.push_back((TH1F*) sysinput->Get(name));}
for(unsigned int idx=1; idx<variables_.size(); ++idx){
jesdownhists[idx]->Add(jesdownhists[idx-1]);}
addhists.push_back(jesdownhists[variables_.size()-1]);

std::vector<TH1F*> jeruphists;
for(unsigned int i=0; i<variables_.size(); ++i){
name=variables_[i]+"__JER__plus";
jeruphists.push_back((TH1F*) sysinput->Get(name));}
for(unsigned int idx=1; idx<variables_.size(); ++idx){
jeruphists[idx]->Add(jeruphists[idx-1]);}
addhists.push_back(jeruphists[variables_.size()-1]);

std::vector<TH1F*> jerdownhists;
for(unsigned int i=0; i<variables_.size(); ++i){
name=variables_[i]+"__JER__minus";
jerdownhists.push_back((TH1F*) sysinput->Get(name));}
for(unsigned int idx=1; idx<variables_.size(); ++idx){
jerdownhists[idx]->Add(jerdownhists[idx-1]);}
addhists.push_back(jerdownhists[variables_.size()-1]);

std::vector<TH1F*> phesuphists;
for(unsigned int i=0; i<variables_.size(); ++i){
name=variables_[i]+"__PhES__plus";
phesuphists.push_back((TH1F*) sysinput->Get(name));}
for(unsigned int idx=1; idx<variables_.size(); ++idx){
phesuphists[idx]->Add(phesuphists[idx-1]);}
addhists.push_back(phesuphists[variables_.size()-1]);

std::vector<TH1F*> phesdownhists;
for(unsigned int i=0; i<variables_.size(); ++i){
name=variables_[i]+"__PhES__minus";
phesdownhists.push_back((TH1F*) sysinput->Get(name));}
for(unsigned int idx=1; idx<variables_.size(); ++idx){
phesdownhists[idx]->Add(phesdownhists[idx-1]);}
addhists.push_back(phesdownhists[variables_.size()-1]);

std::vector<TH1F*> puuphists;
for(unsigned int i=0; i<variables_.size(); ++i){
name=variables_[i]+"__PU__plus";
puuphists.push_back((TH1F*) sysinput->Get(name));}
for(unsigned int idx=1; idx<variables_.size(); ++idx){
puuphists[idx]->Add(puuphists[idx-1]);}
addhists.push_back(puuphists[variables_.size()-1]);

std::vector<TH1F*> pudownhists;
for(unsigned int i=0; i<variables_.size(); ++i){
name=variables_[i]+"__PU__minus";
pudownhists.push_back((TH1F*) sysinput->Get(name));}
for(unsigned int idx=1; idx<variables_.size(); ++idx){
pudownhists[idx]->Add(pudownhists[idx-1]);}
addhists.push_back(pudownhists[variables_.size()-1]);

std::vector<TH1F*> triguphists;
for(unsigned int i=0; i<variables_.size(); ++i){
name=variables_[i]+"__TRIG__plus";
triguphists.push_back((TH1F*) sysinput->Get(name));}
for(unsigned int idx=1; idx<variables_.size(); ++idx){
triguphists[idx]->Add(triguphists[idx-1]);}
addhists.push_back(triguphists[variables_.size()-1]);

std::vector<TH1F*> trigdownhists;
for(unsigned int i=0; i<variables_.size(); ++i){
name=variables_[i]+"__TRIG__minus";
trigdownhists.push_back((TH1F*) sysinput->Get(name));}
for(unsigned int idx=1; idx<variables_.size(); ++idx){
trigdownhists[idx]->Add(trigdownhists[idx-1]);}
addhists.push_back(trigdownhists[variables_.size()-1]);

std::vector<TH1F*> btaguphists;
for(unsigned int i=0; i<variables_.size(); ++i){
name=variables_[i]+"__BTAG__plus";
btaguphists.push_back((TH1F*) sysinput->Get(name));}
for(unsigned int idx=1; idx<variables_.size(); ++idx){
btaguphists[idx]->Add(btaguphists[idx-1]);}
addhists.push_back(btaguphists[variables_.size()-1]);

std::vector<TH1F*> btagdownhists;
for(unsigned int i=0; i<variables_.size(); ++i){
name=variables_[i]+"__BTAG__minus";
btagdownhists.push_back((TH1F*) sysinput->Get(name));}
for(unsigned int idx=1; idx<variables_.size(); ++idx){
btagdownhists[idx]->Add(btagdownhists[idx-1]);}
addhists.push_back(btagdownhists[variables_.size()-1]);

std::vector<TH1F*> misstaguphists;
for(unsigned int i=0; i<variables_.size(); ++i){
name=variables_[i]+"__MISSTAG__plus";
misstaguphists.push_back((TH1F*) sysinput->Get(name));}
for(unsigned int idx=1; idx<variables_.size(); ++idx){
misstaguphists[idx]->Add(misstaguphists[idx-1]);}
addhists.push_back(misstaguphists[variables_.size()-1]);

std::vector<TH1F*> misstagdownhists;
for(unsigned int i=0; i<variables_.size(); ++i){
name=variables_[i]+"__MISSTAG__minus";
misstagdownhists.push_back((TH1F*) sysinput->Get(name));}
for(unsigned int idx=1; idx<variables_.size(); ++idx){
misstagdownhists[idx]->Add(misstagdownhists[idx-1]);}
addhists.push_back(misstagdownhists[variables_.size()-1]);

std::vector<TH1F*> muonuphists;
for(unsigned int i=0; i<variables_.size(); ++i){
name=variables_[i]+"__MUON__plus";
muonuphists.push_back((TH1F*) sysinput->Get(name));}
for(unsigned int idx=1; idx<variables_.size(); ++idx){
muonuphists[idx]->Add(muonuphists[idx-1]);}
addhists.push_back(muonuphists[variables_.size()-1]);

std::vector<TH1F*> muondownhists;
for(unsigned int i=0; i<variables_.size(); ++i){
name=variables_[i]+"__MUON__minus";
muondownhists.push_back((TH1F*) sysinput->Get(name));}
for(unsigned int idx=1; idx<variables_.size(); ++idx){
muondownhists[idx]->Add(muondownhists[idx-1]);}
addhists.push_back(muondownhists[variables_.size()-1]);

std::vector<TH1F*> photonuphists;
for(unsigned int i=0; i<variables_.size(); ++i){
name=variables_[i]+"__PHOTON__plus";
photonuphists.push_back((TH1F*) sysinput->Get(name));}
for(unsigned int idx=1; idx<variables_.size(); ++idx){
photonuphists[idx]->Add(photonuphists[idx-1]);}
addhists.push_back(photonuphists[variables_.size()-1]);

std::vector<TH1F*> photondownhists;
for(unsigned int i=0; i<variables_.size(); ++i){
name=variables_[i]+"__PHOTON__minus";
photondownhists.push_back((TH1F*) sysinput->Get(name));}
for(unsigned int idx=1; idx<variables_.size(); ++idx){
photondownhists[idx]->Add(photondownhists[idx-1]);}
addhists.push_back(photondownhists[variables_.size()-1]);

std::vector<std::vector<double_t> > vec(photondownhists[0]->GetNbinsX(), vector<double>(18));
  for(int p = 0; p <photondownhists[0]->GetNbinsX(); p++){ //loop over bins
    for(int m = 0; m < 18; m++){ //loop over systematics
vec[p][m]=addhists[m]->GetBinContent(p+1)+wjetandwphjet[0]->GetBinContent(p+1)+wjetandwphjet[1]->GetBinContent(p+1);
cout<<vec[p][m]<<endl;
}}


   // Book output histograms
   UInt_t nbin = 20;
   double min=0;
   double max=1;

   // Prepare input tree (this must be replaced by your data source)
   // in this example, there is a toy tree with signal and one with background events
   // we'll later on use only the "signal" events for the test in this example.
   //   
   TFile *input(0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
std::vector<string> samples_;
std::vector<string> datasamples_;
std::vector<TH1F*> hists;
std::vector<TH1F*> datahists;
std::vector<TH1F*> revDATAhists;

float scales[] = {0.628,0.0978,34.01,6.133,1.04,0.32,0.02,0.002,0.0961,0.0253,0.0224,0.0145,0.0125,0.0160,0.0158,0.0341,0.0341,0.0341,0.020,0.0017,0.0055,0.0032,0.00084,0.02,0.01139,0.01139,0.049094905/19.145};
samples_.push_back("WJET.root");
samples_.push_back("ZJET.root");
samples_.push_back("G_Pt_50to80.root");
samples_.push_back("G_Pt_80to120.root");
samples_.push_back("G_Pt_120to170.root");
samples_.push_back("G_Pt_170to300.root");
samples_.push_back("G_Pt_300to470.root");
samples_.push_back("G_Pt_470to800.root");
samples_.push_back("WPHJET.root");
samples_.push_back("T-W-CH.root");
samples_.push_back("TBAR-W-CH.root");
samples_.push_back("T-S-CH.root");
samples_.push_back("TBAR-S-CH.root");
samples_.push_back("T-T-CH.root");
samples_.push_back("TBAR-T-CH.root");
samples_.push_back("TTBAR1.root");
samples_.push_back("TTBAR2.root");
samples_.push_back("TTBAR3.root");
samples_.push_back("TTG.root");
samples_.push_back("WWG.root");
samples_.push_back("WW.root");
samples_.push_back("WZ.root");
samples_.push_back("ZZ.root");
samples_.push_back("ZGAMMA.root");
samples_.push_back("SINGLE-TOP-PH.root");
samples_.push_back("SINGLE-ANTITOP-PH.root");
samples_.push_back("SIGNALtGu.root");
datasamples_.push_back("REALDATA1.root");
datasamples_.push_back("REALDATA2.root");
datasamples_.push_back("REALDATA3.root");

std::vector<string> datasamplesreverse_;
datasamplesreverse_.push_back("etarev/REALDATA1.root");
datasamplesreverse_.push_back("etarev/REALDATA2.root");
datasamplesreverse_.push_back("etarev/REALDATA3.root");

TH1F   *wphjethist(0), *zjethist(0) , *phjethist(0), *wjethist(0), *twchhist(0), *tbarwhist(0),  *tschhist(0), *tbarschhist(0), *ttchhist(0), *tbartchhist(0), *tt1hist(0) ,*tt2hist(0), *tt3hist(0), *ttphhist(0), *wwphhist(0), *wwhist(0), *wzhist(0), *zzhist(0), *zgammahist(0),*singletopphotonhist(0), *singleantitopphotonhist(0), *signalhist(0), *G_Pt_50to80(0),*G_Pt_80to120(0), *G_Pt_120to170(0), *G_Pt_170to300(0) ,*G_Pt_300to470(0),*G_Pt_470to800(0)  ;

TH1F   *wphjethistSB(0), *zjethistSB(0) , *phjethistSB(0), *wjethistSB(0), *twchhistSB(0), *tbarwhistSB(0),  *tschhistSB(0), *tbarschhistSB(0), *ttchhistSB(0), *tbartchhistSB(0), *tt1histSB(0) ,*tt2histSB(0), *tt3histSB(0), *ttphhistSB(0), *wwphhistSB(0), *wwhistSB(0), *wzhistSB(0), *zzhistSB(0), *zgammahistSB(0),*singletopphotonhistSB(0), *singleantitopphotonhistSB(0), *signalhistSB(0), *G_Pt_50to80SB(0),*G_Pt_80to120SB(0), *G_Pt_120to170SB(0), *G_Pt_170to300SB(0) ,*G_Pt_300to470SB(0),*G_Pt_470to800SB(0)  ;

TH1F *data1hist(0), *data2hist(0) ,*data3hist(0) ,*datahistsideband(0);
TH1F *data1histrev(0), *data2histrev(0) ,*data3histrev(0), *datahistrevsideband(0);

wphjethist = new TH1F( "mu_BDT__wphjethist",           "mu_BDT__wphjethist",           nbin, min, max );
zjethist = new TH1F( "mu_BDT__zjethist",           "mu_BDT__zjethist",           nbin, min, max );
G_Pt_50to80= new TH1F( "mu_BDT__G_Pt_50to80",           "mu_BDT__G_Pt_50to80",           nbin, min, max );
G_Pt_80to120= new TH1F( "mu_BDT__G_Pt_80to120",           "mu_BDT__G_Pt_80to120",           nbin, min, max );
G_Pt_120to170= new TH1F( "mu_BDT__G_Pt_120to170",           "mu_BDT__G_Pt_120to170",           nbin, min, max );
G_Pt_170to300= new TH1F( "mu_BDT__G_Pt_170to300",           "mu_BDT__G_Pt_170to300",           nbin, min, max );
G_Pt_300to470= new TH1F( "mu_BDT__G_Pt_300to470",           "mu_BDT__G_Pt_300to470",           nbin, min, max );
G_Pt_470to800= new TH1F( "mu_BDT__G_Pt_470to800",           "mu_BDT__G_Pt_470to800",           nbin, min, max );
wjethist = new TH1F( "mu_BDT__wjethist",           "mu_BDT__wjethist",           nbin, min, max);
twchhist = new TH1F( "mu_BDT__twchhist",           "mu_BDT__twchhist",           nbin, min, max );
tbarwhist = new TH1F( "mu_BDT__tbarwhist",           "mu_BDT__tbarwhist",           nbin, min, max );
tschhist = new TH1F( "mu_BDT__tschhist",           "mu_BDT__tschhist",           nbin, min, max );
tbarschhist = new TH1F( "mu_BDT__tbarschhist",           "mu_BDT__tbarschhist",           nbin, min, max );
ttchhist = new TH1F( "mu_BDT__ttchhist",           "mu_BDT__ttchhist",           nbin, min, max );
tbartchhist = new TH1F( "mu_BDT__tbartchhist",           "mu_BDT__tbartchhist",           nbin, min, max);
tt1hist = new TH1F( "mu_BDT__tt1hist",           "mu_BDT__tt1hist",           nbin,min, max );
tt2hist = new TH1F( "mu_BDT__tt2hist",           "mu_BDT__tt2hist",           nbin, min, max);
tt3hist = new TH1F( "mu_BDT__tt3hist",           "mu_BDT__tt3hist",           nbin, min, max);
ttphhist = new TH1F( "mu_BDT__ttphhist",           "mu_BDT__ttphhist",           nbin, min, max);
wwphhist = new TH1F( "mu_BDT__wwphhist",           "BDT__wwphhist",           nbin,min, max );
wwhist = new TH1F( "mu_BDT__wwhist",           "mu_BDT__wwhist",           nbin,min, max );
wzhist = new TH1F( "mu_BDT__wzhist",           "mu_BDT__wzhist",           nbin, min, max );
zzhist = new TH1F( "mu_BDT__zzhist",           "mu_BDT__zzhist",           nbin, min, max );
zgammahist = new TH1F( "mu_BDT__zgammahist",           "mu_BDT__zgammahist",           nbin,min, max );
singletopphotonhist = new TH1F( "mu_BDT__singletopphotonhist",           "mu_BDT__singletopphotonhist",           nbin, min, max);
singleantitopphotonhist = new TH1F( "mu_BDT__singleantitopphotonhist",           "mu_BDT__singleantitopphotonhist",           nbin,min, max );
signalhist = new TH1F( "mu_BDT__signal100",           "mu_BDT__signal100",           nbin, min, max );


data1hist = new TH1F( "mu_BDT__data1hist",           "mu_BDT__data1hist",           nbin, min, max );
data2hist = new TH1F( "mu_BDT__data2hist",           "mu_BDT__data2hist",           nbin, min, max );
data3hist = new TH1F( "mu_BDT__DATA",           "mu_BDT__DATA",           nbin, min, max );
datahistsideband = new TH1F( "mu_BDT__DATA_sideband",           "mu_BDT__DATA_sideband",           nbin, min, max);


data1histrev = new TH1F( "mu_BDT__data1histrev",           "mu_BDT__data1histrev",           nbin, min, max );
data2histrev = new TH1F( "mu_BDT__data2histrev",           "mu_BDT__data2histrev",           nbin,min, max );
data3histrev = new TH1F( "mu_BDT__DATArev",           "mu_BDT__DATArev",           nbin, min, max );
datahistrevsideband = new TH1F( "mu_BDT__DATArevsideband",           "mu_BDT__DATArevsideband",           nbin, min, max );

wphjethistSB = new TH1F( "mu_BDT__wphjethist__JES__SB",           "mu_BDT__wphjethist__JES__SB",           nbin,min, max );
zjethistSB = new TH1F( "mu_BDT__zjethist__JES__SB",           "mu_BDT__zjethist__JES__SB",           nbin, min, max );
G_Pt_50to80SB= new TH1F( "mu_BDT__G_Pt_50to80SB",           "mu_BDT__G_Pt_50to80SB",           nbin, min, max );
G_Pt_80to120SB= new TH1F( "mu_BDT__G_Pt_80to120SB",           "mu_BDT__G_Pt_80to120SB",           nbin, min, max );
G_Pt_120to170SB= new TH1F( "mu_BDT__G_Pt_120to170SB",           "mu_BDT__G_Pt_120to170SB",           nbin, min, max );
G_Pt_170to300SB= new TH1F( "mu_BDT__G_Pt_170to300SB",           "mu_BDT__G_Pt_170to300SB",           nbin, min, max );
G_Pt_300to470SB= new TH1F( "mu_BDT__G_Pt_300to470SB",           "mu_BDT__G_Pt_300to470SB",           nbin, min, max );
G_Pt_470to800SB= new TH1F( "mu_BDT__G_Pt_470to800SB",           "mu_BDT__G_Pt_470to800SB",           nbin, min, max );
wjethistSB = new TH1F( "mu_BDT__wjethist__JES__SB",           "mu_BDT__wjethist__JES__SB",           nbin, min, max );
twchhistSB = new TH1F( "mu_BDT__twchhist__JES__SB",           "mu_BDT__twchhist__JES__SB",           nbin,min, max);
tbarwhistSB = new TH1F( "mu_BDT__tbarwhist__JES__SB",           "mu_BDT__tbarwhist__JES__SB",           nbin,min, max );
tschhistSB = new TH1F( "mu_BDT__tschhist__JES__SB",           "mu_BDT__tschhist__JES__SB",           nbin, min, max );
tbarschhistSB = new TH1F( "mu_BDT__tbarschhist__JES__SB",           "mu_BDT__tbarschhist__JES__SB",           nbin, min, max );
ttchhistSB = new TH1F( "mu_BDT__ttchhist__JES__SB",           "mu_BDT__ttchhist__JES__SB",           nbin, min, max );
tbartchhistSB = new TH1F( "mu_BDT__tbartchhist__JES__SB",           "mu_BDT__tbartchhist__JES__SB",           nbin, min, max);
tt1histSB = new TH1F( "mu_BDT__tt1hist__JES__SB",           "mu_BDT__tt1hist__JES__SB",           nbin, min, max );
tt2histSB = new TH1F( "mu_BDT__tt2hist__JES__SB",           "mu_BDT__tt2hist__JES__SB",           nbin, min, max );
tt3histSB = new TH1F( "mu_BDT__tt3hist__JES__SB",           "mu_BDT__tt3hist__JES__SB",           nbin, min, max );
ttphhistSB = new TH1F( "mu_BDT__ttphhist__JES__SB",           "mu_BDT__ttphhist__JES__SB",           nbin,min, max );
wwphhistSB = new TH1F( "mu_BDT__wwphhist__JES__SB",           "BDT__wwphhist__JES__SB",           nbin,min, max );
wwhistSB = new TH1F( "mu_BDT__wwhist__JES__SB",           "mu_BDT__wwhist__JES__SB",           nbin, min, max );
wzhistSB = new TH1F( "mu_BDT__wzhist__JES__SB",           "mu_BDT__wzhist__JES__SB",           nbin, min, max );
zzhistSB = new TH1F( "mu_BDT__zzhist__JES__SB",           "mu_BDT__zzhist__JES__SB",           nbin, min, max);
zgammahistSB = new TH1F( "mu_BDT__zgammahist__JES__SB",           "mu_BDT__zgammahist__JES__SB",           nbin, min, max );
singletopphotonhistSB = new TH1F( "mu_BDT__singletopphotonhistSB",           "mu_BDT__singletopphotonhistSB",           nbin,min, max );
singleantitopphotonhistSB = new TH1F( "mu_BDT__singleantitopphotonhistSB",           "mu_BDT__singleantitopphotonhistSB",           nbin, min, max);
signalhistSB = new TH1F( "mu_BDT__signal100__JES__SB",           "mu_BDT__signal100__JES__SB",           nbin,min, max );

std::vector<TH1F*> SBhists;
SBhists.push_back(wjethistSB);
SBhists.push_back(zjethistSB);
SBhists.push_back(G_Pt_50to80SB);
SBhists.push_back(G_Pt_80to120SB);
SBhists.push_back(G_Pt_120to170SB);
SBhists.push_back(G_Pt_170to300SB);
SBhists.push_back(G_Pt_300to470SB);
SBhists.push_back(G_Pt_470to800SB);
SBhists.push_back(wphjethistSB);
SBhists.push_back(twchhistSB);
SBhists.push_back(tbarwhistSB);
SBhists.push_back(tschhistSB);
SBhists.push_back(tbarschhistSB);
SBhists.push_back(ttchhistSB);
SBhists.push_back(tbartchhistSB);
SBhists.push_back(tt1histSB);
SBhists.push_back(tt2histSB);
SBhists.push_back(tt3histSB);
SBhists.push_back(ttphhistSB);
SBhists.push_back(wwphhistSB);
SBhists.push_back(wwhistSB);
SBhists.push_back(wzhistSB);
SBhists.push_back(zzhistSB);
SBhists.push_back(zgammahistSB);
SBhists.push_back(singletopphotonhistSB);
SBhists.push_back(singleantitopphotonhistSB);
SBhists.push_back(signalhistSB);

hists.push_back(wjethist);
hists.push_back(zjethist);
hists.push_back(G_Pt_50to80);
hists.push_back(G_Pt_80to120);
hists.push_back(G_Pt_120to170);
hists.push_back(G_Pt_170to300);
hists.push_back(G_Pt_300to470);
hists.push_back(G_Pt_470to800);
hists.push_back(wphjethist);
hists.push_back(twchhist);
hists.push_back(tbarwhist);
hists.push_back(tschhist);
hists.push_back(tbarschhist);
hists.push_back(ttchhist);
hists.push_back(tbartchhist);
hists.push_back(tt1hist);
hists.push_back(tt2hist);
hists.push_back(tt3hist);
hists.push_back(ttphhist);
hists.push_back(wwphhist);
hists.push_back(wwhist);
hists.push_back(wzhist);
hists.push_back(zzhist);
hists.push_back(zgammahist);
hists.push_back(singletopphotonhist);
hists.push_back(singleantitopphotonhist);
hists.push_back(signalhist);

for(unsigned int idx=0; idx<samples_.size(); ++idx){
hists[idx]->Sumw2();}

datahists.push_back(data1hist);
datahists.push_back(data2hist);
datahists.push_back(data3hist);
datahists.push_back(datahistsideband);
for(unsigned int idx=0; idx<datasamples_.size(); ++idx){
datahists[idx]->Sumw2();}

revDATAhists.push_back(data1histrev);
revDATAhists.push_back(data2histrev);
revDATAhists.push_back(data3histrev);
revDATAhists.push_back(datahistrevsideband);

double insidewphjet=0;
double outsidewphjet=0;
double insidewjet=0;
double outsidewjet=0;
double nsignalevent=0;
double mtopup=220;
double mtopdown=130;
//bool SR=false;
//bool SB=true;
bool SR=true;
bool SB=false;
for(unsigned int idx=0; idx<samples_.size(); ++idx){
   TString fname =samples_[idx];
   if (!gSystem->AccessPathName( fname )) input = TFile::Open( fname ); // check if file in local directory exists
   else    
      input = TFile::Open( "http://root.cern.ch/files/tmva_class_example.root" ); // if not: download from ROOT server
   
   if (!input) {
      std::cout << "ERROR: could not open data file" << std::endl;
      exit(1);
   }
   std::cout << "--- TMVAClassificationApp    : Using input file: " << input->GetName() << std::endl;
   
   // --- Event loop

   // Prepare the event tree
   // - here the variable names have to corres[1]ponds to your tree
   // - you can use the same variables as above which is slightly faster,
   //   but of course you can use different ones and copy the values inside the event loop
   //
  //Double_t  myptphoton,myetaphoton,myptmuon,myetamuon,myptjet,myetajet,mymasstop,mymtw,mydeltaRphotonjet,mydeltaRphotonmuon,myht,mycostopphoton,mydeltaphiphotonmet,mycvsdiscriminant,myjetmultiplicity,mybjetmultiplicity,myleptoncharge;


std::vector<double> *myptphoton=0;
std::vector<double> *myetaphoton=0;
std::vector<double> *myptmuon=0;
std::vector<double> *myetamuon=0;
std::vector<double> *myptjet=0;
std::vector<double> *myetajet=0;
std::vector<double> *mymasstop=0;
//std::vector<double> *mymtw=0;
std::vector<double> *mydeltaRphotonjet=0;
std::vector<double> *mydeltaRphotonmuon=0;
//std::vector<double> *myht=0;
std::vector<double> *mycostopphoton=0;
std::vector<double> *mydeltaphiphotonmet=0;
std::vector<double> *mycvsdiscriminant=0;
std::vector<double> *myjetmultiplicity=0;
//std::vector<double> *mybjetmultiplicity=0;
//std::vector<double> *myleptoncharge=0;
std::vector<double> *myweight=0;
std::vector<double> *myjetmatchinginfo=0;
std::vector<double> *mycoswphoton=0;

   std::cout << "--- Select signal sample" << std::endl;
   TTree* theTree = (TTree*)input->Get("analyzestep2/atq");
//   Int_t myjetmultiplicity, mybjetmultiplicity , myleptoncharge;
//   Float_t userVar1, userVar2;

   theTree->SetBranchAddress("ptphoton", &myptphoton  );
   theTree->SetBranchAddress( "etaphoton", &myetaphoton );
   theTree->SetBranchAddress( "ptmuon", &myptmuon );
   theTree->SetBranchAddress( "etamuon", &myetamuon );
   theTree->SetBranchAddress( "ptjet", &myptjet );
   theTree->SetBranchAddress( "etajet", &myetajet );
   theTree->SetBranchAddress( "masstop", &mymasstop );
//   theTree->SetBranchAddress( "mtw", &mymtw );
   theTree->SetBranchAddress( "deltaRphotonjet", &mydeltaRphotonjet );
   theTree->SetBranchAddress( "deltaRphotonmuon", &mydeltaRphotonmuon );
//   theTree->SetBranchAddress( "ht", &myht );
   theTree->SetBranchAddress( "costopphoton", &mycostopphoton );
   theTree->SetBranchAddress( "jetmultiplicity", &myjetmultiplicity );
//   theTree->SetBranchAddress( "bjetmultiplicity", &mybjetmultiplicity );
   theTree->SetBranchAddress( "deltaphiphotonmet", &mydeltaphiphotonmet );
   theTree->SetBranchAddress( "cvsdiscriminant", &mycvsdiscriminant );
//   theTree->SetBranchAddress( "leptoncharge", &myleptoncharge );
   theTree->SetBranchAddress( "weight", &myweight);
   theTree->SetBranchAddress( "coswphoton", &mycoswphoton );
	theTree->SetBranchAddress( "jetmatchinginfo", &myjetmatchinginfo );


//   std::cout << "--- Processing: " << theTree->GetEntries() << " events" << std::endl;
   TStopwatch sw;
   sw.Start();
   for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) {
//   std::cout << "--- ... Processing event: " << ievt << std::endl;
double finalweight;

      if (ievt%1000 == 0) std::cout << "--- ... Processing event: " << ievt << std::endl;

      theTree->GetEntry(ievt);
//for (int l=0;l<sizeof(myptphoton);l++){
//std::cout << "--- ... reza: " << myptphoton[l] <<std::endl;
//}
//std::cout << "--- ......................."<< (*mycvsdiscriminant)[0]<<std::endl;
      // --- Return the MVA outputs and fill into histograms

finalweight=(*myweight)[0];
//cout<<(*myweight)[0]<<endl;
if((*mymasstop )[0]>mtopdown && (*mymasstop )[0]<mtopup){
hists[idx] ->Fill(Bmodification((*mycvsdiscriminant)[0],(*myjetmatchinginfo)[0]),finalweight );
if (samples_[idx]=="WPHJET.root")insidewphjet=insidewphjet+finalweight;
if (samples_[idx]=="SIGNALtGu.root")nsignalevent=nsignalevent+1;
//cout<<insidewphjet<<endl;
}
else {
SBhists[idx] ->Fill( Bmodification((*mycvsdiscriminant)[0],(*myjetmatchinginfo)[0]),finalweight );
if (samples_[idx]=="WPHJET.root")outsidewphjet=outsidewphjet+finalweight;}


      // Retrieve also per-event error
}
delete myptphoton;
delete myetaphoton;
delete myptmuon;
delete myetamuon;
delete myptjet;
delete myetajet;
delete mymasstop;
//delete mymtw;
delete mydeltaRphotonjet;
delete mydeltaRphotonmuon;
//delete myht;
delete mycostopphoton;
delete mydeltaphiphotonmet;
delete mycvsdiscriminant;
delete myjetmultiplicity;
//delete mybjetmultiplicity;
//delete myleptoncharge;
//delete myplot;
}
for(unsigned int idx=0; idx<datasamples_.size(); ++idx){
   TString fname =datasamples_[idx];
   if (!gSystem->AccessPathName( fname )) input = TFile::Open( fname ); // check if file in local directory exists
   else    
      input = TFile::Open( "http://root.cern.ch/files/tmva_class_example.root" ); // if not: download from ROOT server
   
   if (!input) {
      std::cout << "ERROR: could not open data file" << std::endl;
      exit(1);
   }
   std::cout << "--- TMVAClassificationApp    : Using input file: " << input->GetName() << std::endl;
   
   // --- Event loop

   // Prepare the event tree
   // - here the variable names have to corres[1]ponds to your tree
   // - you can use the same variables as above which is slightly faster,
   //   but of course you can use different ones and copy the values inside the event loop
   //
  //Double_t  myptphoton,myetaphoton,myptmuon,myetamuon,myptjet,myetajet,mymasstop,mymtw,mydeltaRphotonjet,mydeltaRphotonmuon,myht,mycostopphoton,mydeltaphiphotonmet,mycvsdiscriminant,myjetmultiplicity,mybjetmultiplicity,myleptoncharge;


std::vector<double> *myptphoton=0;
std::vector<double> *myetaphoton=0;
std::vector<double> *myptmuon=0;
std::vector<double> *myetamuon=0;
std::vector<double> *myptjet=0;
std::vector<double> *myetajet=0;
std::vector<double> *mymasstop=0;
//std::vector<double> *mymtw=0;
std::vector<double> *mydeltaRphotonjet=0;
std::vector<double> *mydeltaRphotonmuon=0;
//std::vector<double> *myht=0;
std::vector<double> *mycostopphoton=0;
std::vector<double> *mydeltaphiphotonmet=0;
std::vector<double> *mycvsdiscriminant=0;
std::vector<double> *myjetmultiplicity=0;
//std::vector<double> *mybjetmultiplicity=0;
//std::vector<double> *myleptoncharge=0;
std::vector<double> *mycoswphoton=0;



   std::cout << "--- Select signal sample" << std::endl;
   TTree* theTree = (TTree*)input->Get("analyzestep2/atq");
//   Int_t myjetmultiplicity, mybjetmultiplicity , myleptoncharge;
//   Float_t userVar1, userVar2;

   theTree->SetBranchAddress("ptphoton", &myptphoton  );
   theTree->SetBranchAddress( "etaphoton", &myetaphoton );
   theTree->SetBranchAddress( "ptmuon", &myptmuon );
   theTree->SetBranchAddress( "etamuon", &myetamuon );
   theTree->SetBranchAddress( "ptjet", &myptjet );
   theTree->SetBranchAddress( "etajet", &myetajet );
   theTree->SetBranchAddress( "masstop", &mymasstop );
//   theTree->SetBranchAddress( "mtw", &mymtw );
   theTree->SetBranchAddress( "deltaRphotonjet", &mydeltaRphotonjet );
   theTree->SetBranchAddress( "deltaRphotonmuon", &mydeltaRphotonmuon );
//   theTree->SetBranchAddress( "ht", &myht );
   theTree->SetBranchAddress( "costopphoton", &mycostopphoton );
   theTree->SetBranchAddress( "jetmultiplicity", &myjetmultiplicity );
//   theTree->SetBranchAddress( "bjetmultiplicity", &mybjetmultiplicity );
   theTree->SetBranchAddress( "deltaphiphotonmet", &mydeltaphiphotonmet );
   theTree->SetBranchAddress( "cvsdiscriminant", &mycvsdiscriminant );
   theTree->SetBranchAddress( "coswphoton", &mycoswphoton );
//   theTree->SetBranchAddress( "leptoncharge", &myleptoncharge );


   for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) {
//   std::cout << "--- ... Processing event: " << ievt << std::endl;
      theTree->GetEntry(ievt);
      // --- Return the MVA outputs and fill into histograms
//leptoncharge=(float)(*myleptoncharge )[0];

if((*mymasstop )[0]>mtopdown && (*mymasstop )[0]<mtopup) datahists[idx] ->Fill( (*mycvsdiscriminant)[0] );
else datahists[3]->Fill(  (*mycvsdiscriminant)[0] );
}
delete myptphoton;
delete myetaphoton;
delete myptmuon;
delete myetamuon;
delete myptjet;
delete myetajet;
delete mymasstop;
//delete mymtw;
delete mydeltaRphotonjet;
delete mydeltaRphotonmuon;
//delete myht;
delete mycostopphoton;
delete mydeltaphiphotonmet;
delete mycvsdiscriminant;
delete myjetmultiplicity;
//delete mybjetmultiplicity;
//delete myleptoncharge;
//delete myplot;

}

for(unsigned int idx=0; idx<datasamplesreverse_.size(); ++idx){
   TString fname =datasamplesreverse_[idx];
   if (!gSystem->AccessPathName( fname )) input = TFile::Open( fname ); // check if file in local directory exists
   else
      input = TFile::Open( "http://root.cern.ch/files/tmva_class_example.root" ); // if not: download from ROOT server

   if (!input) {
      std::cout << "ERROR: could not open data file" << std::endl;
      exit(1);
   }
   std::cout << "--- TMVAClassificationApp    : Using input file: " << input->GetName() << std::endl;

std::vector<double> *myptphoton=0;
std::vector<double> *myetaphoton=0;
 std::vector<double> *myptmuon=0;
 std::vector<double> *myetamuon=0;
 std::vector<double> *myptjet=0;
 std::vector<double> *myetajet=0;
 std::vector<double> *mymasstop=0;
 //std::vector<double> *mymtw=0;
 std::vector<double> *mydeltaRphotonjet=0;
std::vector<double> *mydeltaRphotonmuon=0;
 //std::vector<double> *myht=0;
 std::vector<double> *mycostopphoton=0;
 std::vector<double> *mydeltaphiphotonmet=0;
 std::vector<double> *mycvsdiscriminant=0;
 std::vector<double> *myjetmultiplicity=0;
std::vector<double> *mycoswphoton=0;
 //std::vector<double> *mybjetmultiplicity=0;
 //std::vector<double> *myleptoncharge=0;
   TTree* theTree = (TTree*)input->Get("analyzestep2/atq");
   theTree->SetBranchAddress("ptphoton", &myptphoton  );
   theTree->SetBranchAddress( "etaphoton", &myetaphoton );
   theTree->SetBranchAddress( "ptmuon", &myptmuon );
   theTree->SetBranchAddress( "etamuon", &myetamuon );
   theTree->SetBranchAddress( "ptjet", &myptjet );
   theTree->SetBranchAddress( "etajet", &myetajet );
   theTree->SetBranchAddress( "masstop", &mymasstop );
//   theTree->SetBranchAddress( "mtw", &mymtw );
   theTree->SetBranchAddress( "deltaRphotonjet", &mydeltaRphotonjet );
   theTree->SetBranchAddress( "deltaRphotonmuon", &mydeltaRphotonmuon );
         //   theTree->SetBranchAddress( "ht", &myht );
   theTree->SetBranchAddress( "costopphoton", &mycostopphoton );
   theTree->SetBranchAddress( "jetmultiplicity", &myjetmultiplicity );
               //   theTree->SetBranchAddress( "bjetmultiplicity", &mybjetmultiplicity );
   theTree->SetBranchAddress( "deltaphiphotonmet", &mydeltaphiphotonmet );
   theTree->SetBranchAddress( "cvsdiscriminant", &mycvsdiscriminant );
   theTree->SetBranchAddress( "coswphoton", &mycoswphoton );
                     //   theTree->SetBranchAddress( "leptoncharge", &myleptoncharge );
 // Efficiency calculator for cut method
 for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) {
                       //   std::cout << "--- ... Processing event: " << ievt << std::endl;
   if (ievt%1000 == 0) std::cout << "--- ... Processing event: " << ievt << std::endl;
   theTree->GetEntry(ievt);

 

if((*mymasstop )[0]>mtopdown && (*mymasstop )[0]<mtopup) {
//revDATAhists[idx]->Fill( reader->EvaluateMVA( "BDT method"           ) );
insidewjet=insidewjet+1;
revDATAhists[idx]->Fill(  (*mycvsdiscriminant)[0]);
}
else {
//revDATAhists[3]->Fill( reader->EvaluateMVA( "BDT method"           ) );
outsidewjet=outsidewjet+1;
revDATAhists[3]->Fill( (*mycvsdiscriminant)[0]);
}


//cout<<insidewjet<<endl;
}
delete myptphoton;
delete myetaphoton;
delete myptmuon;
delete myetamuon;
delete myptjet;
delete myetajet;
delete mymasstop;
//delete mymtw;
delete mydeltaRphotonjet;
delete mydeltaRphotonmuon;
//delete myht;
delete mycostopphoton;
delete mydeltaphiphotonmet;
delete mycvsdiscriminant;
delete myjetmultiplicity;
////delete mybjetmultiplicity;
////delete myleptoncharge;
////delete myplot;
//
}

double wphjetscale;
wphjetscale=insidewphjet/(insidewphjet+outsidewphjet);
cout<<"wphjetscale=    "<<wphjetscale<<endl;
double wjetscale;
wjetscale=insidewjet/(insidewjet+outsidewjet);
cout<<"wjetscale=    "<<wjetscale<<endl;
cout<<"nsignalevent=    "<<nsignalevent<<endl;
//cout<<insidewphjet<<"insidewphjet"<<"       "<<wphjetscale<<"       "<<insidewjet/(insidewjet+outsidewjet)<<endl;
float lumi = 1;

if (SR==true){
double ff=0;
for(unsigned int idx=0; idx<samples_.size(); ++idx){
hists[idx]->Scale(lumi*scales[idx]);
if (idx !=0 && idx!=3){
ff=hists[idx]->Integral()+ff;
cout<<samples_[idx]<<"         =        "<<hists[idx]->Integral()<<"     " <<ff<<endl;}
}

for(unsigned int idx=0; idx<samples_.size(); ++idx){
SBhists[idx]->Scale(lumi*scales[idx]);}

THStack *hs1 = new THStack("hs1","BDT output");
for(unsigned int idx=1; idx<datasamplesreverse_.size(); ++idx){
revDATAhists[idx]->Add(revDATAhists[idx-1]);
}
//cout<<"*********************"<< datahists[3]->Integral()<<"       "<<wphjetscale<<endl;
//cout<<"*********************"<< revDATAhists[2]->Integral()<<"       "<<wjetscale<<endl;

revDATAhists[2]->Scale(219.373/revDATAhists[2]->Integral());
for(unsigned int idx=1; idx<revDATAhists[2]->GetNbinsX()+1; ++idx){
//revDATAhists[2]->SetBinError(idx,(revDATAhists[2]->GetBinContent(idx)/revDATAhists[2]->Integral())*74.84);
revDATAhists[2]->SetBinError(idx,0);
//if (revDATAhists[2]->GetBinError(idx)>revDATAhists[2]->GetBinContent(idx)) revDATAhists[2]->SetBinError(idx, revDATAhists[2]->GetBinContent(idx)/2); 
}
//revDATAhists[2]->Scale(wjetscale);
revDATAhists[3]->Scale(219.373/revDATAhists[3]->Integral());
revDATAhists[3]->Scale((1-wjetscale)/wjetscale);


for(unsigned int idx=1; idx<datasamples_.size(); ++idx){
datahists[idx]->Add(datahists[idx-1]);}
cout<<"     " <<datahists[2]->Integral()<<endl;

datahists[3]->Add(revDATAhists[3],-1);
datahists[3]->Add(SBhists[1],-1);
datahists[3]->Add(SBhists[2],-1);
for(unsigned int idx=9; idx<samples_.size()-1; ++idx){
datahists[3]->Add(SBhists[idx],-1);}
for(unsigned int idx=1; idx<nbin; ++idx){
if (datahists[3]->GetBinContent(idx)<0)datahists[3]->SetBinContent(idx,0);
} 
datahists[3]->Scale(1112.2/datahists[3]->Integral());
for(unsigned int idx=1; idx<datahists[3]->GetNbinsX()+1; ++idx){
//datahists[3]->SetBinError(idx,(datahists[3]->GetBinContent(idx)/datahists[3]->Integral())*139.11);}
datahists[3]->SetBinError(idx,0);}

TH1F *datatoMC(0);

//datahists[3]->Scale(wphjetscale);

//hists[1]->Add(revDATAhists[2]);
//hists[2]->Add(hists[1]);
//datahists[3]->Add(hists[2]);
//hists[4]->Add(datahists[3]);

//for(unsigned int idx=5; idx<samples_.size()-1; ++idx){
//   hists[idx]->Add(hists[idx-1]);}
//cout<<"**********real data***********"<< datahists[2]->Integral()<<"       "<<wphjetscale<<endl;
//cout<<"********** mc ***********"<< hists[18]->Integral()<<"       "<<wjetscale<<endl;
// setup the canvas and draw the histograms

TH1F *sum_h= new TH1F ( *hists[1] ) ;
sum_h->Sumw2();
for(unsigned int idx=2; idx<samples_.size()-1; ++idx){
if (idx!=8)sum_h->Add(hists[idx],1);
}
sum_h->Add(revDATAhists[2],1);
sum_h->Add(datahists[3],1);

std::vector<std::vector<double_t> > vecplus(photondownhists[0]->GetNbinsX(), vector<double>(18));
std::vector<std::vector<double_t> > vecminus(photondownhists[0]->GetNbinsX(), vector<double>(18));
 for(int p = 0; p <photondownhists[0]->GetNbinsX(); p++){ //loop over bins
    for(int m = 0; m < 18; m++){ //loop over systematics
vecplus[p][m]=0;
vecminus[p][m]=0;
if (vec[p][m]>sum_h->GetBinContent(p+1)) vecplus[p][m] = vec[p][m]-sum_h->GetBinContent(p+1);
else if (vec[p][m]<sum_h->GetBinContent(p+1)) vecminus[p][m] = sum_h->GetBinContent(p+1)-vec[p][m];

cout<<vecplus[p][m]<<endl;
}}




TCanvas *c1 = new TCanvas("c1","signal region",50,50,865,780);
c1->cd();
TPad *pad1 = new TPad("pad1","pad1",0,0.25,1,1);
pad1->SetFillStyle(0);
pad1->SetFrameFillStyle(0);
pad1->SetBottomMargin(0);
TPad *pad2 = new TPad("pad2","pad2",0,0,1,0.25);
pad2->SetFillStyle(0);
pad2->SetFrameFillStyle(0);
pad2->SetTopMargin(0);
pad2->SetBottomMargin(0.12/0.46);
pad2->Draw();
pad1->Draw();

pad1->cd();

//W+jet
revDATAhists[2]->SetFillColor(kBlue-2);
revDATAhists[2]->SetLineColor(kBlack);
hs1->Add(revDATAhists[2]);
//Z+jet
hists[1]->SetFillColor(kOrange-4);
hists[1]->SetLineColor(kBlack);
hs1->Add(hists[1]);
//photon+jet
hists[3]->Add(hists[2]);
hists[4]->Add(hists[3]);
hists[5]->Add(hists[4]);
hists[6]->Add(hists[5]);
hists[7]->Add(hists[6]);
hists[7]->SetFillColor(19);
//hs1->Add(hists[7]);
//W+photon+jet
datahists[3]->SetFillColor(kGreen-3);
datahists[3]->SetLineColor(kBlack);
hs1->Add(datahists[3]);

//single top+singletop photon
hists[5+5]->Add(hists[4+5]);
hists[6+5]->Add(hists[5+5]);
hists[7+5]->Add(hists[6+5]);
hists[8+5]->Add(hists[7+5]);
hists[9+5]->Add(hists[8+5]);
hists[19+5]->Add(hists[9+5]);
hists[20+5]->Add(hists[19+5]);
hists[20+5]->SetFillColor(kRed+3);
hists[20+5]->SetLineColor(kBlack);
hs1->Add(hists[20+5]);
//hists[9+5]->SetFillColor(kAzure+10);
//hs1->Add(hists[9+5]);

hists[11+5]->Add(hists[10+5]);
hists[12+5]->Add(hists[11+5]);
hists[13+5]->Add(hists[12+5]);
hists[13+5]->SetFillColor(kPink+1);
hists[13+5]->SetLineColor(kBlack);
hs1->Add(hists[13+5]);
//hists[13+5]->SetFillColor(17);
//hs1->Add(hists[13+5]);
//hists[14+5]->SetFillColor(kSpring-9);
//hs1->Add(hists[14+5]);
hists[15+5]->Add(hists[14+5]);
hists[16+5]->Add(hists[15+5]);
hists[17+5]->Add(hists[16+5]);
hists[17+5]->SetFillColor(kViolet-7);
hists[17+5]->SetLineColor(kBlack);
hs1->Add(hists[17+5]);
hists[18+5]->SetFillColor(kAzure+10);
hists[18+5]->SetLineColor(kBlack);
hs1->Add(hists[18+5]);
//hists[20+5]->Add(hists[19+5]);
//hists[20+5]->SetFillColor(kYellow+3);
//hs1->Add(hists[20+5]);

hs1->Draw("hist");
hs1->SetMaximum(1.6*datahists[2]->GetMaximum());
//hs1->GetXaxis()->SetTitle("BDT output");
hs1->GetYaxis()->SetTitle("Events / 0.05");
hs1->GetYaxis()->SetTitleSize(0.045);
hs1->GetYaxis()->SetTitleFont(22);
hs1->GetYaxis()->SetTitleOffset(0.8);
hs1->GetYaxis()->SetLabelSize(0.044);

hists[21+5]->SetLineColor(kRed+3);
hists[21+5]->SetLineWidth(3);
hists[21+5]->Draw("histsame");

datahists[2]->SetLineWidth(3.);
datahists[2]->SetLineColor(kBlack);
datahists[2]->SetMarkerColor(kBlack);
datahists[2]->SetMarkerStyle(20.);
datahists[2]->SetMarkerSize(1.35);
datahists[2]->Draw("esame");
sum_h->SetLineColor(kBlack);
sum_h->SetFillColor(1);
sum_h->SetFillStyle(3001);
sum_h->Draw("e2same");


    TPaveText *pt = new TPaveText(0.1,0.95,0.4,0.95, "NDC"); // NDC sets coords
    pt->SetLineColor(10);                                              // relative to pad dimensions
    pt->SetFillColor(10); // text is black on white
    pt->SetTextSize(0.045);
    pt->SetTextAlign(12);
    pt->AddText("CMS Preliminary, 19.1 fb^{-1}, #sqrt{s} = 8 TeV");
    pt->SetShadowColor(10);
    pt->Draw("same");

std::vector<double_t> errorup(photondownhists[0]->GetNbinsX());
std::vector<double_t> errordown(photondownhists[0]->GetNbinsX());
 for(int p = 0; p <photondownhists[0]->GetNbinsX(); p++){ //loop over bins
    for(int m = 0; m < 18; m++){ //loop over systematics
if (m==0) {errorup[p]=0;
errordown[p]=0;}
errorup[p]=pow(vecplus[p][m],2)+errorup[p];
errordown[p]=pow(vecminus[p][m],2)+errordown[p];
}
errorup[p]=pow(0.024*sum_h->GetBinContent(p+1),2)+errorup[p];
errordown[p]=pow(0.024*sum_h->GetBinContent(p+1),2)+errordown[p];
errorup[p]=pow(0.4*wjetandwphjet[0]->GetBinContent(p+1),2)+errorup[p];
errordown[p]=pow(0.4*wjetandwphjet[0]->GetBinContent(p+1),2)+errordown[p];
errorup[p]=pow(0.3*wjetandwphjet[1]->GetBinContent(p+1),2)+errorup[p];
errordown[p]=pow(0.3*wjetandwphjet[1]->GetBinContent(p+1),2)+errordown[p];
errorup[p]=pow(0.3*hists[1]->GetBinContent(p+1),2)+errorup[p];
errordown[p]=pow(0.3*hists[1]->GetBinContent(p+1),2)+errordown[p];
errorup[p]=pow(0.3*hists[20+5]->GetBinContent(p+1),2)+errorup[p];
errordown[p]=pow(0.3*hists[20+5]->GetBinContent(p+1),2)+errordown[p];
errorup[p]=pow(0.3*hists[13+5]->GetBinContent(p+1),2)+errorup[p];
errordown[p]=pow(0.3*hists[13+5]->GetBinContent(p+1),2)+errordown[p];
errorup[p]=pow(0.3*hists[17+5]->GetBinContent(p+1),2)+errorup[p];
errordown[p]=pow(0.3*hists[17+5]->GetBinContent(p+1),2)+errordown[p];
errorup[p]=pow(0.3*hists[18+5]->GetBinContent(p+1),2)+errorup[p];
errordown[p]=pow(0.3*hists[18+5]->GetBinContent(p+1),2)+errordown[p];

cout<<errorup[p]<<endl;
cout<<errordown[p]<<endl;
}

 double ax[photondownhists[0]->GetNbinsX()];
 double ay[photondownhists[0]->GetNbinsX()];
 double aexl[photondownhists[0]->GetNbinsX()];
 double aexh[photondownhists[0]->GetNbinsX()];
 double aeyl[photondownhists[0]->GetNbinsX()];
 double aeyh[photondownhists[0]->GetNbinsX()];
 for(int p = 0; p <photondownhists[0]->GetNbinsX(); p++){ //loop over bins
ax[p]=min+(max-min)/(2*nbin)+p*((max-min)/nbin);
ay[p]=sum_h->GetBinContent(p+1);
aexl[p]=(max-min)/(2*nbin);
aexh[p]=(max-min)/(2*nbin);
aeyl[p]=sqrt(errordown[p]);
aeyh[p]=sqrt(errorup[p]);
}
TGraphAsymmErrors* gae = new TGraphAsymmErrors(photondownhists[0]->GetNbinsX(), ax, ay, aexl, aexh, aeyl, aeyh);
gae->SetFillColor(1);
gae->SetFillStyle(3003);

   gae->Draw("e2same");
TLegend* leg = new TLegend(0.60,0.40,0.89,0.87);
  leg->SetFillStyle ( 0);
  leg->SetFillColor ( 0);
  leg->SetBorderSize( 0);
  leg->AddEntry( datahists[2], "Data"               , "PL");
//  leg->AddEntry( hists[25], "Single top+#gamma"               , "F");
  leg->AddEntry( hists[23], "Z#gamma"               , "F");
  leg->AddEntry( hists[22], "WW,WZ,ZZ,WW#gamma "               , "F");
//  leg->AddEntry( hists[19], "WW#gamma"               , "F");
  leg->AddEntry( hists[18], "t#bar{t}, t#bar{t}#gamma"               , "F");
//  leg->AddEntry( hists[17], "t#bar{t}"               , "F");
  leg->AddEntry( hists[25], "Single top, Single top+#gamma"               , "F");
//  leg->AddEntry( hists[14], "Single top"               , "F");
  leg->AddEntry( datahists[3], "W#gamma"              , "F");
//  leg->AddEntry( hists[7], "#gamma+jets"                           , "F");
  leg->AddEntry( hists[1], "Z+jets"                           , "F");
  leg->AddEntry(revDATAhists[2], "W+jets"                           , "F");
  leg->AddEntry( hists[26], "Signal(tu#gamma) 1 pb"               , "L");
  leg->AddEntry(sum_h, "Stat uncertainty"               , "F");
  leg->AddEntry(gae, "Syst uncertainty"               , "F");

//  leg->AddEntry( datahists[2], "CMS Data 2012(19.145/fb)"               , "PL");

leg->Draw("same");
   sum_h->Draw("AXISSAMEY+");
   sum_h->Draw("AXISSAMEX+");
pad1->Draw();

TCanvas *c22 = new TCanvas("c22","signal region22",50,50,865,780);
c22->cd();
    gae->Draw("a2");
    gae->Draw("psame");

TH1F *h_ratio = (TH1F*)datahists[2]->Clone("h_copy");
h_ratio->Sumw2();	
pad2->cd();
pad2->SetGridy();
datatoMC = new TH1F( "datatoMC",           "datatoMC",           nbin, min, max );
datatoMC->Sumw2();
datatoMC->Divide(datahists[2],sum_h);
h_ratio->Divide(sum_h);
h_ratio->SetFillStyle(3004);
h_ratio->GetXaxis()->SetTitle("CSV discriminator");
h_ratio->GetYaxis()->SetTitle("DATA/MC");
  h_ratio->GetXaxis()->SetTitleSize(0.12);
  h_ratio->GetYaxis()->SetTitleSize(0.12);
  h_ratio->GetXaxis()->SetTitleFont(22);
  h_ratio->GetYaxis()->SetTitleFont(22);
  h_ratio->GetXaxis()->SetTickLength(0.05);
  h_ratio->GetYaxis()->SetTickLength(0.05);
  h_ratio->GetXaxis()->SetLabelSize(0.14);
  h_ratio->GetYaxis()->SetLabelSize(0.14);
  h_ratio->GetYaxis()->SetTitleOffset(0.25);
  h_ratio->GetYaxis()->SetNdivisions(504);
  h_ratio->SetLineWidth(2);
//h_ratio->SetStats(0);
//h_ratio->SetMarkerStyle(20);
h_ratio->SetMinimum(0);
h_ratio->SetMaximum(2);
h_ratio->Draw("E");


//datatoMC->Draw("");
TLine *l3 = new TLine(h_ratio->GetXaxis()->GetXmin(), 1.00, h_ratio->GetXaxis()->GetXmax(), 1.00);
l3->SetLineWidth(1);
//l3->SetLineStyle(7);
//l3->Draw();
  h_ratio->Draw("AXISSAMEY+");
   h_ratio->Draw("AXISSAMEX+");

 
c1->Update();

for(unsigned int idx=1; idx<nbin+1; ++idx){
cout<<"MC    "<<"nbin= "<<idx<<"  content= "<<sum_h->GetBinContent(idx)<<endl;
cout<<"signal    "<<"nbin= "<<idx<<"  content= "<<hists[21+5]->GetBinContent(idx)<<endl;
cout<<"Data    "<<"nbin= "<<idx<<"  content= "<<datahists[2]->GetBinContent(idx)<<endl;
}
cout<<"signal Integral   "<<hists[21+5]->Integral()<<endl;

}


if (SB==true){
for(unsigned int idx=0; idx<samples_.size(); ++idx){
SBhists[idx]->Scale(lumi*scales[idx]);}
revDATAhists[3]->Scale(620.32/revDATAhists[3]->Integral());
revDATAhists[3]->Scale(1-wjetscale);
SBhists[1]->Add(revDATAhists[3]);
SBhists[2]->Add(SBhists[1]);
SBhists[4]->Add(SBhists[2]);

for(unsigned int idx=5; idx<samples_.size()-1; ++idx){
   SBhists[idx]->Add(SBhists[idx-1]);}
SBhists[20]->SetMaximum(1.5*datahists[3]->GetMaximum());
SBhists[20]->SetFillColor(kMagenta+2);
SBhists[20]->Draw();
SBhists[18]->SetFillColor(kOrange+4);
SBhists[18]->Draw("same");
SBhists[17]->SetFillColor(kOrange-2);
SBhists[17]->Draw("same");

SBhists[16]->SetFillColor(kRed);
SBhists[16]->Draw("same");
SBhists[15]->SetFillColor(kViolet+1);
SBhists[15]->Draw("same");
SBhists[14]->SetFillColor(kSpring-9);
SBhists[14]->Draw("same");
SBhists[13]->SetFillColor(32);
SBhists[13]->Draw("same");
SBhists[12]->SetFillColor(6);
SBhists[12]->Draw("same");
SBhists[9]->SetFillColor(4);
SBhists[9]->Draw("same");
//hists[8]->SetFillColor(4);
//hists[8]->Draw("same");
//hists[7]->SetFillColor(3);
//hists[7]->Draw("same");
//hists[6]->SetFillColor(3);
//hists[6]->Draw("same");
//hists[5]->SetFillColor(2);
//hists[5]->Draw("same");
//hists[4]->SetFillColor(2);
//hists[4]->Draw("same");
//hists[3]->SetFillColor(5);
//hists[3]->Draw("same");
//datahists[3]->SetFillColor(5);
//datahists[3]->Draw("same");
SBhists[2]->SetFillColor(8);
SBhists[2]->Draw("same");
SBhists[1]->SetFillColor(kOrange+7);
SBhists[1]->Draw("same");
revDATAhists[3]->SetFillColor(7);
revDATAhists[3]->Draw("same");
//hists[0]->SetFillColor(7);
//hists[0]->Draw("same");
SBhists[21]->SetFillColor(1);
SBhists[21]->SetFillStyle(3004);
SBhists[21]->Draw("same");


 // plot data points
datahists[3]->SetLineWidth(3.);
datahists[3]->SetLineColor(kBlack);
datahists[3]->SetMarkerColor(kBlack);
datahists[3]->SetMarkerStyle(20.);
datahists[3]->Draw("esame");
//conv->RedrawAxis();


TLegend* leg = new TLegend(0.60,0.40,0.89,0.87);
  leg->SetFillStyle ( 0);
  leg->SetFillColor ( 0);
  leg->SetBorderSize( 0);
  leg->AddEntry( revDATAhists[2], "W JET"                           , "F");
  leg->AddEntry( SBhists[1], "Z JET"                           , "F");
  leg->AddEntry( SBhists[2], "PH JET"                           , "F");
//  leg->AddEntry( datahists[3], "W PH JET"              , "F");
//  leg->AddEntry( hists[5], "TOP-W-CH"               , "F");
//  leg->AddEntry( hists[5], "T-S-CH"               , "F");
//  leg->AddEntry( hists[7], "TOP-S-CH"               , "F");
//  leg->AddEntry( hists[7], "TTBAR-CH"               , "F");
//  leg->AddEntry( hists[8], "TBAR-W-CH"               , "F");
  leg->AddEntry( SBhists[9], "SINGLE TOP  "               , "F");
  leg->AddEntry( SBhists[12], "TTBAR"               , "F");
  leg->AddEntry( SBhists[13], "TTG"               , "F");
  leg->AddEntry( SBhists[14], "WWG"               , "F");
  leg->AddEntry( SBhists[15], "WW"               , "F");
  leg->AddEntry( SBhists[16], "WZ"               , "F");
  leg->AddEntry( SBhists[17], "ZZ"               , "F");
  leg->AddEntry( SBhists[18], "ZGAMMA"               , "F");
  leg->AddEntry( SBhists[20], "SINGLE TOP+PHOTON"               , "F");
  leg->AddEntry( SBhists[21], "SIGNAL"               , "F");
leg->AddEntry( datahists[3], "CMS Data 2012(19.145/fb)"               , "PL");

  leg->Draw("same");
}
} 
Exemplo n.º 19
0
int quasirandom(int n = 10000, int skip = 0) {

   TH2D * h0 = new TH2D("h0","Pseudo-random Sequence",200,0,1,200,0,1);
   TH2D * h1 = new TH2D("h1","Sobol Sequence",200,0,1,200,0,1);
   TH2D * h2 = new TH2D("h2","Niederrer Sequence",200,0,1,200,0,1);

   RandomMT         r0;
   // quasi random numbers need to be created giving the dimension of the sequence
   // in this case we generate 2-d sequence

   QuasiRandomSobol r1(2);
   QuasiRandomNiederreiter r2(2);

   // generate n random points

   double x[2];
   TStopwatch w; w.Start();
   for (int i = 0; i < n; ++i)  {
      r0.RndmArray(2,x);
      h0->Fill(x[0],x[1]);
   }
   std::cout << "Time for gRandom ";
   w.Print();

   w.Start();
   if( skip>0) r1.Skip(skip);
   for (int i = 0; i < n; ++i)  {
      r1.Next(x);
      h1->Fill(x[0],x[1]);
   }
   std::cout << "Time for Sobol ";
   w.Print();

   w.Start();
   if( skip>0) r2.Skip(skip);
   for (int i = 0; i < n; ++i)  {
      r2.Next(x);
      h2->Fill(x[0],x[1]);
   }
   std::cout << "Time for Niederreiter ";
   w.Print();

   TCanvas * c1 = new TCanvas("c1","Random sequence",600,1200);
   c1->Divide(1,3);
   c1->cd(1);
   h0->Draw("COLZ");
   c1->cd(2);

   // check uniformity
   h1->Draw("COLZ");
   c1->cd(3);
   h2->Draw("COLZ");
   gPad->Update();

   // test number of empty bins

   int nzerobins0 = 0;
   int nzerobins1 = 0;
   int nzerobins2 = 0;
   for (int i = 1; i <= h1->GetNbinsX(); ++i) {
      for (int j = 1; j <= h1->GetNbinsY(); ++j) {
         if (h0->GetBinContent(i,j) == 0 ) nzerobins0++;
         if (h1->GetBinContent(i,j) == 0 ) nzerobins1++;
         if (h2->GetBinContent(i,j) == 0 ) nzerobins2++;
      }
   }

   std::cout << "number of empty bins for pseudo-random = " << nzerobins0 << std::endl;
   std::cout << "number of empty bins for " << r1.Name() << "\t= " << nzerobins1 << std::endl;
   std::cout << "number of empty bins for " << r2.Name() << "\t= " << nzerobins2 << std::endl;

   int iret = 0;
   if (nzerobins1 >= nzerobins0 ) iret += 1;
   if (nzerobins2 >= nzerobins0 ) iret += 2;
   return iret;

}
Exemplo n.º 20
0
RooGaussian fitZToMuMuGammaMassUnbinned(const char *filename = "ZToMuMuGammaMass.txt",
  const char* plotOpt = "NEU",
  const int nbins = 25)
{
  gROOT->ProcessLine(".L tdrstyle.C");
  setTDRStyle();
  gStyle->SetPadRightMargin(0.05);

  double minMass = 60;
  double maxMass = 120;
  RooRealVar  mass("mass","M(#mu#mu#gamma})", minMass, maxMass,"GeV/c^{2}");

  // Read data set

  RooDataSet *data = RooDataSet::read(filename,RooArgSet(mass));
//   RooDataSet *dataB = RooDataSet::read(filenameB,RooArgSet(mass));

// Build p.d.f.

////////////////////////////////////////////////
//             Parameters                     //
////////////////////////////////////////////////

//  Signal p.d.f. parameters
//  Parameters for a Gaussian and a Crystal Ball Lineshape
  RooRealVar  m0   ("m_{0}", "Bias", 91.19, minMass, maxMass,"GeV/c^{2}");
  RooRealVar  sigma("#sigma","Width", 3.0,1.0,10.0,"GeV/c^{2}");
  RooRealVar  cut  ("#alpha","Cut", 0.6,0.6,2.0);
  RooRealVar  power("power","Power", 10.0, 0.5, 20.0);


//  Background p.d.f. parameters
//  Parameters for a polynomial lineshape
  RooRealVar  c0("c_{0}", "c0", 0., -10, 10);
  RooRealVar  c1("c_{1}", "c1", 0., -100, 0);
  RooRealVar  c2("c_{2}", "c2", 0., -100, 100);
//  c0.setConstant();

// fraction of signal
//  RooRealVar  frac("frac", "Signal Fraction", 0.1,0.,0.3.);
  RooRealVar  nsig("N_{S}", "#signal events", 9000, 0.,10000.);
  RooRealVar  nbkg("N_{B}", "#background events", 1000,2,10000.);



////////////////////////////////////////////////
//               P.D.F.s                      //
////////////////////////////////////////////////

// Di-photon mass signal p.d.f.
  RooGaussian    signal("signal", "A  Gaussian Lineshape", mass, m0, sigma);
  // RooCBShape     signal("signal", "A  Crystal Ball Lineshape", mass, m0,sigma, cut, power);

// Di-photon mass background  p.d.f.
  RooPolynomial bg("bg", "Backgroung Distribution", mass, RooArgList(c0,c1));

// Di-photon mass model p.d.f.
//  RooAddPdf      model("model", "Di-photon mass model", signal, bg, frac);
  RooAddPdf      model("model", "Di-photon mass model", RooArgList(signal, bg), RooArgList(nsig, nbkg));


  TStopwatch t ;
  t.Start() ;
//   model->fitTo(*data,FitOptions("mh"),Optimize(0),Timer(1));
  signal->fitTo(*data,FitOptions("mh"),Optimize(0),Timer(1));

  t.Print() ;

  c = new TCanvas("c","Unbinned Invariant Mass Fit", 0,0,800,600);
// Plot the fit results
  RooPlot* plot = mass.frame(Range(minMass,maxMass),Bins(nbins));

// Plot 1
//   dataB->plotOn(plot, MarkerColor(kRed), LineColor(kRed));
  data->plotOn(plot);
//   model.plotOn(plot);
  model.plotOn(plot);
  //model.paramOn(plot, Format(plotOpt, AutoPrecision(1)), Parameters(RooArgSet(nsig, nbkg, m0, sigma)));
  model.paramOn(plot, Format(plotOpt, AutoPrecision(1)), Parameters(RooArgSet(m0, sigma)));

  /// model.plotOn(plot, Components("signal"), LineStyle(kDashed), LineColor(kRed));

//   model.plotOn(plot, Components("bg"), LineStyle(kDashed), LineColor(kRed));


  plot->Draw();

  TLatex *   tex = new TLatex(0.2,0.8,"CMS preliminary");
  tex->SetNDC();
  tex->SetTextFont(42);
  tex->SetLineWidth(2);
  tex->Draw();
  tex->DrawLatex(0.2, 0.725, "7 TeV Data, L = 258 pb^{-1}");

  float fsig_peak = NormalizedIntegral(signal,
                      mass,
                      m0.getVal() - 2.5*sigma.getVal(),
                      m0.getVal() + 2.5*sigma.getVal()
                    );

//   float fbkg_peak = NormalizedIntegral(bg,
//                       mass,
//                       m0.getVal() - 2.5*sigma.getVal(),
//                       m0.getVal() + 2.5*sigma.getVal()
//                     );

  double nsigVal = fsig_peak * nsig.getVal();
  double nsigErr = fsig_peak * nsig.getError();
  double nsigErrRel = nsigErr / nsigVal;
//   double nbkgVal = fbkg_peak * nbkg.getVal();
//   double nbkgErr = fbkg_peak * nbkg.getError();
//   double nbkgErrRel = nbkgErr / nbkgVal;

  cout << "nsig " << nsigVal << " +/- " << nsigErr << endl;
//   cout << "S/B_{#pm2.5#sigma} " << nsigVal/nbkgVal << " +/- "
//     << (nsigVal/nbkgVal)*sqrt(nsigErrRel*nsigErrRel + nbkgErrRel*nbkgErrRel)
//     << endl;

//   tex->DrawLatex(0.2, 0.6, Form("N_{S} = %.0f#pm%.0f", nsigVal, nsigErr) );
//   tex->DrawLatex(0.2, 0.525, Form("S/B_{#pm2.5#sigma} = %.1f", nsigVal/nbkgVal) );
//   tex->DrawLatex(0.2, 0.45, Form("#frac{S}{#sqrt{B}}_{#pm2.5#sigma} = %.1f", nsigVal/sqrt(nbkgVal)));

  leg = new TLegend(0.65,0.6,0.9,0.75);
  leg->SetFillColor(kWhite);
  leg->SetLineColor(kWhite);
  leg->SetShadowColor(kWhite);
  leg->SetTextFont(42);

//   TLegendEntry * ldata  = leg->AddEntry(data, "Opposite Sign");
//   TLegendEntry * ldataB = leg->AddEntry(dataB, "Same Sign");
//   ldata->SetMarkerStyle(20);
//   ldataB->SetMarkerStyle(20);
//   ldataB->SetMarkerColor(kRed);

  leg->Draw();

  return signal;

}
Exemplo n.º 21
0
void run_trac_its(Int_t nEvents = 10, TString mcEngine = "TGeant3"){
        // Initialize logger
        FairLogger *logger = FairLogger::GetLogger();
        logger->SetLogVerbosityLevel("LOW");
        logger->SetLogScreenLevel("INFO");

        // Input and output file name
        std::stringstream inputfile, outputfile, paramfile;
        inputfile << "AliceO2_" << mcEngine << ".clus_" << nEvents << "_event.root";
        paramfile << "AliceO2_" << mcEngine << ".params_" << nEvents << ".root";
        outputfile << "AliceO2_" << mcEngine << ".trac_" << nEvents << "_event.root";

        // Setup timer
        TStopwatch timer;

        // Setup FairRoot analysis manager
        FairRunAna * fRun = new FairRunAna();
        FairFileSource *fFileSource = new FairFileSource(inputfile.str().c_str());
        fRun->SetSource(fFileSource);
        fRun->SetOutputFile(outputfile.str().c_str());

        // Setup Runtime DB
        FairRuntimeDb* rtdb = fRun->GetRuntimeDb();
        FairParRootFileIo* parInput1 = new FairParRootFileIo();
        parInput1->open(paramfile.str().c_str());
        rtdb->setFirstInput(parInput1);

        // Setup tracker
        // To run with n threads call AliceO2::ITS::CookedTrackerTask(n)
        AliceO2::ITS::CookedTrackerTask *trac = new AliceO2::ITS::CookedTrackerTask;

        fRun->AddTask(trac);

        fRun->Init();

        AliceO2::Field::MagneticField* fld = (AliceO2::Field::MagneticField*)fRun->GetField();
      	if (!fld) {
      	  std::cout << "Failed to get field instance from FairRunAna" << std::endl;
      	  return;
      	}
      	trac->setBz(fld->solenoidField()); //in kG

        timer.Start();
        fRun->Run();

        std::cout << std::endl << std::endl;

        // Extract the maximal used memory an add is as Dart measurement
        // This line is filtered by CTest and the value send to CDash
        FairSystemInfo sysInfo;
        Float_t maxMemory=sysInfo.GetMaxMemory();
        std::cout << "<DartMeasurement name=\"MaxMemory\" type=\"numeric/double\">";
        std::cout << maxMemory;
        std::cout << "</DartMeasurement>" << std::endl;

        timer.Stop();
        Double_t rtime = timer.RealTime();
        Double_t ctime = timer.CpuTime();

        Float_t cpuUsage=ctime/rtime;
        cout << "<DartMeasurement name=\"CpuLoad\" type=\"numeric/double\">";
        cout << cpuUsage;
        cout << "</DartMeasurement>" << endl;
        cout << endl << endl;
        cout << "Macro finished succesfully." << endl;

        std::cout << endl << std::endl;
        std::cout << "Output file is "    << outputfile.str() << std::endl;
        //std::cout << "Parameter file is " << parFile << std::endl;
        std::cout << "Real time " << rtime << " s, CPU time " << ctime
                  << "s" << endl << endl;
}
Exemplo n.º 22
0
void Classify_HWW( TString myMethodList = "" ) 
{   
#ifdef __CINT__
  gROOT->ProcessLine( ".O0" ); // turn off optimization in CINT
#endif

  //--------------------------------------------------------------------
  // path to weights dir (this is where MVA training info is stored)
  // output root file will be stored at [path]/output
  //--------------------------------------------------------------------

  TString path   = "Trainings/v5/H160_WW_10vars_dphi10/";
  //TString path   = "./";

  //-----------------------------------
  // select samples to run over
  //-----------------------------------

  char* babyPath = "/tas/cerati/HtoWWmvaBabies/latest";
  int mH         = 160;  // choose Higgs mass

  vector<char*> samples;
  samples.push_back("WWTo2L2Nu");
  samples.push_back("GluGluToWWTo4L");
  samples.push_back("WZ");
  samples.push_back("ZZ");
  samples.push_back("TTJets");
  samples.push_back("tW");
  samples.push_back("WJetsToLNu");
  samples.push_back("DY");
  //samples.push_back("WJetsFO3");

  if     ( mH == 130 ) samples.push_back("Higgs130");
  else if( mH == 160 ) samples.push_back("Higgs160");
  else if( mH == 200 ) samples.push_back("Higgs200");
  else{
    cout << "Error, unrecognized Higgs mass " << mH << " GeV, quitting" << endl;
    exit(0);
  }

  //--------------------------------------------------------------------------------
  // IMPORTANT: set the following variables to the same set used for MVA training!!!
  //--------------------------------------------------------------------------------
  
  std::map<std::string,int> mvaVar;
  mvaVar[ "lephard_pt" ]        = 1;
  mvaVar[ "lepsoft_pt" ]        = 1;
  mvaVar[ "dil_dphi" ]          = 1;
  mvaVar[ "dil_mass" ]          = 1;
  mvaVar[ "event_type" ]        = 0;
  mvaVar[ "met_projpt" ]        = 1;
  mvaVar[ "met_pt" ]            = 0;
  mvaVar[ "mt_lephardmet" ]     = 1;
  mvaVar[ "mt_lepsoftmet" ]     = 1;
  mvaVar[ "mthiggs" ]           = 1;
  mvaVar[ "dphi_lephardmet" ]   = 1;
  mvaVar[ "dphi_lepsoftmet" ]   = 1;
  mvaVar[ "lepsoft_fbrem" ]     = 0;
  mvaVar[ "lepsoft_eOverPIn" ]  = 0;
  mvaVar[ "lepsoft_qdphi" ]     = 0;

  //---------------------------------------------------------------

  // This loads the library
  TMVA::Tools::Instance();

  // Default MVA methods to be trained + tested
  std::map<std::string,int> Use;

  // --- Cut optimisation
  Use["Cuts"]            = 1;
  Use["CutsD"]           = 1;
  Use["CutsPCA"]         = 0;
  Use["CutsGA"]          = 0;
  Use["CutsSA"]          = 0;
  // 
  // --- 1-dimensional likelihood ("naive Bayes estimator")
  Use["Likelihood"]      = 1;
  Use["LikelihoodD"]     = 0; // the "D" extension indicates decorrelated input variables (see option strings)
  Use["LikelihoodPCA"]   = 1; // the "PCA" extension indicates PCA-transformed input variables (see option strings)
  Use["LikelihoodKDE"]   = 0;
  Use["LikelihoodMIX"]   = 0;
  //
  // --- Mutidimensional likelihood and Nearest-Neighbour methods
  Use["PDERS"]           = 1;
  Use["PDERSD"]          = 0;
  Use["PDERSPCA"]        = 0;
  Use["PDEFoam"]         = 1;
  Use["PDEFoamBoost"]    = 0; // uses generalised MVA method boosting
  Use["KNN"]             = 1; // k-nearest neighbour method
  //
  // --- Linear Discriminant Analysis
  Use["LD"]              = 1; // Linear Discriminant identical to Fisher
  Use["Fisher"]          = 0;
  Use["FisherG"]         = 0;
  Use["BoostedFisher"]   = 0; // uses generalised MVA method boosting
  Use["HMatrix"]         = 0;
  //
  // --- Function Discriminant analysis
  Use["FDA_GA"]          = 1; // minimisation of user-defined function using Genetics Algorithm
  Use["FDA_SA"]          = 0;
  Use["FDA_MC"]          = 0;
  Use["FDA_MT"]          = 0;
  Use["FDA_GAMT"]        = 0;
  Use["FDA_MCMT"]        = 0;
  //
  // --- Neural Networks (all are feed-forward Multilayer Perceptrons)
  Use["MLP"]             = 0; // Recommended ANN
  Use["MLPBFGS"]         = 0; // Recommended ANN with optional training method
  Use["MLPBNN"]          = 1; // Recommended ANN with BFGS training method and bayesian regulator
  Use["CFMlpANN"]        = 0; // Depreciated ANN from ALEPH
  Use["TMlpANN"]         = 0; // ROOT's own ANN
  //
  // --- Support Vector Machine 
  Use["SVM"]             = 1;
  // 
  // --- Boosted Decision Trees
  Use["BDT"]             = 1; // uses Adaptive Boost
  Use["BDTG"]            = 0; // uses Gradient Boost
  Use["BDTB"]            = 0; // uses Bagging
  Use["BDTD"]            = 0; // decorrelation + Adaptive Boost
  // 
  // --- Friedman's RuleFit method, ie, an optimised series of cuts ("rules")
  Use["RuleFit"]         = 1;
  // ---------------------------------------------------------------
  Use["Plugin"]          = 0;
  Use["Category"]        = 0;
  Use["SVM_Gauss"]       = 0;
  Use["SVM_Poly"]        = 0;
  Use["SVM_Lin"]         = 0;

  std::cout << std::endl;
  std::cout << "==> Start TMVAClassificationApplication" << std::endl;

  // Select methods (don't look at this code - not of interest)
  if (myMethodList != "") {
    for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;

    std::vector<TString> mlist = gTools().SplitString( myMethodList, ',' );
    for (UInt_t i=0; i<mlist.size(); i++) {
      std::string regMethod(mlist[i]);

      if (Use.find(regMethod) == Use.end()) {
        std::cout << "Method \"" << regMethod 
                  << "\" not known in TMVA under this name. Choose among the following:" << std::endl;
        for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) {
          std::cout << it->first << " ";
        }
        std::cout << std::endl;
        return;
      }
      Use[regMethod] = 1;
    }
  }

  // --------------------------------------------------------------------------------------------------

  const unsigned int nsamples = samples.size();
  
  for( unsigned int i = 0 ; i < nsamples ; ++i ){

    // --- Create the Reader object

    TMVA::Reader *reader = new TMVA::Reader( "!Color:!Silent" );    

    // Create a set of variables and declare them to the reader
    // - the variable names MUST corresponds in name and type to those given in the weight file(s) used
    //    Float_t var1, var2;
    //    Float_t var3, var4;
    //    reader->AddVariable( "myvar1 := var1+var2", &var1 );
    //    reader->AddVariable( "myvar2 := var1-var2", &var2 );
    //    reader->AddVariable( "var3",                &var3 );
    //    reader->AddVariable( "var4",                &var4 );

    Float_t lephard_pt;
    Float_t lepsoft_pt;
    Float_t dil_dphi;
    Float_t dil_mass;
    Float_t event_type;
    Float_t met_projpt;
    Float_t met_pt;
    Float_t mt_lephardmet;
    Float_t mt_lepsoftmet;
    Float_t mthiggs;
    Float_t dphi_lephardmet;
    Float_t dphi_lepsoftmet;
    Float_t lepsoft_fbrem;
    Float_t lepsoft_eOverPIn;
    Float_t lepsoft_qdphi;

    if( mvaVar["lephard_pt"])       reader->AddVariable( "lephard_pt"                  ,   &lephard_pt        ); 
    if( mvaVar["lepsoft_pt"])       reader->AddVariable( "lepsoft_pt"                  ,   &lepsoft_pt        ); 
    if( mvaVar["dil_dphi"])         reader->AddVariable( "dil_dphi"                    ,   &dil_dphi          ); 
    if( mvaVar["dil_mass"])         reader->AddVariable( "dil_mass"                    ,   &dil_mass          ); 
    if( mvaVar["event_type"])       reader->AddVariable( "event_type"                  ,   &event_type        );
    if( mvaVar["met_projpt"])       reader->AddVariable( "met_projpt"                  ,   &met_pt            );
    if( mvaVar["met_pt"])           reader->AddVariable( "met_pt"                      ,   &met_pt            );
    if( mvaVar["mt_lephardmet"])    reader->AddVariable( "mt_lephardmet"               ,   &mt_lephardmet     );
    if( mvaVar["mt_lepsoftmet"])    reader->AddVariable( "mt_lepsoftmet"               ,   &mt_lepsoftmet     );
    if( mvaVar["mthiggs"])          reader->AddVariable( "mthiggs"                     ,   &mthiggs           );  
    if( mvaVar["dphi_lephardmet"])  reader->AddVariable( "dphi_lephardmet"             ,   &dphi_lephardmet   );
    if( mvaVar["dphi_lepsoftmet"])  reader->AddVariable( "dphi_lepsoftmet"             ,   &dphi_lepsoftmet   );
    if( mvaVar["lepsoft_fbrem"])    reader->AddVariable( "lepsoft_fbrem"               ,   &lepsoft_fbrem     );
    if( mvaVar["lepsoft_eOverPIn"]) reader->AddVariable( "lepsoft_eOverPIn"            ,   &lepsoft_eOverPIn  );
    if( mvaVar["lepsoft_qdphi"])    reader->AddVariable( "lepsoft_q * lepsoft_dPhiIn"  ,   &lepsoft_qdphi     );
 

    // Spectator variables declared in the training have to be added to the reader, too
    //    Float_t spec1,spec2;
    //    reader->AddSpectator( "spec1 := var1*2",   &spec1 );
    //    reader->AddSpectator( "spec2 := var1*3",   &spec2 );

    Float_t Category_cat1, Category_cat2, Category_cat3;
    if (Use["Category"]){
      // Add artificial spectators for distinguishing categories
      //       reader->AddSpectator( "Category_cat1 := var3<=0",             &Category_cat1 );
      //       reader->AddSpectator( "Category_cat2 := (var3>0)&&(var4<0)",  &Category_cat2 );
      //       reader->AddSpectator( "Category_cat3 := (var3>0)&&(var4>=0)", &Category_cat3 );
    }

    // --- Book the MVA methods

    //--------------------------------------------------------------------------------------
    // tell Classify_HWW where to find the weights dir, which contains the trained MVA's. 
    // In this example, the weights dir is located at [path]/[dir]
    // and the output root file is written to [path]/[output]
    //--------------------------------------------------------------------------------------

    TString dir    = path + "weights/";
    TString outdir = path + "output/";
    TString prefix = "TMVAClassification";

    // Book method(s)
    for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) {
      if (it->second) {
        TString methodName = TString(it->first) + TString(" method");
        TString weightfile = dir + prefix + TString("_") + TString(it->first) + TString(".weights.xml");
        reader->BookMVA( methodName, weightfile ); 
      }
    }
   
    // Book output histograms
    UInt_t nbin = 1000;
    TH1F   *histLk(0), *histLkD(0), *histLkPCA(0), *histLkKDE(0), *histLkMIX(0), *histPD(0), *histPDD(0);
    TH1F   *histPDPCA(0), *histPDEFoam(0), *histPDEFoamErr(0), *histPDEFoamSig(0), *histKNN(0), *histHm(0);
    TH1F   *histFi(0), *histFiG(0), *histFiB(0), *histLD(0), *histNn(0),*histNnbfgs(0),*histNnbnn(0);
    TH1F   *histNnC(0), *histNnT(0), *histBdt(0), *histBdtG(0), *histBdtD(0), *histRf(0), *histSVMG(0);
    TH1F   *histSVMP(0), *histSVML(0), *histFDAMT(0), *histFDAGA(0), *histCat(0), *histPBdt(0);

    if (Use["Likelihood"])    histLk      = new TH1F( "MVA_Likelihood",    "MVA_Likelihood",    nbin, -1, 1 );               
    if (Use["LikelihoodD"])   histLkD     = new TH1F( "MVA_LikelihoodD",   "MVA_LikelihoodD",   nbin, -1, 0.9999 );
    if (Use["LikelihoodPCA"]) histLkPCA   = new TH1F( "MVA_LikelihoodPCA", "MVA_LikelihoodPCA", nbin, -1, 1 );
    if (Use["LikelihoodKDE"]) histLkKDE   = new TH1F( "MVA_LikelihoodKDE", "MVA_LikelihoodKDE", nbin,  -0.00001, 0.99999 );
    if (Use["LikelihoodMIX"]) histLkMIX   = new TH1F( "MVA_LikelihoodMIX", "MVA_LikelihoodMIX", nbin,  0, 1 );
    if (Use["PDERS"])         histPD      = new TH1F( "MVA_PDERS",         "MVA_PDERS",         nbin,  0, 1 );
    if (Use["PDERSD"])        histPDD     = new TH1F( "MVA_PDERSD",        "MVA_PDERSD",        nbin,  0, 1 );
    if (Use["PDERSPCA"])      histPDPCA   = new TH1F( "MVA_PDERSPCA",      "MVA_PDERSPCA",      nbin,  0, 1 );
    if (Use["KNN"])           histKNN     = new TH1F( "MVA_KNN",           "MVA_KNN",           nbin,  0, 1 );
    if (Use["HMatrix"])       histHm      = new TH1F( "MVA_HMatrix",       "MVA_HMatrix",       nbin, -0.95, 1.55 );
    if (Use["Fisher"])        histFi      = new TH1F( "MVA_Fisher",        "MVA_Fisher",        nbin, -4, 4 );
    if (Use["FisherG"])       histFiG     = new TH1F( "MVA_FisherG",       "MVA_FisherG",       nbin, -1, 1 );
    if (Use["BoostedFisher"]) histFiB     = new TH1F( "MVA_BoostedFisher", "MVA_BoostedFisher", nbin, -2, 2 );
    if (Use["LD"])            histLD      = new TH1F( "MVA_LD",            "MVA_LD",            nbin, -2, 2 );
    if (Use["MLP"])           histNn      = new TH1F( "MVA_MLP",           "MVA_MLP",           nbin, -1.25, 1.5 );
    if (Use["MLPBFGS"])       histNnbfgs  = new TH1F( "MVA_MLPBFGS",       "MVA_MLPBFGS",       nbin, -1.25, 1.5 );
    if (Use["MLPBNN"])        histNnbnn   = new TH1F( "MVA_MLPBNN",        "MVA_MLPBNN",        nbin, -1.25, 1.5 );
    if (Use["CFMlpANN"])      histNnC     = new TH1F( "MVA_CFMlpANN",      "MVA_CFMlpANN",      nbin,  0, 1 );
    if (Use["TMlpANN"])       histNnT     = new TH1F( "MVA_TMlpANN",       "MVA_TMlpANN",       nbin, -1.3, 1.3 );
    if (Use["BDT"])           histBdt     = new TH1F( "MVA_BDT",           "MVA_BDT",           nbin, -1. , 1. );
    if (Use["BDTD"])          histBdtD    = new TH1F( "MVA_BDTD",          "MVA_BDTD",          nbin, -0.8, 0.8 );
    if (Use["BDTG"])          histBdtG    = new TH1F( "MVA_BDTG",          "MVA_BDTG",          nbin, -1.0, 1.0 );
    if (Use["RuleFit"])       histRf      = new TH1F( "MVA_RuleFit",       "MVA_RuleFit",       nbin, -2.0, 2.0 );
    if (Use["SVM_Gauss"])     histSVMG    = new TH1F( "MVA_SVM_Gauss",     "MVA_SVM_Gauss",     nbin,  0.0, 1.0 );
    if (Use["SVM_Poly"])      histSVMP    = new TH1F( "MVA_SVM_Poly",      "MVA_SVM_Poly",      nbin,  0.0, 1.0 );
    if (Use["SVM_Lin"])       histSVML    = new TH1F( "MVA_SVM_Lin",       "MVA_SVM_Lin",       nbin,  0.0, 1.0 );
    if (Use["FDA_MT"])        histFDAMT   = new TH1F( "MVA_FDA_MT",        "MVA_FDA_MT",        nbin, -2.0, 3.0 );
    if (Use["FDA_GA"])        histFDAGA   = new TH1F( "MVA_FDA_GA",        "MVA_FDA_GA",        nbin, -2.0, 3.0 );
    if (Use["Category"])      histCat     = new TH1F( "MVA_Category",      "MVA_Category",      nbin, -2., 2. );
    if (Use["Plugin"])        histPBdt    = new TH1F( "MVA_PBDT",          "MVA_BDT",           nbin, -0.8, 0.8 );

    if (Use["Likelihood"])    histLk      ->Sumw2();
    if (Use["LikelihoodD"])   histLkD     ->Sumw2();
    if (Use["LikelihoodPCA"]) histLkPCA   ->Sumw2();
    if (Use["LikelihoodKDE"]) histLkKDE   ->Sumw2();
    if (Use["LikelihoodMIX"]) histLkMIX   ->Sumw2();
    if (Use["PDERS"])         histPD      ->Sumw2();
    if (Use["PDERSD"])        histPDD     ->Sumw2();
    if (Use["PDERSPCA"])      histPDPCA   ->Sumw2();
    if (Use["KNN"])           histKNN     ->Sumw2();
    if (Use["HMatrix"])       histHm      ->Sumw2();
    if (Use["Fisher"])        histFi      ->Sumw2();
    if (Use["FisherG"])       histFiG     ->Sumw2();
    if (Use["BoostedFisher"]) histFiB     ->Sumw2();
    if (Use["LD"])            histLD      ->Sumw2();
    if (Use["MLP"])           histNn      ->Sumw2();
    if (Use["MLPBFGS"])       histNnbfgs  ->Sumw2();
    if (Use["MLPBNN"])        histNnbnn   ->Sumw2();
    if (Use["CFMlpANN"])      histNnC     ->Sumw2();
    if (Use["TMlpANN"])       histNnT     ->Sumw2();
    if (Use["BDT"])           histBdt     ->Sumw2();
    if (Use["BDTD"])          histBdtD    ->Sumw2();
    if (Use["BDTG"])          histBdtG    ->Sumw2();
    if (Use["RuleFit"])       histRf      ->Sumw2();
    if (Use["SVM_Gauss"])     histSVMG    ->Sumw2();
    if (Use["SVM_Poly"])      histSVMP    ->Sumw2();
    if (Use["SVM_Lin"])       histSVML    ->Sumw2();
    if (Use["FDA_MT"])        histFDAMT   ->Sumw2();
    if (Use["FDA_GA"])        histFDAGA   ->Sumw2();
    if (Use["Category"])      histCat     ->Sumw2();
    if (Use["Plugin"])        histPBdt    ->Sumw2();

    // PDEFoam also returns per-event error, fill in histogram, and also fill significance
    if (Use["PDEFoam"]) {
      histPDEFoam    = new TH1F( "MVA_PDEFoam",       "MVA_PDEFoam",              nbin,  0, 1 );
      histPDEFoamErr = new TH1F( "MVA_PDEFoamErr",    "MVA_PDEFoam error",        nbin,  0, 1 );
      histPDEFoamSig = new TH1F( "MVA_PDEFoamSig",    "MVA_PDEFoam significance", nbin,  0, 10 );
    }

    // Book example histogram for probability (the other methods are done similarly)
    TH1F *probHistFi(0), *rarityHistFi(0);
    if (Use["Fisher"]) {
      probHistFi   = new TH1F( "MVA_Fisher_Proba",  "MVA_Fisher_Proba",  nbin, 0, 1 );
      rarityHistFi = new TH1F( "MVA_Fisher_Rarity", "MVA_Fisher_Rarity", nbin, 0, 1 );
    }

    // Prepare input tree (this must be replaced by your data source)
    // in this example, there is a toy tree with signal and one with background events
    // we'll later on use only the "signal" events for the test in this example.
    //   

 
    TChain *ch = new TChain("Events");

    if( strcmp( samples.at(i) , "DY" ) == 0 ){
      ch -> Add( Form("%s/DYToMuMuM20_PU_testFinal_baby.root",babyPath) );
      ch -> Add( Form("%s/DYToMuMuM10To20_PU_testFinal_baby.root",babyPath) );
      ch -> Add( Form("%s/DYToEEM20_PU_testFinal_baby.root",babyPath) );
      ch -> Add( Form("%s/DYToEEM10To20_PU_testFinal_baby.root",babyPath) );
      ch -> Add( Form("%s/DYToTauTauM20_PU_testFinal_baby.root",babyPath) );
      ch -> Add( Form("%s/DYToTauTauM10To20_PU_testFinal_baby.root",babyPath) );
    }
    if( strcmp( samples.at(i) , "WJetsFO3" ) == 0 ){
      ch -> Add( Form("%s/WJetsToLNu_FOv3_PU_testFinal_baby.root",babyPath) );
      ch -> Add( Form("%s/WToLNu_FOv3_testFinal_baby.root",babyPath) );
    }
    else if( strcmp( samples.at(i) , "Higgs130" ) == 0 ){
      ch -> Add( Form("%s/HToWWTo2L2NuM130_PU_testFinal_baby.root",babyPath) );
      ch -> Add( Form("%s/HToWWToLNuTauNuM130_PU_testFinal_baby.root",babyPath) );
      ch -> Add( Form("%s/HToWWTo2Tau2NuM130_PU_testFinal_baby.root",babyPath) );
    }
    else if( strcmp( samples.at(i) , "Higgs160" ) == 0 ){
      ch -> Add( Form("%s/HToWWTo2L2NuM160_PU_testFinal_baby.root",babyPath) );
      ch -> Add( Form("%s/HToWWToLNuTauNuM160_PU_testFinal_baby.root",babyPath) );
      ch -> Add( Form("%s/HToWWTo2Tau2NuM160_PU_testFinal_baby.root",babyPath) );
    }
    else if( strcmp( samples.at(i) , "Higgs200" ) == 0 ){
      ch -> Add( Form("%s/HToWWTo2L2NuM200_PU_testFinal_baby.root",babyPath) );
      ch -> Add( Form("%s/HToWWToLNuTauNuM200_PU_testFinal_baby.root",babyPath) );
      ch -> Add( Form("%s/HToWWTo2Tau2NuM200_PU_testFinal_baby.root",babyPath) );
    }
    else{
      ch -> Add( Form("%s/%s_PU_testFinal_baby.root",babyPath,samples.at(i)) );
    }

    // --- Event loop

    // Prepare the event tree
    // - here the variable names have to corresponds to your tree
    // - you can use the same variables as above which is slightly faster,
    //   but of course you can use different ones and copy the values inside the event loop
    //
  
    TTree *theTree     = (TTree*) ch;

    std::cout << "--- Using input files: -------------------" <<  std::endl;

    TObjArray *listOfFiles = ch->GetListOfFiles();
    TIter fileIter(listOfFiles);
    TChainElement* currentFile = 0;
    
    while((currentFile = (TChainElement*)fileIter.Next())) {
      std::cout << currentFile->GetTitle() << std::endl;
    }

    Float_t lephard_pt_;
    Float_t lepsoft_pt_;
    Float_t lepsoft_fr_;
    Float_t dil_dphi_;
    Float_t dil_mass_;
    Float_t event_type_;
    Float_t met_projpt_;
    Int_t   jets_num_;
    Int_t   extralep_num_;
    Int_t   lowptbtags_num_;
    Int_t   softmu_num_;
    Float_t event_scale1fb_;
    Float_t met_pt_;
    Int_t   lepsoft_passTighterId_;
    Float_t mt_lephardmet_;
    Float_t mt_lepsoftmet_;
    Float_t mthiggs_;
    Float_t dphi_lephardmet_;
    Float_t dphi_lepsoftmet_;
    Float_t lepsoft_fbrem_;
    Float_t lepsoft_eOverPIn_;
    Float_t lepsoft_q_;
    Float_t lepsoft_dPhiIn_;

    theTree->SetBranchAddress( "lephard_pt_"             ,   &lephard_pt_              ); 
    theTree->SetBranchAddress( "lepsoft_pt_"             ,   &lepsoft_pt_              ); 
    theTree->SetBranchAddress( "lepsoft_fr_"             ,   &lepsoft_fr_              ); 
    theTree->SetBranchAddress( "dil_dphi_"               ,   &dil_dphi_                ); 
    theTree->SetBranchAddress( "dil_mass_"               ,   &dil_mass_                ); 
    theTree->SetBranchAddress( "event_type_"             ,   &event_type_              ); 
    theTree->SetBranchAddress( "met_projpt_"             ,   &met_projpt_              ); 
    theTree->SetBranchAddress( "jets_num_"               ,   &jets_num_                ); 
    theTree->SetBranchAddress( "extralep_num_"           ,   &extralep_num_            ); 
    theTree->SetBranchAddress( "lowptbtags_num_"         ,   &lowptbtags_num_          ); 
    theTree->SetBranchAddress( "softmu_num_"             ,   &softmu_num_              ); 
    theTree->SetBranchAddress( "event_scale1fb_"         ,   &event_scale1fb_          ); 
    theTree->SetBranchAddress( "lepsoft_passTighterId_"  ,   &lepsoft_passTighterId_   );
    theTree->SetBranchAddress( "met_pt_"                 ,   &met_pt_                  );
    theTree->SetBranchAddress( "mt_lephardmet_"          ,   &mt_lephardmet_           );
    theTree->SetBranchAddress( "mt_lepsoftmet_"          ,   &mt_lepsoftmet_           );
    theTree->SetBranchAddress( "mthiggs_"                ,   &mthiggs_                 );
    theTree->SetBranchAddress( "dphi_lephardmet_"        ,   &dphi_lephardmet_         );
    theTree->SetBranchAddress( "dphi_lepsoftmet_"        ,   &dphi_lepsoftmet_         );
    theTree->SetBranchAddress( "lepsoft_fbrem_"          ,   &lepsoft_fbrem_           );
    theTree->SetBranchAddress( "lepsoft_eOverPIn_"       ,   &lepsoft_eOverPIn_        );
    theTree->SetBranchAddress( "lepsoft_q_"              ,   &lepsoft_q_               );
    theTree->SetBranchAddress( "lepsoft_dPhiIn_"         ,   &lepsoft_dPhiIn_          );

    // Efficiency calculator for cut method
    Int_t    nSelCutsGA = 0;
    Double_t effS       = 0.7;

    std::vector<Float_t> vecVar(4); // vector for EvaluateMVA tests

    std::cout << "--- Processing: " << theTree->GetEntries() << " events" << std::endl;
    TStopwatch sw;
    sw.Start();

    int npass   = 0;
    float yield = 0.;
    
    for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) {

      if (ievt%1000 == 0) std::cout << "--- ... Processing event: " << ievt << std::endl;

      theTree->GetEntry(ievt);

      //-------------------------------------------------------
      // event selection
      //-------------------------------------------------------

      if( dil_dphi_ > 1. ) continue;

      //em
      if( event_type_ > 0.5 && event_type_ < 2.5 ){
        if( met_projpt_ < 20. )   continue;
      }
      //ee/mm
      if( event_type_ < 0.5 || event_type_ > 2.5 ){
        if( met_projpt_ < 35. )   continue;
      }
      if( lephard_pt_ < 20.           )             continue;
      if( jets_num_ > 0               )             continue;
      if( extralep_num_ > 0           )             continue;
      if( lowptbtags_num_ > 0         )             continue;
      if( softmu_num_ > 0             )             continue;
      if( dil_mass_ < 12.             )             continue;
      if( lepsoft_passTighterId_ == 0 )             continue;
      //if( event_type_ < 1.5    )                    continue;
      //if( event_type > 1.5 && lepsoft_pt_ < 15. )   continue;

      //mH-dependent selection
      if( mH == 130 ){
        if( lepsoft_pt_ < 10.    )                  continue;      
        if( dil_mass_   > 90.    )                  continue;     
      }
      else if( mH == 160 ){
        if( lepsoft_pt_ < 20.    )                  continue;      
        if( dil_mass_   > 100.   )                  continue;     
      }
      else if( mH == 200 ){
        if( lepsoft_pt_ < 20.    )                  continue;      
        if( dil_mass_   > 130.   )                  continue;     
      }

      float weight = event_scale1fb_ * lepsoft_fr_ * 0.5;

      //--------------------------------------------------------
      // important: here we associate branches to MVA variables
      //--------------------------------------------------------

      lephard_pt        = lephard_pt_;
      lepsoft_pt        = lepsoft_pt_;
      dil_mass          = dil_mass_;
      dil_dphi          = dil_dphi_;
      event_type        = event_type_;
      met_pt            = met_pt_;
      met_projpt        = met_projpt_;
      mt_lephardmet     = mt_lephardmet_;
      mt_lepsoftmet     = mt_lepsoftmet_;
      mthiggs           = mthiggs_;
      dphi_lephardmet   = dphi_lephardmet_;
      dphi_lepsoftmet   = dphi_lepsoftmet_;
      lepsoft_fbrem     = lepsoft_fbrem_;
      lepsoft_eOverPIn  = lepsoft_eOverPIn_;
      lepsoft_qdphi     = lepsoft_q_ * lepsoft_dPhiIn_;

      npass++;
      yield+=weight;

      //       var1 = userVar1 + userVar2;
      //       var2 = userVar1 - userVar2;

      // --- Return the MVA outputs and fill into histograms

      if (Use["CutsGA"]) {
        // Cuts is a special case: give the desired signal efficienciy
        Bool_t passed = reader->EvaluateMVA( "CutsGA method", effS );
        if (passed) nSelCutsGA++;
      }

      if (Use["Likelihood"   ])   histLk     ->Fill( reader->EvaluateMVA( "Likelihood method"    ) , weight);
      if (Use["LikelihoodD"  ])   histLkD    ->Fill( reader->EvaluateMVA( "LikelihoodD method"   ) , weight);
      if (Use["LikelihoodPCA"])   histLkPCA  ->Fill( reader->EvaluateMVA( "LikelihoodPCA method" ) , weight);
      if (Use["LikelihoodKDE"])   histLkKDE  ->Fill( reader->EvaluateMVA( "LikelihoodKDE method" ) , weight);
      if (Use["LikelihoodMIX"])   histLkMIX  ->Fill( reader->EvaluateMVA( "LikelihoodMIX method" ) , weight);
      if (Use["PDERS"        ])   histPD     ->Fill( reader->EvaluateMVA( "PDERS method"         ) , weight);
      if (Use["PDERSD"       ])   histPDD    ->Fill( reader->EvaluateMVA( "PDERSD method"        ) , weight);
      if (Use["PDERSPCA"     ])   histPDPCA  ->Fill( reader->EvaluateMVA( "PDERSPCA method"      ) , weight);
      if (Use["KNN"          ])   histKNN    ->Fill( reader->EvaluateMVA( "KNN method"           ) , weight);
      if (Use["HMatrix"      ])   histHm     ->Fill( reader->EvaluateMVA( "HMatrix method"       ) , weight);
      if (Use["Fisher"       ])   histFi     ->Fill( reader->EvaluateMVA( "Fisher method"        ) , weight);
      if (Use["FisherG"      ])   histFiG    ->Fill( reader->EvaluateMVA( "FisherG method"       ) , weight);
      if (Use["BoostedFisher"])   histFiB    ->Fill( reader->EvaluateMVA( "BoostedFisher method" ) , weight);
      if (Use["LD"           ])   histLD     ->Fill( reader->EvaluateMVA( "LD method"            ) , weight);
      if (Use["MLP"          ])   histNn     ->Fill( reader->EvaluateMVA( "MLP method"           ) , weight);
      if (Use["MLPBFGS"      ])   histNnbfgs ->Fill( reader->EvaluateMVA( "MLPBFGS method"       ) , weight);
      if (Use["MLPBNN"       ])   histNnbnn  ->Fill( reader->EvaluateMVA( "MLPBNN method"        ) , weight);
      if (Use["CFMlpANN"     ])   histNnC    ->Fill( reader->EvaluateMVA( "CFMlpANN method"      ) , weight);
      if (Use["TMlpANN"      ])   histNnT    ->Fill( reader->EvaluateMVA( "TMlpANN method"       ) , weight);
      if (Use["BDT"          ])   histBdt    ->Fill( reader->EvaluateMVA( "BDT method"           ) , weight);
      if (Use["BDTD"         ])   histBdtD   ->Fill( reader->EvaluateMVA( "BDTD method"          ) , weight);
      if (Use["BDTG"         ])   histBdtG   ->Fill( reader->EvaluateMVA( "BDTG method"          ) , weight);
      if (Use["RuleFit"      ])   histRf     ->Fill( reader->EvaluateMVA( "RuleFit method"       ) , weight);
      if (Use["SVM_Gauss"    ])   histSVMG   ->Fill( reader->EvaluateMVA( "SVM_Gauss method"     ) , weight);
      if (Use["SVM_Poly"     ])   histSVMP   ->Fill( reader->EvaluateMVA( "SVM_Poly method"      ) , weight);
      if (Use["SVM_Lin"      ])   histSVML   ->Fill( reader->EvaluateMVA( "SVM_Lin method"       ) , weight);
      if (Use["FDA_MT"       ])   histFDAMT  ->Fill( reader->EvaluateMVA( "FDA_MT method"        ) , weight);
      if (Use["FDA_GA"       ])   histFDAGA  ->Fill( reader->EvaluateMVA( "FDA_GA method"        ) , weight);
      if (Use["Category"     ])   histCat    ->Fill( reader->EvaluateMVA( "Category method"      ) , weight);
      if (Use["Plugin"       ])   histPBdt   ->Fill( reader->EvaluateMVA( "P_BDT method"         ) , weight);

      // Retrieve also per-event error
      if (Use["PDEFoam"]) {
        Double_t val = reader->EvaluateMVA( "PDEFoam method" );
        Double_t err = reader->GetMVAError();
        histPDEFoam   ->Fill( val );
        histPDEFoamErr->Fill( err );         
        if (err>1.e-50) histPDEFoamSig->Fill( val/err , weight);
      }         

      // Retrieve probability instead of MVA output
      if (Use["Fisher"])   {
        probHistFi  ->Fill( reader->GetProba ( "Fisher method" ) , weight);
        rarityHistFi->Fill( reader->GetRarity( "Fisher method" ) , weight);
      }
    }

    std::cout << npass << " events passing selection, yield " << yield << std::endl;
 
    // Get elapsed time
    sw.Stop();
    std::cout << "--- End of event loop: "; sw.Print();

    // Get efficiency for cuts classifier
    if (Use["CutsGA"]) std::cout << "--- Efficiency for CutsGA method: " << double(nSelCutsGA)/theTree->GetEntries()
                                 << " (for a required signal efficiency of " << effS << ")" << std::endl;

    if (Use["CutsGA"]) {

      // test: retrieve cuts for particular signal efficiency
      // CINT ignores dynamic_casts so we have to use a cuts-secific Reader function to acces the pointer  
      TMVA::MethodCuts* mcuts = reader->FindCutsMVA( "CutsGA method" ) ;

      if (mcuts) {      
        std::vector<Double_t> cutsMin;
        std::vector<Double_t> cutsMax;
        mcuts->GetCuts( 0.7, cutsMin, cutsMax );
        std::cout << "--- -------------------------------------------------------------" << std::endl;
        std::cout << "--- Retrieve cut values for signal efficiency of 0.7 from Reader" << std::endl;
        for (UInt_t ivar=0; ivar<cutsMin.size(); ivar++) {
          std::cout << "... Cut: " 
                    << cutsMin[ivar] 
                    << " < \"" 
                    << mcuts->GetInputVar(ivar)
                    << "\" <= " 
                    << cutsMax[ivar] << std::endl;
        }
        std::cout << "--- -------------------------------------------------------------" << std::endl;
      }
    }

    // --- Write histograms
    cout << "dir " << dir << endl;
    char* mydir = outdir;
    TFile *target  = new TFile( Form("%s/%s.root",mydir,samples.at(i) ) ,"RECREATE" );
    cout << "Writing to file " << Form("%s/%s.root",mydir,samples.at(i) ) << endl;

    if (Use["Likelihood"   ])   histLk     ->Write();
    if (Use["LikelihoodD"  ])   histLkD    ->Write();
    if (Use["LikelihoodPCA"])   histLkPCA  ->Write();
    if (Use["LikelihoodKDE"])   histLkKDE  ->Write();
    if (Use["LikelihoodMIX"])   histLkMIX  ->Write();
    if (Use["PDERS"        ])   histPD     ->Write();
    if (Use["PDERSD"       ])   histPDD    ->Write();
    if (Use["PDERSPCA"     ])   histPDPCA  ->Write();
    if (Use["KNN"          ])   histKNN    ->Write();
    if (Use["HMatrix"      ])   histHm     ->Write();
    if (Use["Fisher"       ])   histFi     ->Write();
    if (Use["FisherG"      ])   histFiG    ->Write();
    if (Use["BoostedFisher"])   histFiB    ->Write();
    if (Use["LD"           ])   histLD     ->Write();
    if (Use["MLP"          ])   histNn     ->Write();
    if (Use["MLPBFGS"      ])   histNnbfgs ->Write();
    if (Use["MLPBNN"       ])   histNnbnn  ->Write();
    if (Use["CFMlpANN"     ])   histNnC    ->Write();
    if (Use["TMlpANN"      ])   histNnT    ->Write();
    if (Use["BDT"          ])   histBdt    ->Write();
    if (Use["BDTD"         ])   histBdtD   ->Write();
    if (Use["BDTG"         ])   histBdtG   ->Write(); 
    if (Use["RuleFit"      ])   histRf     ->Write();
    if (Use["SVM_Gauss"    ])   histSVMG   ->Write();
    if (Use["SVM_Poly"     ])   histSVMP   ->Write();
    if (Use["SVM_Lin"      ])   histSVML   ->Write();
    if (Use["FDA_MT"       ])   histFDAMT  ->Write();
    if (Use["FDA_GA"       ])   histFDAGA  ->Write();
    if (Use["Category"     ])   histCat    ->Write();
    if (Use["Plugin"       ])   histPBdt   ->Write();

    // Write also error and significance histos
    if (Use["PDEFoam"]) { histPDEFoam->Write(); histPDEFoamErr->Write(); histPDEFoamSig->Write(); }

    // Write also probability hists
    if (Use["Fisher"]) { if (probHistFi != 0) probHistFi->Write(); if (rarityHistFi != 0) rarityHistFi->Write(); }
    target->Close();

    delete reader;
    
    std::cout << "==> TMVAClassificationApplication is done with sample " << samples.at(i) << endl << std::endl;
  } 
}
Exemplo n.º 23
0
void califaAna_batch(Int_t nEvents=1, Int_t fGeoVer=1, Double_t fThres=0.000050, 
					 Double_t fExpRes=5., Double_t fDelPolar=3.2, Double_t fDelAzimuthal=3.2) {
	        
        cout << "Running califaAna_batch with arguments:" <<endl;
        cout << "Number of events: " << nEvents <<endl;
        cout << "CALIFA geo version: " << fGeoVer <<endl;
        cout << "Threshold: " << fThres <<endl<<endl;
	cout << "Experimental resolution: " << fExpRes <<endl<<endl;

	
	// In general, the following parts need not be touched
	// ========================================================================
	
	// ----    Debug option   -------------------------------------------------
	gDebug = 0;
	// ------------------------------------------------------------------------
	
	// -----   Timer   --------------------------------------------------------
	TStopwatch timer;
	timer.Start();
	// ------------------------------------------------------------------------
	
	
	// -----   Create analysis run   ----------------------------------------
	FairRunAna* fRun = new FairRunAna();
	
        FairRuntimeDb* rtdb = fRun->GetRuntimeDb();
        FairParRootFileIo*  parIo1 = new FairParRootFileIo();
        parIo1->open("r3bpar.root");
        rtdb->setFirstInput(parIo1);
        rtdb->print();

	fRun->SetInputFile("r3bsim.root");
	fRun->SetOutputFile("califaAna.root");
	
	// -----  Analysis routines for CALIFA	
	
	R3BCaloHitFinder* caloHF = new R3BCaloHitFinder();
	//Selecting the geometry version
	// 0- CALIFA 5.0, including BARREL and ENDCAP.
	// 1- CALIFA 7.05, only BARREL
	// 2- CALIFA 7.07, only BARREL
	// 3- CALIFA 7.09, only BARREL (ongoing work)
	// 4- CALIFA 7.17, only ENDCAP (in CsI[Tl])
	// 5- CALIFA 7.07+7.17, 
	// 6- CALIFA 7.09+7.17, (ongoing work)
	// 10- CALIFA 8.11, only BARREL (ongoing work) 
	// ...
	caloHF->SelectGeometryVersion(fGeoVer);          
	//caloHF->SelectGeometryVersion(10);          
	caloHF->SetDetectionThreshold(fThres);             //50 KeV  [fThres in GeV]
	caloHF->SetExperimentalResolution(fExpRes);        //5% at 1 MeV
	caloHF->SetAngularWindow(fDelPolar,fDelAzimuthal); //[0.25 around 14.3 degrees, 3.2 for the complete calorimeter]

	fRun->AddTask(caloHF);
	
	fRun->Init();                     
	fRun->Run(0, nEvents);
	
	// -----   Finish   -------------------------------------------------------
	timer.Stop();
	Double_t rtime = timer.RealTime();
	Double_t ctime = timer.CpuTime();
	cout << endl << endl;
	cout << "Macro finished succesfully." << endl;
	cout << "Real time " << rtime << " s, CPU time " << ctime << " s" << endl;
	cout << endl;
	// ------------------------------------------------------------------------
	
	
}
void TMVAClassificationApplication_TX(TString myMethodList = "" , TString iFileName = "", TString sampleLocation = "", TString outputLocation = "") 
{   
#ifdef __CINT__
   gROOT->ProcessLine( ".O0" ); // turn off optimization in CINT
#endif

   //---------------------------------------------------------------

   // This loads the library
   TMVA::Tools::Instance();

   // Default MVA methods to be trained + tested
   std::map<std::string,int> Use;

   // --- Cut optimisation
   Use["Cuts"]            = 0;
   Use["CutsD"]           = 0;
   Use["CutsPCA"]         = 0;
   Use["CutsGA"]          = 0;
   Use["CutsSA"]          = 0;
   // 
   // 
   // --- Boosted Decision Trees
   Use["BDT"]             = 1; // uses Adaptive Boost
   std::cout << std::endl;
   std::cout << "==> Start TMVAClassificationApplication" << std::endl;

   // Select methods (don't look at this code - not of interest)
   if (myMethodList != "") {
      for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;

      std::vector<TString> mlist = gTools().SplitString( myMethodList, ',' );
      for (UInt_t i=0; i<mlist.size(); i++) {
         std::string regMethod(mlist[i]);

         if (Use.find(regMethod) == Use.end()) {
            std::cout << "Method \"" << regMethod 
                      << "\" not known in TMVA under this name. Choose among the following:" << std::endl;
            for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) {
               std::cout << it->first << " ";
            }
            std::cout << std::endl;
            return;
         }
         Use[regMethod] = 1;
      }
   }

   // --------------------------------------------------------------------------------------------------

   // --- Create the Reader object

   TMVA::Reader *reader = new TMVA::Reader("!Color:!Silent" );    
   // Create a set of variables and declare them to the reader
   // - the variable names MUST corresponds in name and type to those given in the weight file(s) used
   Float_t var1, var2, var3, var4, var5, var6, var7, var8, var9, var10, var11, var12, var13, var14, var15, var16, var17, var18, var19, var20, var21, var22, var23, var24, var25, var26, var27, var28, var29;
   //reader->AddVariable( "Alt$(jet_pt_singleLepCalc[0],0)", &var1);
   //reader->AddVariable( "Alt$(jet_pt_singleLepCalc[1],0)", &var2 );
   //reader->AddVariable( "Alt$(jet_pt_singleLepCalc[2],0)", &var3 );
   reader->AddVariable( "Alt$(bJetPt_CATopoCalc[0],0)", &var4 );
   reader->AddVariable( "Alt$(bJetPt_CATopoCalc[1],0)", &var5 );
   //reader->AddVariable( "corr_met_singleLepCalc", &var6 );
   //reader->AddVariable( "muon_1_pt_singleLepCalc", &var7 );
   //reader->AddVariable( "nBJets_CATopoCalc", &var8 );
   //reader->AddVariable( "nSelJets_CommonCalc", &var9 );
   //reader->AddVariable( "LeptonJet_DeltaR_LjetsTopoCalcNew", &var10);
   reader->AddVariable( "Mevent_LjetsTopoCalcNew", &var11);
   //reader->AddVariable( "W_Pt_LjetsTopoCalcNew", &var12 );
   reader->AddVariable( "Jet1Jet2_Pt_LjetsTopoCalcNew", &var13 );
   //reader->AddVariable( "BestTop_LjetsTopoCalcNew", &var14 );
   //reader->AddVariable( "BTagTopMass_LjetsTopoCalcNew", &var15 );
   //reader->AddVariable( "Alt$(CAHEPTopJetMass_JetSubCalc[0],0)", &var16 );
   //reader->AddVariable( "Alt$(CAWCSVMSubJets_JetSubCalc[0],0)", &var17 );
   //reader->AddVariable( "Alt$(CAWCSVLSubJets_JetSubCalc[0],0)", &var18 );
   reader->AddVariable( "Alt$(CAWJetPt_JetSubCalc[0],0)", &var19 );
   reader->AddVariable( "Alt$(CAWJetMass_JetSubCalc[0],0)", &var20 );
   //reader->AddVariable( "Alt$(CAHEPTopJetMass_JetSubCalc[1],0)", &var21 );
   //reader->AddVariable( "Hz_LjetsTopoCalcNew", &var22 );
   //reader->AddVariable( "Centrality_LjetsTopoCalcNew", &var23 );
   reader->AddVariable( "SqrtsT_LjetsTopoCalcNew", &var24 );
   reader->AddVariable( "CAMindrBMass_CATopoCalc", &var28 );
   reader->AddVariable( "minDRCAtoB_CATopoCalc",  &var29 );
   //reader->AddVariable( "HT2prime_LjetsTopoCalcNew", &var25 );
   reader->AddVariable( "HT2_LjetsTopoCalcNew", &var26 );
   //reader->AddVariable( "dphiLepMet_LjetsTopoCalcNew", &var27 );
     


   // Spectator variables declared in the training have to be added to the reader, too
//    Float_t spec1,spec2;
//    reader->AddSpectator( "spec1 := var1*2",   &spec1 );
//    reader->AddSpectator( "spec2 := var1*3",   &spec2 );

//    Float_t Category_cat1, Category_cat2, Category_cat3;
//    if (Use["Category"]){
//       // Add artificial spectators for distinguishing categories
//       reader->AddSpectator( "Category_cat1 := var3<=0",             &Category_cat1 );
//       reader->AddSpectator( "Category_cat2 := (var3>0)&&(var4<0)",  &Category_cat2 );
//       reader->AddSpectator( "Category_cat3 := (var3>0)&&(var4>=0)", &Category_cat3 );
//    }

   // --- Book the MVA methods
   // Book method(s)
  TString weightFileName = "weights/TMVAClassification_BDT.weights";
  reader->BookMVA("BDT method", weightFileName+".xml" ); 

   
   // Book output histograms
   UInt_t nbin = 100;
   TH1F   *histBdt(0);
   histBdt = new TH1F( "MVA_BDT_TX",  "MVA_BDT_TX", nbin, -1.0, 1.0);

   // Prepare input tree (this must be replaced by your data source)
   // in this example, there is a toy tree with signal and one with background events
   // we'll later on use only the "signal" events for the test in this example.
   //   
   TFile *input(0);
   TString fileName = iFileName;
   TString fname = sampleLocation+"/";
   fname += fileName;
   TString oFileName = fileName;

   if (!gSystem->AccessPathName( fname )) 
      input = TFile::Open( fname ); // check if file in local directory exists
   if (!input) {
      std::cout << "ERROR: could not open data file" << std::endl;
      exit(1);
   }
   std::cout << "--- TMVAClassificationApp    : Using input file: " << input->GetName() << std::endl;

   // --- Event loop

   // Prepare the event tree
   // - here the variable names have to corresponds to your tree
   // - you can use the same variables as above which is slightly faster,
   //   but of course you can use different ones and copy the values inside the event loop
   //
   std::cout << "--- Select signal sample" << std::endl;
   TTree* theTree = (TTree*)input->Get("ljmet");
   gSystem->mkdir( outputLocation );
   TFile *target  = new TFile( outputLocation+"/"+oFileName,"RECREATE" );
   TTree *newTree = theTree->CloneTree();
   Float_t BDT;
   TBranch *branchBDT = newTree->Branch("__BDT_TX__",&BDT,"__BDT_TX__/F");
   std::vector<Double_t> *vecVar1;
   std::vector<Double_t> *vecVar4;
   std::vector<Double_t> *vecVar16;
   std::vector<Int_t> *vecVar17;
   std::vector<Int_t> *vecVar18;
   std::vector<Double_t> *vecVar19;
   std::vector<Double_t> *vecVar20;
   Int_t *intVar5, *intVar8, *intVar9;
   Double_t *dVar2, *dVar3, *dVar6, *dVar7, *dVar10, *dVar11, *dVar12, *dVar13, *dVar14, *dVar15, *dVar22, *dVar23, *dVar24, dVar25, *dVar26, *dVar27, *dVar28, *dVar29;
   theTree->SetBranchAddress( "jet_pt_singleLepCalc", &vecVar1);
   theTree->SetBranchAddress( "bJetPt_CATopoCalc", &vecVar4 );
   theTree->SetBranchAddress( "corr_met_singleLepCalc", &dVar6 );
   theTree->SetBranchAddress( "muon_1_pt_singleLepCalc", &dVar7 );
   theTree->SetBranchAddress( "nBJets_CATopoCalc", &intVar8 );
   theTree->SetBranchAddress( "nSelJets_CommonCalc", &intVar9 );
   theTree->SetBranchAddress( "LeptonJet_DeltaR_LjetsTopoCalcNew", &dVar10);
   theTree->SetBranchAddress( "Mevent_LjetsTopoCalcNew", &dVar11);
   theTree->SetBranchAddress( "W_Pt_LjetsTopoCalcNew", &dVar12 );
   theTree->SetBranchAddress( "Jet1Jet2_Pt_LjetsTopoCalcNew", &dVar13 );
   theTree->SetBranchAddress( "BestTop_LjetsTopoCalcNew", &dVar14 );
   theTree->SetBranchAddress( "BTagTopMass_LjetsTopoCalcNew", &dVar15 );
   theTree->SetBranchAddress( "CAHEPTopJetMass_JetSubCalc", &vecVar16 );
   theTree->SetBranchAddress( "CAWCSVMSubJets_JetSubCalc", &vecVar17 );
   theTree->SetBranchAddress( "CAWCSVLSubJets_JetSubCalc", &vecVar18 );
   theTree->SetBranchAddress( "CAWJetPt_JetSubCalc", &vecVar19 );
   theTree->SetBranchAddress( "CAWJetMass_JetSubCalc", &vecVar20 );
   theTree->SetBranchAddress( "Hz_LjetsTopoCalcNew", &dVar22 );
   theTree->SetBranchAddress( "Centrality_LjetsTopoCalcNew", &dVar23 );
   theTree->SetBranchAddress( "SqrtsT_LjetsTopoCalcNew", &dVar24 );
   theTree->SetBranchAddress( "HT2prime_LjetsTopoCalcNew", &dVar25 );
   theTree->SetBranchAddress( "HT2_LjetsTopoCalcNew", &dVar26 );
   theTree->SetBranchAddress( "dphiLepMet_LjetsTopoCalcNew", &dVar27 );
   theTree->SetBranchAddress( "CAMindrBMass_CATopoCalc", &dVar28 );
   theTree->SetBranchAddress( "minDRCAtoB_CATopoCalc", &dVar29 );


   // Efficiency calculator for cut method
   Int_t    nSelCutsGA = 0;
   Double_t effS       = 0.7;

   std::vector<Float_t> vecVar(4); // vector for EvaluateMVA tests

   std::cout << "--- Processing: " << theTree->GetEntries() << " events" << std::endl;
   TStopwatch sw;
   sw.Start();
   for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) {

      if (ievt%1000 == 0) std::cout << "--- ... Processing event: " << ievt << std::endl;
      theTree->GetEntry(ievt);
      if(vecVar1->size()>0){
      	var1 = vecVar1->at(0);
      }
      if(vecVar1->size()>1){
      	var2 = vecVar1->at(1);
      }
      if(vecVar1->size()>2){
      	var3 = vecVar1->at(2);
      }
      if(vecVar4->size()>0){
      	var4 = vecVar4->at(0);
      }
      if(vecVar4->size()>1){
      	var5 = vecVar4->at(1);
      }      
      var6 = dVar6;
      var7 = dVar7;
      var8 = intVar8;
      var9 = intVar9;
      var10 = dVar10;
      var11 = dVar11;
      var12 = dVar12;
      var13 = dVar13;
      var14 = dVar14;
      var15 = dVar15;
      if(vecVar16->size()>0){
      	var16 = vecVar16->at(0);
      }
      else{
      	var16 = 0;
      }
      if(vecVar17->size()>0){
      	var17 = vecVar17->at(0);
      }
      else{
      	var18 = 0;
      }
      if(vecVar19->size()>0){
      	var19 = vecVar19->at(0);
      }
      else{
      	var19 = 0;
      }     
      if(vecVar20->size()>0){
      	var20 = vecVar20->at(0);
      }
      else{
      	var20 = 0;
      }
      if(vecVar16->size()>1){
	  	var21 = vecVar16->at(1);
	  }
	  else{
	  	var21 = 0;
	  }
	  var22 = dVar22;
	  var23 = dVar23;
	  var24 = dVar24;
	  var25 = dVar25;
	  var26 = dVar26;
	  var27 = dVar27;
	  var28 = dVar28;
	  var29 = dVar29;      // --- Return the MVA outputs and fill into histograms

      if (Use["CutsGA"]) {
         // Cuts is a special case: give the desired signal efficienciy
         Bool_t passed = reader->EvaluateMVA( "CutsGA method", effS );
         if (passed) nSelCutsGA++;
      }
      BDT = reader->EvaluateMVA( "BDT method");
      histBdt->Fill(BDT);
      branchBDT->Fill();
   }

   // Get elapsed time
   sw.Stop();
   std::cout << "--- End of event loop: "; sw.Print();

   // Get efficiency for cuts classifier
   if (Use["CutsGA"]) std::cout << "--- Efficiency for CutsGA method: " << double(nSelCutsGA)/theTree->GetEntries()
                                << " (for a required signal efficiency of " << effS << ")" << std::endl;

   if (Use["CutsGA"]) {

      // test: retrieve cuts for particular signal efficiency
      // CINT ignores dynamic_casts so we have to use a cuts-secific Reader function to acces the pointer  
      TMVA::MethodCuts* mcuts = reader->FindCutsMVA( "CutsGA method" ) ;

      if (mcuts) {      
         std::vector<Double_t> cutsMin;
         std::vector<Double_t> cutsMax;
         mcuts->GetCuts( 0.7, cutsMin, cutsMax );
         std::cout << "--- -------------------------------------------------------------" << std::endl;
         std::cout << "--- Retrieve cut values for signal efficiency of 0.7 from Reader" << std::endl;
         for (UInt_t ivar=0; ivar<cutsMin.size(); ivar++) {
            std::cout << "... Cut: " 
                      << cutsMin[ivar] 
                      << " < \"" 
                      << mcuts->GetInputVar(ivar)
                      << "\" <= " 
                      << cutsMax[ivar] << std::endl;
         }
         std::cout << "--- -------------------------------------------------------------" << std::endl;
      }
   }

   // --- Write histograms

   newTree->Write("",TObject::kOverwrite);
   target->Close();

   std::cout << "--- Created root file: \""<<oFileName<<"\" containing the MVA output histograms" << std::endl;
  
   delete reader;
    
   std::cout << "==> TMVAClassificationApplication is done!" << endl << std::endl;
} 
void TMVAClassificationApplication_new(TString myMethodList = "" , TString iFileName = "", TString bkgSample = "", TString sampleLocation = "", TString massPoint = "", TString oFileLocation = "") 
{   
#ifdef __CINT__
   gROOT->ProcessLine( ".O0" ); // turn off optimization in CINT
#endif

   //---------------------------------------------------------------

   // This loads the library
   TMVA::Tools::Instance();

   // Default MVA methods to be trained + tested
   std::map<std::string,int> Use;

   // --- Cut optimisation
   Use["Cuts"]            = 0;
   Use["CutsD"]           = 0;
   Use["CutsPCA"]         = 0;
   Use["CutsGA"]          = 0;
   Use["CutsSA"]          = 0;
   // 
   // 
   // --- Boosted Decision Trees
   Use["BDT"]             = 1; // uses Adaptive Boost
   std::cout << std::endl;
   std::cout << "==> Start TMVAClassificationApplication" << std::endl;

   // Select methods (don't look at this code - not of interest)
   if (myMethodList != "") {
      for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;

      std::vector<TString> mlist = gTools().SplitString( myMethodList, ',' );
      for (UInt_t i=0; i<mlist.size(); i++) {
         std::string regMethod(mlist[i]);

         if (Use.find(regMethod) == Use.end()) {
            std::cout << "Method \"" << regMethod 
                      << "\" not known in TMVA under this name. Choose among the following:" << std::endl;
            for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) {
               std::cout << it->first << " ";
            }
            std::cout << std::endl;
            return;
         }
         Use[regMethod] = 1;
      }
   }

   // --------------------------------------------------------------------------------------------------

   // --- Create the Reader object

   TMVA::Reader *reader = new TMVA::Reader("!Color:!Silent" );   
    TString weightTail = "_";
    weightTail = weightTail + massPoint;
   // Create a set of variables and declare them to the reader
   // - the variable names MUST corresponds in name and type to those given in the weight file(s) used
   Float_t var1, var2, var3, var4, var5, var6, var7, var8, var9, var10, var11, var12, var13, var14, var15, var16, var17, var18;
   reader->AddVariable( "svMass", &var1);
   reader->AddVariable( "dRTauTau", &var3 );
   reader->AddVariable( "dRJJ", &var4 );
//    reader->AddVariable( "svPt", &var5 );
//    reader->AddVariable( "dRhh", &var6 );
   reader->AddVariable( "met", &var7 );
   reader->AddVariable( "mJJ", &var8 );
//    reader->AddVariable( "metTau1DPhi", &var9 );
//    reader->AddVariable( "metTau2DPhi", &var10);
//    reader->AddVariable( "metJ1DPhi", &var11);
//    reader->AddVariable( "metJ2DPhi", &var12 );
//    reader->AddVariable( "metTauPairDPhi", &var13 );
//    reader->AddVariable( "metSvTauPairDPhi", &var14 );
//    reader->AddVariable( "metJetPairDPhi", &var15 );
//    reader->AddVariable( "CSVJ1", &var16 );
//    reader->AddVariable( "CSVJ2", &var17 );
   reader->AddVariable( "fMassKinFit", &var2 );
   reader->AddVariable( "chi2KinFit2", &var18 );


   // Spectator variables declared in the training have to be added to the reader, too
//    Float_t spec1,spec2;
//    reader->AddSpectator( "spec1 := var1*2",   &spec1 );
//    reader->AddSpectator( "spec2 := var1*3",   &spec2 );

//    Float_t Category_cat1, Category_cat2, Category_cat3;
//    if (Use["Category"]){
//       // Add artificial spectators for distinguishing categories
//       reader->AddSpectator( "Category_cat1 := var3<=0",             &Category_cat1 );
//       reader->AddSpectator( "Category_cat2 := (var3>0)&&(var4<0)",  &Category_cat2 );
//       reader->AddSpectator( "Category_cat3 := (var3>0)&&(var4>=0)", &Category_cat3 );
//    }

   // --- Book the MVA methods
   // Book method(s)
  TString weightFileName = "/nfs_scratch/zmao/test/CMSSW_5_3_15/src/TMVA-v4.2.0/test/weights/TMVAClassification_BDT.weights_";
  weightFileName += bkgSample;
  weightFileName += weightTail;
  reader->BookMVA("BDT method", weightFileName+".xml" ); 

   
   // Book output histograms
   UInt_t nbin = 200;
   TH1F   *histBdt(0);
   histBdt = new TH1F( "MVA_BDT",  "MVA_BDT", nbin, -1.0, 1.0);

   // Prepare input tree (this must be replaced by your data source)
   // in this example, there is a toy tree with signal and one with background events
   // we'll later on use only the "signal" events for the test in this example.
   //   
   TFile *input(0);
   TString fileName = iFileName;
   TString fname = sampleLocation;
   fname += fileName;
   TString oFileName = oFileLocation;
   oFileName += "ClassApp_" + bkgSample;
   oFileName += "_";
   oFileName += fileName;

   if (!gSystem->AccessPathName( fname )) 
      input = TFile::Open(fname); // check if file in local directory exists
   if (!input) {
      std::cout << "ERROR: could not open data file" << std::endl;
      exit(1);
   }
   std::cout << "--- TMVAClassificationApp    : Using input file: " << input->GetName() << std::endl;

   // --- Event loop

   // Prepare the event tree
   // - here the variable names have to corresponds to your tree
   // - you can use the same variables as above which is slightly faster,
   //   but of course you can use different ones and copy the values inside the event loop
   //
   std::cout << "--- Select signal sample" << std::endl;
   TTree* theTree = (TTree*)input->Get("eventTree");
   TFile *target  = new TFile( oFileName,"RECREATE" );
   TTree *newTree = theTree->CloneTree();
   Float_t BDT;
   TBranch *branchBDT = newTree->Branch("BDT_"+bkgSample,&BDT,"BDT/F");
   std::vector<Double_t> *vecVar1;
   std::vector<Double_t> *vecVar5;
   std::vector<Double_t> *vecVar7;
   theTree->SetBranchAddress( "svMass", &vecVar1);
   theTree->SetBranchAddress( "dRTauTau", &var3);
   theTree->SetBranchAddress( "dRJJ", &var4 );
//    theTree->SetBranchAddress( "svPt", &vecVar5 );
//    theTree->SetBranchAddress( "dRhh", &var6 );
   theTree->SetBranchAddress( "met", &vecVar7 );
   theTree->SetBranchAddress( "mJJ", &var8 );
//    theTree->SetBranchAddress( "metTau1DPhi", &var9 );
//    theTree->SetBranchAddress( "metTau2DPhi", &var10);
//    theTree->SetBranchAddress( "metJ1DPhi", &var11);
//    theTree->SetBranchAddress( "metJ2DPhi", &var12 );
//    theTree->SetBranchAddress( "metTauPairDPhi", &var13 );
//    theTree->SetBranchAddress( "metSvTauPairDPhi", &var14 );
//    theTree->SetBranchAddress( "metJetPairDPhi", &var15 );
//    theTree->SetBranchAddress( "CSVJ1", &var16 );
//    theTree->SetBranchAddress( "CSVJ2", &var17 );
   theTree->SetBranchAddress( "fMassKinFit", &var2);
   theTree->SetBranchAddress( "chi2KinFit2", &var18);

   //to get initial pre-processed events
   TH1F* cutFlow = (TH1F*)input->Get("preselection");

   // Efficiency calculator for cut method
   Int_t    nSelCutsGA = 0;
   Double_t effS       = 0.7;

   std::vector<Float_t> vecVar(4); // vector for EvaluateMVA tests

   std::cout << "--- Processing: " << theTree->GetEntries() << " events" << std::endl;
   TStopwatch sw;
   sw.Start();
   for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) {

      if (ievt%1000 == 0) std::cout << "--- ... Processing event: " << ievt << std::endl;
      theTree->GetEntry(ievt);
      var1 = vecVar1->at(0);
//       var5 = vecVar5->at(0);
      var7 = vecVar7->at(0);
      // --- Return the MVA outputs and fill into histograms

      if (Use["CutsGA"]) {
         // Cuts is a special case: give the desired signal efficienciy
         Bool_t passed = reader->EvaluateMVA( "CutsGA method", effS );
         if (passed) nSelCutsGA++;
      }
      BDT = reader->EvaluateMVA( "BDT method");
      histBdt->Fill(BDT);
      branchBDT->Fill();
   }

   // Get elapsed time
   sw.Stop();
   std::cout << "--- End of event loop: "; sw.Print();

   // Get efficiency for cuts classifier
   if (Use["CutsGA"]) std::cout << "--- Efficiency for CutsGA method: " << double(nSelCutsGA)/theTree->GetEntries()
                                << " (for a required signal efficiency of " << effS << ")" << std::endl;

   if (Use["CutsGA"]) {

      // test: retrieve cuts for particular signal efficiency
      // CINT ignores dynamic_casts so we have to use a cuts-secific Reader function to acces the pointer  
      TMVA::MethodCuts* mcuts = reader->FindCutsMVA( "CutsGA method" ) ;

      if (mcuts) {      
         std::vector<Double_t> cutsMin;
         std::vector<Double_t> cutsMax;
         mcuts->GetCuts( 0.7, cutsMin, cutsMax );
         std::cout << "--- -------------------------------------------------------------" << std::endl;
         std::cout << "--- Retrieve cut values for signal efficiency of 0.7 from Reader" << std::endl;
         for (UInt_t ivar=0; ivar<cutsMin.size(); ivar++) {
            std::cout << "... Cut: " 
                      << cutsMin[ivar] 
                      << " < \"" 
                      << mcuts->GetInputVar(ivar)
                      << "\" <= " 
                      << cutsMax[ivar] << std::endl;
         }
         std::cout << "--- -------------------------------------------------------------" << std::endl;
      }
   }

   // --- Write histograms

   histBdt->Write();
   cutFlow->Write();
   newTree->Write();
   target->Close();

   std::cout << "--- Created root file: \""<<oFileName<<"\" containing the MVA output histograms" << std::endl;
  
   delete reader;
    
   std::cout << "==> TMVAClassificationApplication is done!" << endl << std::endl;
} 
void TMVAClassificationApplication( TString myMethodList = "" ) 
{   
   //---------------------------------------------------------------
   // default MVA methods to be trained + tested

   // this loads the library
   TMVA::Tools::Instance();

   std::map<std::string,int> Use;

   Use["CutsGA"]          = 0; // other "Cuts" methods work identically
   // ---
   Use["Likelihood"]      = 1;
   Use["LikelihoodD"]     = 0; // the "D" extension indicates decorrelated input variables (see option strings)
   Use["LikelihoodPCA"]   = 0; // the "PCA" extension indicates PCA-transformed input variables (see option strings)
   Use["LikelihoodKDE"]   = 0;
   Use["LikelihoodMIX"]   = 0;
   // ---
   Use["PDERS"]           = 0;
   Use["PDERSD"]          = 0;
   Use["PDERSPCA"]        = 0;
   Use["PDERSkNN"]        = 0; // depreciated until further notice
   Use["PDEFoam"]         = 0;
   // --
   Use["KNN"]             = 0;
   // ---
   Use["HMatrix"]         = 0;
   Use["Fisher"]          = 0;
   Use["FisherG"]         = 0;
   Use["BoostedFisher"]   = 0;
   Use["LD"]              = 0;
   // ---
   Use["FDA_GA"]          = 0;
   Use["FDA_SA"]          = 0;
   Use["FDA_MC"]          = 0;
   Use["FDA_MT"]          = 0;
   Use["FDA_GAMT"]        = 0;
   Use["FDA_MCMT"]        = 0;
   // ---
   Use["MLP"]             = 0; // this is the recommended ANN
   Use["MLPBFGS"]         = 0; // recommended ANN with optional training method
   Use["MLPBNN"]          = 0;  // 
   Use["CFMlpANN"]        = 0; // *** missing
   Use["TMlpANN"]         = 0; 
   // ---
   Use["SVM"]             = 0;
   // ---
   Use["BDT"]             = 1;
   Use["BDTD"]            = 0;
   Use["BDTG"]            = 0;
   Use["BDTB"]            = 0;
   // ---
   Use["RuleFit"]         = 0;
   // ---
   Use["Category"]        = 0;
   // ---
   Use["Plugin"]          = 0;
   // ---------------------------------------------------------------

   std::cout << std::endl;
   std::cout << "==> Start TMVAClassificationApplication" << std::endl;

   if (myMethodList != "") {
      for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;

      std::vector<TString> mlist = gTools().SplitString( myMethodList, ',' );
      for (UInt_t i=0; i<mlist.size(); i++) {
         std::string regMethod(mlist[i]);

         if (Use.find(regMethod) == Use.end()) {
            std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl;
            for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) std::cout << it->first << " ";
            std::cout << std::endl;
            return;
         }
         Use[regMethod] = 0;
      }
   }

   //
   // create the Reader object
   //
   TMVA::Reader *reader = new TMVA::Reader( "!Color:!Silent" );    

Float_t Z_rapidity_z;
reader->AddVariable("Z_rapidity_z",&Z_rapidity_z);

Float_t THRUST_2D;
reader->AddVariable("THRUST_2D",&THRUST_2D);

Float_t L1_L2_cosangle;
reader->AddVariable("L1_L2_cosangle",&L1_L2_cosangle);

Float_t TransMass_ZH150_uncl;
reader->AddVariable("TransMass_ZH150_uncl",&TransMass_ZH150_uncl);

Float_t TransMass_ZH150;
reader->AddVariable("TransMass_ZH150",&TransMass_ZH150);

Float_t DeltaPhi_ZH;
reader->AddVariable("DeltaPhi_ZH",&DeltaPhi_ZH);

Float_t DeltaPhi_ZH_uncl;
reader->AddVariable("DeltaPhi_ZH_uncl",&DeltaPhi_ZH_uncl);

Float_t CMAngle;
reader->AddVariable("CMAngle",&CMAngle);

Float_t CS_cosangle;
reader->AddVariable("CS_cosangle",&CS_cosangle);

   // create a set of variables and declare them to the reader
   // - the variable names must corresponds in name and type to 
   // those given in the weight file(s) that you use
   Float_t var1, var2;
   Float_t var3, var4;
//   reader->AddVariable( "myvar1 := var1+var2", &var1 );
//   reader->AddVariable( "myvar2 := var1-var2", &var2 );
//   reader->AddVariable( "var3",                &var3 );
//   reader->AddVariable( "var4",                &var4 );

   //Spectator variables declared in the training have to be added to the reader, too
   Float_t spec1,spec2;
//   reader->AddSpectator( "spec1 := var1*2",   &spec1 );

 float nonsense =0;
//   reader->AddSpectator( "spec2 := var1*3",   &spec2 );

 float nonsense =0;

   Float_t Category_cat1, Category_cat2, Category_cat3;
   if (Use["Category"]){
      // add artificial spectators for distinguishing categories
//      reader->AddSpectator( "Category_cat1 := var3<=0",             &Category_cat1 );

 float nonsense =0;
//      reader->AddSpectator( "Category_cat2 := (var3>0)&&(var4<0)",  &Category_cat2 );

 float nonsense =0;
//      reader->AddSpectator( "Category_cat3 := (var3>0)&&(var4>=0)", &Category_cat3 );

 float nonsense =0;
   }
   //
   // book the MVA methods
   //
   TString dir    = "weights/";
   TString prefix = "TMVAClassification";

   // book method(s)
   for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) {
      if (it->second) {
         TString methodName = it->first + " method";
         TString weightfile = dir + prefix + "_" + TString(it->first) + ".weights.xml";
         reader->BookMVA( methodName, weightfile ); 
      }
   }
   
   // example how to use your own method as plugin
   if (Use["Plugin"]) {
      // the weight file contains a line 
      // Method         : MethodName::InstanceName

      // if MethodName is not a known TMVA method, it is assumed to be
      // a user implemented method which has to be loaded via the
      // plugin mechanism
      
      // for user implemented methods the line in the weight file can be
      // Method         : PluginName::InstanceName
      // where PluginName can be anything

      // before usage the plugin has to be defined, which can happen
      // either through the following line in .rootrc:
      // # plugin handler          plugin       class            library        constructor format
      // Plugin.TMVA@@MethodBase:  PluginName   MethodClassName  UserPackage    "MethodName(DataSet&,TString)"
      //  
      // or by telling the global plugin manager directly
      gPluginMgr->AddHandler("TMVA@@MethodBase", "PluginName", "MethodClassName", "UserPackage", "MethodName(DataSet&,TString)");
      // the class is then looked for in libUserPackage.so

      // now the method can be booked like any other
      reader->BookMVA( "User method", dir + prefix + "_User.weights.txt" );
   }

   // book output histograms
   UInt_t nbin = 100;
   TH1F *histLk(0), *histLkD(0), *histLkPCA(0), *histLkKDE(0), *histLkMIX(0), *histPD(0), *histPDD(0);
   TH1F *histPDPCA(0), *histPDEFoam(0), *histPDEFoamErr(0), *histPDEFoamSig(0), *histKNN(0), *histHm(0);
   TH1F *histFi(0), *histFiG(0), *histFiB(0), *histLD(0), *histNn(0),*histNnbfgs(0),*histNnbnn(0), *histNnC(0), *histNnT(0), *histBdt(0), *histBdtG(0), *histBdtD(0);
   TH1F *histRf(0), *histSVMG(0), *histSVMP(0), *histSVML(0), *histFDAMT(0), *histFDAGA(0), *histCat(0), *histPBdt(0);

   if (Use["Likelihood"])    histLk      = new TH1F( "MVA_Likelihood",    "MVA_Likelihood",    nbin, -1, 1 );
   if (Use["LikelihoodD"])   histLkD     = new TH1F( "MVA_LikelihoodD",   "MVA_LikelihoodD",   nbin, -1, 0.9999 );
   if (Use["LikelihoodPCA"]) histLkPCA   = new TH1F( "MVA_LikelihoodPCA", "MVA_LikelihoodPCA", nbin, -1, 1 );
   if (Use["LikelihoodKDE"]) histLkKDE   = new TH1F( "MVA_LikelihoodKDE", "MVA_LikelihoodKDE", nbin,  -0.00001, 0.99999 );
   if (Use["LikelihoodMIX"]) histLkMIX   = new TH1F( "MVA_LikelihoodMIX", "MVA_LikelihoodMIX", nbin,  0, 1 );
   if (Use["PDERS"])         histPD      = new TH1F( "MVA_PDERS",         "MVA_PDERS",         nbin,  0, 1 );
   if (Use["PDERSD"])        histPDD     = new TH1F( "MVA_PDERSD",        "MVA_PDERSD",        nbin,  0, 1 );
   if (Use["PDERSPCA"])      histPDPCA   = new TH1F( "MVA_PDERSPCA",      "MVA_PDERSPCA",      nbin,  0, 1 );
   if (Use["KNN"])           histKNN     = new TH1F( "MVA_KNN",           "MVA_KNN",           nbin,  0, 1 );
   if (Use["HMatrix"])       histHm      = new TH1F( "MVA_HMatrix",       "MVA_HMatrix",       nbin, -0.95, 1.55 );
   if (Use["Fisher"])        histFi      = new TH1F( "MVA_Fisher",        "MVA_Fisher",        nbin, -4, 4 );
   if (Use["FisherG"])       histFiG     = new TH1F( "MVA_FisherG",       "MVA_FisherG",       nbin, -1, 1 );
   if (Use["BoostedFisher"]) histFiB     = new TH1F( "MVA_BoostedFisher", "MVA_BoostedFisher", nbin, -2, 2 );
   if (Use["LD"])            histLD      = new TH1F( "MVA_LD",            "MVA_LD",            nbin, -2, 2 );
   if (Use["MLP"])           histNn      = new TH1F( "MVA_MLP",           "MVA_MLP",           nbin, -1.25, 1.5 );
   if (Use["MLPBFGS"])       histNnbfgs  = new TH1F( "MVA_MLPBFGS",           "MVA_MLPBFGS",           nbin, -1.25, 1.5 );
   if (Use["MLPBNN"])        histNnbnn   = new TH1F( "MVA_MLPBNN",           "MVA_MLPBNN",           nbin, -1.25, 1.5 );
   if (Use["CFMlpANN"])      histNnC     = new TH1F( "MVA_CFMlpANN",      "MVA_CFMlpANN",      nbin,  0, 1 );
   if (Use["TMlpANN"])       histNnT     = new TH1F( "MVA_TMlpANN",       "MVA_TMlpANN",       nbin, -1.3, 1.3 );
   if (Use["BDT"])           histBdt     = new TH1F( "MVA_BDT",           "MVA_BDT",           nbin, -0.8, 0.8 );
   if (Use["BDTD"])          histBdtD    = new TH1F( "MVA_BDTD",          "MVA_BDTD",          nbin, -0.8, 0.8 );
   if (Use["BDTG"])          histBdtG    = new TH1F( "MVA_BDTG",          "MVA_BDTG",          nbin, -1.0, 1.0 );
   if (Use["RuleFit"])       histRf      = new TH1F( "MVA_RuleFit",       "MVA_RuleFit",       nbin, -2.0, 2.0 );
   if (Use["SVM_Gauss"])     histSVMG    = new TH1F( "MVA_SVM_Gauss",     "MVA_SVM_Gauss",     nbin,  0.0, 1.0 );
   if (Use["SVM_Poly"])      histSVMP    = new TH1F( "MVA_SVM_Poly",      "MVA_SVM_Poly",      nbin,  0.0, 1.0 );
   if (Use["SVM_Lin"])       histSVML    = new TH1F( "MVA_SVM_Lin",       "MVA_SVM_Lin",       nbin,  0.0, 1.0 );
   if (Use["FDA_MT"])        histFDAMT   = new TH1F( "MVA_FDA_MT",        "MVA_FDA_MT",        nbin, -2.0, 3.0 );
   if (Use["FDA_GA"])        histFDAGA   = new TH1F( "MVA_FDA_GA",        "MVA_FDA_GA",        nbin, -2.0, 3.0 );
   if (Use["Category"])      histCat     = new TH1F( "MVA_Category",      "MVA_Category",      nbin, -2., 2. );
   if (Use["Plugin"])        histPBdt    = new TH1F( "MVA_PBDT",          "MVA_BDT",           nbin, -0.8, 0.8 );

   // PDEFoam also returns per-event error, fill in histogram, and also fill significance
   if (Use["PDEFoam"]) {
      histPDEFoam    = new TH1F( "MVA_PDEFoam",       "MVA_PDEFoam",              nbin,  0, 1 );
      histPDEFoamErr = new TH1F( "MVA_PDEFoamErr",    "MVA_PDEFoam error",        nbin,  0, 1 );
      histPDEFoamSig = new TH1F( "MVA_PDEFoamSig",    "MVA_PDEFoam significance", nbin,  0, 10 );
   }

   // book example histogram for probability (the other methods are done similarly)
   TH1F *probHistFi(0), *rarityHistFi(0);
   if (Use["Fisher"]) {
      probHistFi   = new TH1F( "MVA_Fisher_Proba",  "MVA_Fisher_Proba",  nbin, 0, 1 );
      rarityHistFi = new TH1F( "MVA_Fisher_Rarity", "MVA_Fisher_Rarity", nbin, 0, 1 );
   }

   // Prepare input tree (this must be replaced by your data source)
   // in this example, there is a toy tree with signal and one with background events
   // we'll later on use only the "signal" events for the test in this example.
   //   
   TFile *input(0);
   TString fname = "/tmp/chasco/ORIGINAL//Data_MuEG2011B_1.root";   
   if (!gSystem->AccessPathName( fname )) {
      input = TFile::Open( fname ); // check if file in local directory exists
   } 
   else { 
      input = TFile::Open( "http://root.cern.ch/files/tmva_class_example.root" ); // if not: download from ROOT server
   }
   
   if (!input) {
      std::cout << "ERROR: could not open data file" << std::endl;
      exit(1);
   }
   std::cout << "--- TMVAClassificationApp    : Using input file: " << input->GetName() << std::endl;
   
   //
   // prepare the tree
   // - here the variable names have to corresponds to your tree
   // - you can use the same variables as above which is slightly faster,
   //   but of course you can use different ones and copy the values inside the event loop
   //
   TTree* BigTree = (TTree*)input->Get("data");

TFile *tmp  = new TFile( "tmp.root","RECREATE" );

TTree* theTree = BigTree->CopyTree("((cat == 1) + (cat == 2))*(ln==0)*(Cosmic==0)*(fabs(Mass_Z - 91.18)<10)*(Pt_Z>30)*(DeltaPhi_metjet>0.5)*(Pt_J1 < 30)*(pfMEToverPt_Z > 0.4)*(pfMEToverPt_Z < 1.8)*((Pt_Jet_btag_CSV_max > 20)*(btag_CSV_max < 0.244) + (1-(Pt_Jet_btag_CSV_max > 20)))*(sqrt(pow(dilepPROJLong + 1.25*recoilPROJLong + 0.0*uncertPROJLong,2)*(dilepPROJLong + 1.25*recoilPROJLong + 0.0*uncertPROJLong > 0) + 1.0*pow(dilepPROJPerp + 1.25*recoilPROJPerp + 0.0*uncertPROJPerp,2)*(dilepPROJPerp + 1.25*recoilPROJPerp + 0.0*uncertPROJPerp > 0)) > 45.0)");
   std::cout << "--- Select signal sample" << std::endl;
   Float_t userVar1, userVar2;
//   theTree->SetBranchAddress( "var1", &userVar1 );
//   theTree->SetBranchAddress( "var2", &userVar2 );
//   theTree->SetBranchAddress( "var3", &var3 );
//   theTree->SetBranchAddress( "var4", &var4 );

theTree->SetBranchAddress( " Z_rapidity_z", &Z_rapidity_z);

theTree->SetBranchAddress( " THRUST_2D", &THRUST_2D);

theTree->SetBranchAddress( " L1_L2_cosangle", &L1_L2_cosangle);

theTree->SetBranchAddress( " TransMass_ZH150_uncl", &TransMass_ZH150_uncl);

theTree->SetBranchAddress( " TransMass_ZH150", &TransMass_ZH150);

theTree->SetBranchAddress( " DeltaPhi_ZH", &DeltaPhi_ZH);

theTree->SetBranchAddress( " DeltaPhi_ZH_uncl", &DeltaPhi_ZH_uncl);

theTree->SetBranchAddress( " CMAngle", &CMAngle);

theTree->SetBranchAddress( " CS_cosangle", &CS_cosangle);

   // efficiency calculator for cut method
   Int_t    nSelCutsGA = 0;
   Double_t effS       = 0.7;

   std::vector<Float_t> vecVar(9); // vector for EvaluateMVA tests

   std::cout << "--- Processing: " << theTree->GetEntries() << " events" << std::endl;
   TStopwatch sw;
   sw.Start();
   for (Long64_t ievt=0; ievt<theTree->GetEntries();ievt++) {

      if (ievt%1000 == 0){
         std::cout << "--- ... Processing event: " << ievt << std::endl;
      }

      theTree->GetEntry(ievt);

      var1 = userVar1 + userVar2;
      var2 = userVar1 - userVar2;

      if (ievt <20){
         // test the twodifferent Reader::EvaluateMVA functions 
         // access via registered variables compared to access via vector<float>
//         vecVar[0]=var1;
//         vecVar[1]=var2;
//         vecVar[2]=var3;
//         vecVar[3]=var4;      

vecVar[0]=Z_rapidity_z;

vecVar[1]=THRUST_2D;

vecVar[2]=L1_L2_cosangle;

vecVar[3]=TransMass_ZH150_uncl;

vecVar[4]=TransMass_ZH150;

vecVar[5]=DeltaPhi_ZH;

vecVar[6]=DeltaPhi_ZH_uncl;

vecVar[7]=CMAngle;

vecVar[8]=CS_cosangle;
         for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) {
            if (it->second) {
               TString mName = it->first + " method";
               Double_t mva1 = reader->EvaluateMVA( mName); 
               Double_t mva2 = reader->EvaluateMVA( vecVar, mName); 
               if (mva1 != mva2) {
                  std::cout << "++++++++++++++ ERROR in "<< mName <<", comparing different EvaluateMVA results val1=" << mva1 << " val2="<<mva2<<std::endl;
               }
            }
         }
         // now test that the inputs do matter
         TRandom3 rand(0);
//         vecVar[0]=rand.Rndm();
//         vecVar[1]=rand.Rndm();
//         vecVar[2]=rand.Rndm();
//         vecVar[3]=rand.Rndm();

vecVar[0]=rand.Rndm();

vecVar[1]=rand.Rndm();

vecVar[2]=rand.Rndm();

vecVar[3]=rand.Rndm();

vecVar[4]=rand.Rndm();

vecVar[5]=rand.Rndm();

vecVar[6]=rand.Rndm();

vecVar[7]=rand.Rndm();

vecVar[8]=rand.Rndm();
         for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) {
            if (it->second) {
               TString mName = it->first + " method";
               Double_t mva1 = reader->EvaluateMVA( mName); 
               Double_t mva2 = reader->EvaluateMVA( vecVar, mName); 
               if (mva1 == mva2) {
                  std::cout << "++++++++++++++ ERROR in "<< mName <<", obtaining idnetical output for different inputs" <<std::endl;
               }
            }
         }
      }
      // 
      // return the MVAs and fill to histograms
      // 
      if (Use["CutsGA"]) {
         // Cuts is a special case: give the desired signal efficienciy
         Bool_t passed = reader->EvaluateMVA( "CutsGA method", effS );
         if (passed) nSelCutsGA++;
      }

      if (Use["Likelihood"   ])   histLk     ->Fill( reader->EvaluateMVA( "Likelihood method"    ) );
      if (Use["LikelihoodD"  ])   histLkD    ->Fill( reader->EvaluateMVA( "LikelihoodD method"   ) );
      if (Use["LikelihoodPCA"])   histLkPCA  ->Fill( reader->EvaluateMVA( "LikelihoodPCA method" ) );
      if (Use["LikelihoodKDE"])   histLkKDE  ->Fill( reader->EvaluateMVA( "LikelihoodKDE method" ) );
      if (Use["LikelihoodMIX"])   histLkMIX  ->Fill( reader->EvaluateMVA( "LikelihoodMIX method" ) );
      if (Use["PDERS"        ])   histPD     ->Fill( reader->EvaluateMVA( "PDERS method"         ) );
      if (Use["PDERSD"       ])   histPDD    ->Fill( reader->EvaluateMVA( "PDERSD method"        ) );
      if (Use["PDERSPCA"     ])   histPDPCA  ->Fill( reader->EvaluateMVA( "PDERSPCA method"      ) );
      if (Use["KNN"          ])   histKNN    ->Fill( reader->EvaluateMVA( "KNN method"           ) );
      if (Use["HMatrix"      ])   histHm     ->Fill( reader->EvaluateMVA( "HMatrix method"       ) );
      if (Use["Fisher"       ])   histFi     ->Fill( reader->EvaluateMVA( "Fisher method"        ) );
      if (Use["FisherG"      ])   histFiG    ->Fill( reader->EvaluateMVA( "FisherG method"       ) );
      if (Use["BoostedFisher"])   histFiB    ->Fill( reader->EvaluateMVA( "BoostedFisher method" ) );
      if (Use["LD"           ])   histLD     ->Fill( reader->EvaluateMVA( "LD method"            ) );
      if (Use["MLP"          ])   histNn     ->Fill( reader->EvaluateMVA( "MLP method"           ) );
      if (Use["MLPBFGS"          ])   histNnbfgs ->Fill( reader->EvaluateMVA( "MLPBFGS method"           ) );
      if (Use["MLPBNN"          ])   histNnbnn ->Fill( reader->EvaluateMVA( "MLPBNN method"           ) );
      if (Use["CFMlpANN"     ])   histNnC    ->Fill( reader->EvaluateMVA( "CFMlpANN method"      ) );
      if (Use["TMlpANN"      ])   histNnT    ->Fill( reader->EvaluateMVA( "TMlpANN method"       ) );
      if (Use["BDT"          ])   histBdt    ->Fill( reader->EvaluateMVA( "BDT method"           ) );
      if (Use["BDTD"         ])   histBdtD   ->Fill( reader->EvaluateMVA( "BDTD method"          ) );
      if (Use["BDTG"         ])   histBdtG   ->Fill( reader->EvaluateMVA( "BDTG method"          ) );
      if (Use["RuleFit"      ])   histRf     ->Fill( reader->EvaluateMVA( "RuleFit method"       ) );
      if (Use["SVM_Gauss"    ])   histSVMG   ->Fill( reader->EvaluateMVA( "SVM_Gauss method"     ) );
      if (Use["SVM_Poly"     ])   histSVMP   ->Fill( reader->EvaluateMVA( "SVM_Poly method"      ) );
      if (Use["SVM_Lin"      ])   histSVML   ->Fill( reader->EvaluateMVA( "SVM_Lin method"       ) );
      if (Use["FDA_MT"       ])   histFDAMT  ->Fill( reader->EvaluateMVA( "FDA_MT method"        ) );
      if (Use["FDA_GA"       ])   histFDAGA  ->Fill( reader->EvaluateMVA( "FDA_GA method"        ) );
      if (Use["Category"     ])   histCat    ->Fill( reader->EvaluateMVA( "Category method"      ) );
      if (Use["Plugin"       ])   histPBdt   ->Fill( reader->EvaluateMVA( "P_BDT method"         ) );

      // retrieve also per-event error
      if (Use["PDEFoam"]) {
         Double_t val = reader->EvaluateMVA( "PDEFoam method" );
         Double_t err = reader->GetMVAError();
         histPDEFoam   ->Fill( val );
         histPDEFoamErr->Fill( err );         
         histPDEFoamSig->Fill( val/err );
      }         

      // retrieve probability instead of MVA output
      if (Use["Fisher"])   {
         probHistFi  ->Fill( reader->GetProba ( "Fisher method" ) );
         rarityHistFi->Fill( reader->GetRarity( "Fisher method" ) );
      }
   }
   // get elapsed time
   sw.Stop();
   std::cout << "--- End of event loop: "; sw.Print();

   // get efficiency for cuts classifier
   if (Use["CutsGA"]) std::cout << "--- Efficiency for CutsGA method: " << double(nSelCutsGA)/theTree->GetEntries()
                                << " (for a required signal efficiency of " << effS << ")" << std::endl;

   if (Use["CutsGA"]) {

      // test: retrieve cuts for particular signal efficiency
      // CINT ignores dynamic_casts so we have to use a cuts-secific Reader function to acces the pointer  
      TMVA::MethodCuts* mcuts = reader->FindCutsMVA( "CutsGA method" ) ;

      if (mcuts) {      
         std::vector<Double_t> cutsMin;
         std::vector<Double_t> cutsMax;
         mcuts->GetCuts( 0.7, cutsMin, cutsMax );
         std::cout << "--- -------------------------------------------------------------" << std::endl;
         std::cout << "--- Retrieve cut values for signal efficiency of 0.7 from Reader" << std::endl;
         for (UInt_t ivar=0; ivar<cutsMin.size(); ivar++) {
            std::cout << "... Cut: " 
                      << cutsMin[ivar] 
                      << " < \"" 
                      << mcuts->GetInputVar(ivar)
                      << "\" <= " 
                      << cutsMax[ivar] << std::endl;
         }
         std::cout << "--- -------------------------------------------------------------" << std::endl;
      }
   }

   //
   // write histograms
   //
   TFile *target  = new TFile( "TMVApp.root","RECREATE" );
   if (Use["Likelihood"   ])   histLk     ->Write();
   if (Use["LikelihoodD"  ])   histLkD    ->Write();
   if (Use["LikelihoodPCA"])   histLkPCA  ->Write();
   if (Use["LikelihoodKDE"])   histLkKDE  ->Write();
   if (Use["LikelihoodMIX"])   histLkMIX  ->Write();
   if (Use["PDERS"        ])   histPD     ->Write();
   if (Use["PDERSD"       ])   histPDD    ->Write();
   if (Use["PDERSPCA"     ])   histPDPCA  ->Write();
   if (Use["KNN"          ])   histKNN    ->Write();
   if (Use["HMatrix"      ])   histHm     ->Write();
   if (Use["Fisher"       ])   histFi     ->Write();
   if (Use["FisherG"      ])   histFiG    ->Write();
   if (Use["BoostedFisher"])   histFiB    ->Write();
   if (Use["LD"           ])   histLD     ->Write();
   if (Use["MLP"          ])   histNn     ->Write();
   if (Use["MLPBFGS"      ])   histNnbfgs ->Write();
   if (Use["MLPBNN"       ])   histNnbnn  ->Write();
   if (Use["CFMlpANN"     ])   histNnC    ->Write();
   if (Use["TMlpANN"      ])   histNnT    ->Write();
   if (Use["BDT"          ])   histBdt    ->Write();
   if (Use["BDTD"         ])   histBdtD   ->Write();
   if (Use["BDTG"         ])   histBdtG   ->Write(); 
   if (Use["RuleFit"      ])   histRf     ->Write();
   if (Use["SVM_Gauss"    ])   histSVMG   ->Write();
   if (Use["SVM_Poly"     ])   histSVMP   ->Write();
   if (Use["SVM_Lin"      ])   histSVML   ->Write();
   if (Use["FDA_MT"       ])   histFDAMT  ->Write();
   if (Use["FDA_GA"       ])   histFDAGA  ->Write();
   if (Use["Category"     ])   histCat    ->Write();
   if (Use["Plugin"       ])   histPBdt   ->Write();

   // write also error and significance histos
   if (Use["PDEFoam"]) { histPDEFoam->Write(); histPDEFoamErr->Write(); histPDEFoamSig->Write(); }

   // write also probability hists
   if (Use["Fisher"]) { if (probHistFi != 0) probHistFi->Write(); if (rarityHistFi != 0) rarityHistFi->Write(); }
   target->Close();

   std::cout << "--- Created root file: \"TMVApp.root\" containing the MVA output histograms" << std::endl;
  
   delete reader;
    
   std::cout << "==> TMVAClassificationApplication is done!" << endl << std::endl;
} 
Exemplo n.º 27
0
Int_t MergeV1(TString fileNameDigits="digits.root", 
	    TString fileNameSDigitsSig="sig.sdigits.root", 
	    TString fileNameSDigitsBgr="bgr.sdigits.root", 
	    Int_t nEvents = 1, Int_t iITS = 2, Int_t iTPC = 0,
	    Int_t iTRD = 0,  Int_t iPHOS = 0, Int_t iMUON = 0,
	    Int_t iRICH = 0, Int_t iCopy = 1)
{
// delete the current gAlice object, the one from input file
//  will be used

  if(gAlice){
    delete gAlice;
    gAlice = 0;
  } // end if gAlice

  // Connect the Root Galice file containing Geometry, Kine and Hits
  TFile *file = (TFile*)gROOT->GetListOfFiles()->FindObject(fileNameSDigitsSig.Data());
  if(!file) file = new TFile(fileNameSDigitsSig.Data());
  TDatime *ct0 = new TDatime(2002,04,26,00,00,00), ct = file->GetCreationDate();
  
 
  // Get AliRun object from file or create it if not on file
  if(!gAlice) {
      gAlice = (AliRun*)file->Get("gAlice");
      if(gAlice) printf("AliRun object found on file\n");
      if(!gAlice) gAlice = new AliRun("gAlice","Alice test program");
  } // end if !gAlice

  AliRunDigitizer * manager = new AliRunDigitizer(2,1);
  manager->SetInputStream(0,fileNameSDigitsSig.Data());
  manager->SetInputStream(1,fileNameSDigitsBgr.Data());
  if (fileNameDigits != "") {
//    if (iCopy) {
//      AliCopyN(fileNameSDigitsSig,fileNameDigits);
//    }
    manager->SetOutputFile(fileNameDigits);
  }
  manager->SetNrOfEventsToWrite(nEvents);
  
  if (iITS) {
    AliITSDigitizer *dITS  = new AliITSDigitizer(manager);
    if (iITS == 2) dITS->SetByRegionOfInterestFlag(1);
    if(ct0->GetDate()>ct.GetDate()){
	// For old files, must change SDD noise.
	AliITS *ITS = (AliITS*) gAlice->GetDetector("ITS");
	AliITSresponseSDD *resp1 = ITS->DetType(1)->GetResponseModel();
	resp1->SetNoiseParam();
	resp1->SetNoiseAfterElectronics();
	Float_t n,b;
	Int_t cPar[8];
	resp1->GetNoiseParam(n,b);
	n = resp1->GetNoiseAfterElectronics();
	cPar[0]=0;
	cPar[1]=0;
	cPar[2]=(Int_t)(b + 2.*n + 0.5);
	cPar[3]=(Int_t)(b + 2.*n + 0.5);
	cPar[4]=0;
	cPar[5]=0;
	cPar[6]=0;
	cPar[7]=0;
	resp1->SetCompressParam(cPar);
    } // end if
  }
  if (iTPC) AliTPCDigitizer *dTPC  = new AliTPCDigitizer(manager);
  if (iTRD) AliTRDdigitizer *dTRD  = new AliTRDdigitizer(manager);
  if (iPHOS) AliPHOSDigitizer *dPHOS  = new AliPHOSDigitizer(manager);
  if (iMUON) AliMUONDigitizer *dMUON  = new AliMUONDigitizer(manager);
  if (iRICH) AliRICHDigitizer *dRICH  = new AliRICHDigitizer(manager);
  TStopwatch timer;
  timer.Start();
  manager->Exec("deb all");
  timer.Stop(); 
  timer.Print();
//  delete gAlice;  
//  gAlice = 0;
  delete manager;
}
Exemplo n.º 28
0
void varsig0196_4()
{

  TStopwatch timer;
  timer.Start();
  // Define histogarams
  
  gStyle->SetOptFit(1111);
  gStyle->SetOptStat(111111);
  
  TGraphErrors *g1 = new TGraphErrors(20);
  g1->SetName("Dilvsdm");
  g1->SetTitle("Dilution vs. dm");
  
  TGraph *g2 = new TGraph(20);
  g2->SetName("DilErrvsdm");
  g2->SetTitle("Dil Err vs. dm");
  
  for(Int_t i=0.;i<20.;i++){


    oscpar1_init = 0.5+(0.33*i);

    cout << "============== dm fixed at "<< oscpar1_init <<" ===================="<<endl;

    //TH1F *h1 = new TH1F("h1","Gaussian Dist",50, 4.8, 5.8);
    TH1F *h2 = new TH1F("h2","Lifetime Dist",nBins, min, max);
    TH1F *h3 = new TH1F("h3","Lifetime Dist tag=1",nBins, min, max);
    TH1F *h4 = new TH1F("h4","Lifetime Dist tag=-1",nBins, min, max);
    
    // Get data
    
    // Generate events
    
    mixmasta_mc();
    
    for (Int_t ja=0; ja<nEvts; ja++){
      h2->Fill(lifetime[ja]);
      if (tag[ja] == 1){
	h3->Fill(lifetime[ja]);
      }else if(tag[ja] == -1){
	h4->Fill(lifetime[ja]);
      }else{
	cout << "Tag value "<<tag[ja]<< " out of range, should be -1 or 1" << endl;
	break;
      }
    }
    
    // Do unbinned likelihood fit
    
    TF1 *f3 = new TF1("f3", lftmosc_plt_d, min, max, 5);
    TF1 *f4 = new TF1("f4", lftmosc_plt_d, min, max, 5);
    
    

    
    unbinFitosc_d();
    
    for (Int_t j=0; j<4; j++){
      f3->SetParameter(j,fitpar[j]);
      f4->SetParameter(j,fitpar[j]);
    }
    f3->SetParameter(4,1);
    f4->SetParameter(4,-1);
    
    g1->SetPoint(i,fitpar[1],-(1-2*fitpar[3])/dilfit);
    g1->SetPointError(i,fiterr[1],2*fiterr[3]/dilfit);
    
    g2->SetPoint(i,fitpar[1],1.65*2*fiterr[3]/dilfit);
    
    delete h2;
    delete h3;
    delete h4;
    delete f3;
    delete f4;
  }
  
  TCanvas *vardm = new TCanvas("vardm","varsig0196_4",800,400);
  vardm->Divide(2,1);
  
  vardm->cd(1);
  g1->GetXaxis()->SetTitle("dm");
  g1->GetXaxis()->CenterTitle();
  g1->GetYaxis()->SetTitle("Dilution (1-2alpha)");
  g1->GetYaxis()->CenterTitle();
  //g1->SetMarkerStyle(21);
  //g1->SetMarkerSize(1);
  g1->Draw("AP*"); 
  
  
  vardm->cd(2);
  
  gStyle->SetPadColor(10);
  gStyle->SetCanvasColor(10);
  vardm->SetGrid();
  
  g2->GetXaxis()->SetTitle("dm");
  g2->GetXaxis()->CenterTitle();
  g2->GetYaxis()->SetTitle("Dil. Err");
  g2->GetYaxis()->CenterTitle();
  //g2->SetMarkerStyle(21);
  //g2->SetMarkerSize(1);
  g2->Draw("AP*");  
  
  TObjArray a1(0);
  a1.Add(g1);
  a1.Add(g2);
  a1.Add(vardm);
  
  TFile var_dm("varsig0196_4.root", "recreate");
  a1.Write();
  var_dm.Close();
  
  timer.Stop();
  Double_t rtime = timer.RealTime();
  Double_t ctime = timer.CpuTime();
  
  cout << "Real time " << rtime << endl;
  cout << "CPU time  " << ctime << endl;
  
}
Exemplo n.º 29
0
void RAA_dataDrivenUnfoldingErrorCheck(int radius = 4, int radiusPP = 4, char* algo = (char*) "Pu", char *jet_type = (char*) "PF", int unfoldingCut = 30, char* etaWidth = (char*) "n20_eta_p20", double deltaEta = 4.0){

  TStopwatch timer; 
  timer.Start();
  
  TH1::SetDefaultSumw2();
  TH2::SetDefaultSumw2();
  
  bool printDebug = true;

  // get the data and mc histograms from the output of the read macro. 
  
  TDatime date;//this is just here to get them to run optimized. 

  // Raghav's files: 
  //TFile * fPbPb_in = TFile::Open(Form("/afs/cern.ch/work/r/rkunnawa/WORK/RAA/CMSSW_5_3_18/src/Output/PbPb_CutEfficiency_YetkinCuts_matched_slantedlinecalopfpt_addingunmatched_exclusionhighertriggers_eMaxSumcand_A_R0p%d.root",radius));
  //  //TFile * fPP_in = TFile::Open(Form("/afs/cern.ch/work/r/rkunnawa/WORK/RAA/CMSSW_5_3_18/src/Output/Pp_CutEfficiency_YetkinCuts_matched_slantedlinecalopfpt_addingunmatched_exclusionhighertriggers_eMaxSumcand_A_R0p%d.root",radius));
  //TFile * fPP_in = TFile::Open(Form("/afs/cern.ch/work/r/rkunnawa/WORK/RAA/CMSSW_5_3_18/src/Output/Pp_CutEfficiency_noJetID_exclusionhighertriggers_A_R0p%d.root",radius));

  // Pawan's files:
  TFile * fPbPb_in = TFile::Open(Form("/afs/cern.ch/work/r/rkunnawa/WORK/RAA/CMSSW_5_3_18/src/Output/Pawan_ntuplehistograms/PbPb_CutEfficiency_YetkinCuts_matched_slantedlinecalopfpt_addingunmatched_exclusionhighertriggers_eMaxSumcand_A_R0p%d.root",radius));
  //TFile * fPP_in = TFile::Open(Form("/afs/cern.ch/work/r/rkunnawa/WORK/RAA/CMSSW_5_3_18/src/Output/Pp_CutEfficiency_YetkinCuts_matched_slantedlinecalopfpt_addingunmatched_exclusionhighertriggers_eMaxSumcand_A_R0p%d.root",radius));
  TFile * fPP_in = TFile::Open(Form("/afs/cern.ch/work/r/rkunnawa/WORK/RAA/CMSSW_5_3_18/src/Output/Pawan_ntuplehistograms/Pp_CutEfficiency_YetkinCuts_matched_slantedlinecalopfpt_addingunmatched_exclusionhighertriggers_eMaxSumcand_A_R0p%d.root",radius));

  TFile * fPbPb_MB_in = TFile::Open(Form("/afs/cern.ch/work/r/rkunnawa/WORK/RAA/CMSSW_5_3_18/src/Output/PbPb_MinBiasUPC_CutEfficiency_YetkinCuts_matched_slantedlinecalopfpt_addingunmatched_exclusionhighertriggers_eMaxSumcand_A_R0p%d.root",radius));


  
  //TH1F * htest = new TH1F("htest","",nbins_pt, boundaries_pt);
  //Int_t unfoldingCutBin = htest->FindBin(unfoldingCut);
  
  cout<<"after input file declaration"<<endl;
  // need to make sure that the file names are in prefect order so that i can run them one after another. 
  // for the above condition, i might have to play with the date stamp. 
  
  const int nbins_cent = 6;
  double boundaries_cent[nbins_cent+1] = {0,2,4,12,20,28,36};
  double ncoll[nbins_cent+1] = {1660,1310,745,251,62.8,10.8,362.24};
  
  // histogram declarations with the following initial appendage: d - Data, m - MC, u- Unfolded
  // for the MC closure test, ive kept separate 

  // setup the radius and the eta bin loop here later. not for the time being. Aug 20th. only run the -2 < eta < 2 with the differenent centrality bins 

  TH1F *dPbPb_TrgComb[nbins_cent+1], *dPbPb_Comb[nbins_cent+1], *dPbPb_Trg80[nbins_cent+1], *dPbPb_Trg65[nbins_cent+1], *dPbPb_Trg55[nbins_cent+1], *dPbPb_1[nbins_cent+1], *dPbPb_2[nbins_cent+1], *dPbPb_3[nbins_cent+1], *dPbPb_80[nbins_cent+1], *dPbPb_65[nbins_cent+1], *dPbPb_55[nbins_cent+1];
  
  TH1F *mPbPb_Gen[nbins_cent+1], *mPbPb_Reco[nbins_cent+1];
  TH2F *mPbPb_Matrix[nbins_cent+1], *mPbPb_Response[nbins_cent+1], *mPbPb_ResponseNorm[nbins_cent+1];
  TH1F *mPbPb_mcclosure_data[nbins_cent+1];
  TH2F *mPbPb_mcclosure_Matrix[nbins_cent+1],*mPbPb_mcclosure_Response[nbins_cent+1], *mPbPb_mcclosure_ResponseNorm[nbins_cent+1];
  TH1F *mPbPb_mcclosure_gen[nbins_cent+1];
  const int Iterations = 20; //for unfolding systematics. 
  const int BayesIter = 4;
  TH1F *uPbPb_Bayes[nbins_cent+1], *uPbPb_BinByBin[nbins_cent+1], *uPbPb_SVD[nbins_cent+1]; 
  TH1F *uPbPb_BayesianIter[nbins_cent+1][Iterations];
  TH1F *dPbPb_MinBias[nbins_cent];
  
  TH1F *dPP_1, *dPP_2, *dPP_3, *dPP_Comb;
  TH1F *mPP_Gen, *mPP_Reco;
  TH2F *mPP_Matrix, *mPP_Response,*mPP_ResponseNorm;
  TH1F *mPP_mcclosure_data;
  TH2F *mPP_mcclosure_Matrix, *mPP_mcclosure_Response,*mPP_mcclosure_ResponseNorm;
  TH1F *mPP_mcclosure_Gen;
  TH1F *uPP_Bayes, *uPP_BinByBin, *uPP_SVD;
  TH1F *uPP_BayesianIter[Iterations];

  // would be better to read in the histograms and rebin them. come to think of it, it would be better to have them already rebinned (and properly scaled - to the level of differential cross section in what ever barns (inverse micro barns) but keep it consistent) from the read macro. 

  // get PbPb data
  for(int i = 0;i<nbins_cent;i++){
    if(printDebug) cout<<"cent_"<<i<<endl;
    dPbPb_TrgComb[i] = (TH1F*)fPbPb_in->Get(Form("hpbpb_HLTComb_R%d_n20_eta_p20_cent%d",radius,i));
    //dPbPb_TrgComb[i]->Scale(4*145.156*1e6);
    dPbPb_TrgComb[i]->Print("base");
    dPbPb_Trg80[i] = (TH1F*)fPbPb_in->Get(Form("hpbpb_HLT80_R%d_n20_eta_p20_cent%d",radius,i));
    //dPbPb_Trg80[i]->Scale(4*145.156*1e6);
    dPbPb_Trg80[i]->Print("base");
    dPbPb_Trg65[i] = (TH1F*)fPbPb_in->Get(Form("hpbpb_HLT65_R%d_n20_eta_p20_cent%d",radius,i));
    //dPbPb_Trg65[i]->Scale(4*145.156*1e6);
    dPbPb_Trg65[i]->Print("base");
    dPbPb_Trg55[i] = (TH1F*)fPbPb_in->Get(Form("hpbpb_HLT55_R%d_n20_eta_p20_cent%d",radius,i));
    //dPbPb_Trg55[i]->Scale(4*145.156*1e6);
    dPbPb_Trg55[i]->Print("base");
    //dPbPb_TrgComb[i] = (TH1F*)dPbPb_Trg80[i]->Clone(Form("Jet_80_triggered_spectra_data_PbPb_cent%d",i));
    
    //dPbPb_MinBias[i] = (TH1F*)fPbPb_MB_in->Get(Form("hpbpb_HLTComb_R%d_n20_eta_p20_cent%d",radius,i));
    //dPbPb_MinBias[i]->Print("base");
    dPbPb_TrgComb[i]->Scale(1./(145.156 * 1e9));
    //dPbPb_MinBias[i]->Scale(1./(161.939 * 1e9));
    
    //dPbPb_TrgComb[i]->Add(dPbPb_MinBias[i]);
    
    for(int k = 1;k<=unfoldingCut;k++) {
      dPbPb_TrgComb[i]->SetBinContent(k,0);
      dPbPb_Trg80[i]->SetBinContent(k,0);
      dPbPb_Trg65[i]->SetBinContent(k,0);
      dPbPb_Trg55[i]->SetBinContent(k,0);
    }
    
  }
  
  //Int_t nSVDIter = 4;
  
  if(printDebug)cout<<"loaded the data histograms PbPb"<<endl;
  // get PbPb MC
  for(int i = 0;i<nbins_cent;i++){
    
    mPbPb_Gen[i] = (TH1F*)fPbPb_in->Get(Form("hpbpb_JetComb_gen_R%d_n20_eta_p20_cent%d",radius,i));
    //mPbPb_Gen[i] = (TH1F*)fPbPb_in->Get(Form("hpbpb_gen_R%d_n20_eta_p20_cent%d",radius,i));
    mPbPb_Gen[i]->Print("base");
    mPbPb_Reco[i] = (TH1F*)fPbPb_in->Get(Form("hpbpb_JetComb_reco_R%d_n20_eta_p20_cent%d",radius,i));
    //mPbPb_Reco[i] = (TH1F*)fPbPb_in->Get(Form("hpbpb_reco_R%d_n20_eta_p20_cent%d",radius,i));
    mPbPb_Reco[i]->Print("base");
    mPbPb_Matrix[i] = (TH2F*)fPbPb_in->Get(Form("hpbpb_matrix_HLT_R%d_n20_eta_p20_cent%d",radius,i));
    //mPbPb_Matrix[i] = (TH2F*)fPbPb_in->Get(Form("hpbpb_matrix_R%d_n20_eta_p20_cent%d",radius,i));
    mPbPb_Matrix[i]->Print("base");
    mPbPb_mcclosure_data[i] = (TH1F*)fPbPb_in->Get(Form("hpbpb_mcclosure_JetComb_data_R%d_n20_eta_p20_cent%d",radius,i));
    mPbPb_mcclosure_data[i]->Print("base");
    mPbPb_mcclosure_gen[i] = (TH1F*)fPbPb_in->Get(Form("hpbpb_mcclosure_gen_JetComb_R%d_n20_eta_p20_cent%d",radius,i));
    mPbPb_mcclosure_gen[i]->Print("base");
    mPbPb_mcclosure_Matrix[i] = (TH2F*)fPbPb_in->Get(Form("hpbpb_mcclosure_matrix_HLT_R%d_n20_eta_p20_cent%d",radius,i));
    mPbPb_mcclosure_Matrix[i]->Print("base");
    
    //since SVD is very straight forward, lets do it rignt here:
    //get the SVD response matrix:
    //RooUnfoldResponse ruResponse(mPbPb_Matrix[i]->ProjectionY(),mPbPb_Matrix[i]->ProjectionX(), mPbPb_Matrix[i],"","");
    //regularization parameter definition: 
    //RooUnfoldSvd unfoldSvd(&ruResponse, dPbPb_TrgComb[i], nSVDIter);
    //uPbPb_SVD[i] = (TH1F*)unfoldSvd.Hreco();
  
    
    // for(int k = 1;k<=unfoldingCut;k++){

    //   mPbPb_Gen[i]->SetBinContent(k,0);
    //   mPbPb_Reco[i]->SetBinContent(k,0);
    //   mPbPb_mcclosure_data[i]->SetBinContent(k,0);
    //   mPbPb_mcclosure_gen[i]->SetBinContent(k,0);
    //   for(int l = 1;l<=1000;l++){
    // 	mPbPb_Matrix[i]->SetBinContent(k,l,0);
    // 	mPbPb_mcclosure_Matrix[i]->SetBinContent(k,l,0);
    // 	mPbPb_Matrix[i]->SetBinContent(l,k,0);
    // 	mPbPb_mcclosure_Matrix[i]->SetBinContent(l,k,0);	
    //   }
    // }
    
    //mPbPb_Response[i] = new TH2F(Form("mPbPb_Response_cent%d",i),"Response Matrix",nbins_pt,boundaries_pt,nbins_pt,boundaries_pt);
    //mPbPb_ResponseNorm[i] = new TH2F(Form("mPbPb_ResponseNorm_cent%d",i),"Normalized Response Matrix",nbins_pt,boundaries_pt,nbins_pt,boundaries_pt);
  }
  
  if(printDebug) cout<<"loaded the data and mc PbPb histograms from the files"<<endl;

  // get PP data
  if(printDebug) cout<<"Getting PP data and MC"<<endl;
  dPP_1 = (TH1F*)fPP_in->Get(Form("hpp_HLT80_R%d_%s",radiusPP,etaWidth)); 
  dPP_1->Print("base");
  dPP_2 = (TH1F*)fPP_in->Get(Form("hpp_HLT60_R%d_%s",radiusPP,etaWidth));
  dPP_2->Print("base");
  dPP_3 = (TH1F*)fPP_in->Get(Form("hpp_HLT40_R%d_%s",radiusPP,etaWidth));
  dPP_3->Print("base");
  dPP_Comb = (TH1F*)fPP_in->Get(Form("hpp_HLTComb_R%d_%s",radiusPP,etaWidth));   
  //dPP_Comb = (TH1F*)dPP_1->Clone(Form("hpp_TrgComb_R%d_n20_eta_p20",radiusPP,etaWidth));   
  dPP_Comb->Print("base");

  dPP_Comb->Scale(1./(5.3 * 1e9));
  
  for(int k = 1;k<=unfoldingCut;k++) {
    dPP_Comb->SetBinContent(k,0);
    dPP_1->SetBinContent(k,0);
    dPP_2->SetBinContent(k,0);
    dPP_3->SetBinContent(k,0);
  }
  
  // get PP MC
  mPP_Gen = (TH1F*)fPP_in->Get(Form("hpp_JetComb_gen_R%d_%s",radiusPP,etaWidth));
  mPP_Gen->Print("base");
  mPP_Reco = (TH1F*)fPP_in->Get(Form("hpp_JetComb_reco_R%d_%s",radiusPP,etaWidth));
  mPP_Reco->Print("base");
  mPP_Matrix = (TH2F*)fPP_in->Get(Form("hpp_matrix_HLT_R%d_%s",radiusPP,etaWidth));
  mPP_Matrix->Print("base");
  mPP_mcclosure_data = (TH1F*)fPP_in->Get(Form("hpp_mcclosure_JetComb_data_R%d_%s",radiusPP,etaWidth));
  mPP_mcclosure_data->Print("base");
  mPP_mcclosure_Matrix = (TH2F*)fPP_in->Get(Form("hpp_mcclosure_matrix_HLT_R%d_%s",radiusPP,etaWidth));
  mPP_mcclosure_Matrix->Print("base");

  //RooUnfoldResponse ruResponsePP(mPP_Matrix->ProjectionY(),mPP_Matrix->ProjectionX(), mPP_Matrix,"","");
  //regularization parameter definition: 
  //RooUnfoldSvd unfoldSvdPP(&ruResponsePP, dPP_Comb, nSVDIter);
  //uPP_SVD = (TH1F*)unfoldSvdPP.Hreco();

  
  // for(int k = 1;k<=unfoldingCut;k++){
  //   mPP_Gen->SetBinContent(k,0);
  //   mPP_Reco->SetBinContent(k,0);
  //   mPP_mcclosure_data->SetBinContent(k,0);
  //   for(int l = 1;l<=1000;l++){
  //     mPP_Matrix->SetBinContent(k,l,0);
  //     mPP_mcclosure_Matrix->SetBinContent(k,l,0);
  //     mPP_Matrix->SetBinContent(l,k,0);
  //     mPP_mcclosure_Matrix->SetBinContent(l,k,0);
  //   }
  // }

  
  if(printDebug) cout<<"Filling the PbPb response Matrix"<<endl;

  // response matrix and unfolding for PbPb 
  // going to try it the way kurt has it. 

  for(int i = 0;i<nbins_cent;i++){
    if(printDebug) cout<<"centrality bin iteration = "<<i<<endl;
    TF1 *f = new TF1("f","[0]*pow(x+[2],[1])");
    f->SetParameters(1e10,-8.8,40);
    // TH1F *hGenSpectraCorr = (TH1F*)mPbPb_Matrix[i]->ProjectionX()->Clone(Form("hGenSpectraCorr_cent%d",i));
    // hGenSpectraCorr->Fit("f"," ");
    // hGenSpectraCorr->Fit("f","","");
    // hGenSpectraCorr->Fit("f","LL");
    // TH1F *fHist = functionHist(f,hGenSpectraCorr,Form("fHist_cent%d",i));// function that you get from the fitting 
    // hGenSpectraCorr->Divide(fHist);
    for (int y=1;y<=mPbPb_Matrix[i]->GetNbinsY();y++) {
      double sum=0;
      for (int x=1;x<=mPbPb_Matrix[i]->GetNbinsX();x++) {
	if (mPbPb_Matrix[i]->GetBinContent(x,y)<=1*mPbPb_Matrix[i]->GetBinError(x,y)) {
	  //in the above line mine had 0*getbinerror while Kurt's had 1*. 
	  mPbPb_Matrix[i]->SetBinContent(x,y,0);
	  mPbPb_Matrix[i]->SetBinError(x,y,0);
	}
	sum+=mPbPb_Matrix[i]->GetBinContent(x,y);
      }
      
      for (int x=1;x<=mPbPb_Matrix[i]->GetNbinsX();x++) {	   
	double ratio = 1;
	// if (hGenSpectraCorr->GetBinContent(x)!=0) ratio = 1e5/hGenSpectraCorr->GetBinContent(x);
	mPbPb_Matrix[i]->SetBinContent(x,y,mPbPb_Matrix[i]->GetBinContent(x,y)*ratio);
	mPbPb_Matrix[i]->SetBinError(x,y,mPbPb_Matrix[i]->GetBinError(x,y)*ratio);
      }
    }
    //mPbPb_Matrix[i]->Smooth(0);
    // Ok major differences here between my code and Kurt in b-jet Tools under Unfold - lines 469 and above.  
    
    mPbPb_Response[i] = (TH2F*)mPbPb_Matrix[i]->Clone(Form("mPbPb_Response_cent%d",i));
    TH1F *hProj = (TH1F*)mPbPb_Response[i]->ProjectionY()->Clone(Form("hProj_cent%d",i));

    for (int y=1;y<=mPbPb_Response[i]->GetNbinsY();y++) {
      double sum=0;
      for (int x=1;x<=mPbPb_Response[i]->GetNbinsX();x++) {
	if (mPbPb_Response[i]->GetBinContent(x,y)<=1*mPbPb_Response[i]->GetBinError(x,y)) {
	  // in the above if loop, kurt has 1*error and my old had 0*error
	  mPbPb_Response[i]->SetBinContent(x,y,0);
	  mPbPb_Response[i]->SetBinError(x,y,0);
	}
	sum+=mPbPb_Response[i]->GetBinContent(x,y);
      }
      
      for (int x=1;x<=mPbPb_Response[i]->GetNbinsX();x++) {  	
	if (sum==0) continue;
	double ratio = 1;
	//if(dPbPb_TrgComb[i]->GetBinContent(y)==0) ratio = 1e-100/sum;
	// else ratio = dPbPb_TrgComb[i]->GetBinContent(y)/sum
	ratio = 1./sum;
	if (hProj->GetBinContent(y)==0) ratio = 1e-100/sum;
	else ratio = hProj->GetBinContent(y)/sum;
	mPbPb_Response[i]->SetBinContent(x,y,mPbPb_Response[i]->GetBinContent(x,y)*ratio);
	mPbPb_Response[i]->SetBinError(x,y,mPbPb_Response[i]->GetBinError(x,y)*ratio);
      }
    }
    
    mPbPb_ResponseNorm[i] = (TH2F*)mPbPb_Matrix[i]->Clone(Form("mPbPb_ResponseNorm_cent%d",i));
    for (int x=1;x<=mPbPb_ResponseNorm[i]->GetNbinsX();x++) {
      double sum=0;
      for (int y=1;y<=mPbPb_ResponseNorm[i]->GetNbinsY();y++) {
	if (mPbPb_ResponseNorm[i]->GetBinContent(x,y)<=1*mPbPb_ResponseNorm[i]->GetBinError(x,y)) {
	  mPbPb_ResponseNorm[i]->SetBinContent(x,y,0);
	  mPbPb_ResponseNorm[i]->SetBinError(x,y,0);
	}
	sum+=mPbPb_ResponseNorm[i]->GetBinContent(x,y);
      }
      
      for (int y=1;y<=mPbPb_ResponseNorm[i]->GetNbinsY();y++) {  	
	if (sum==0) continue;
	double ratio = 1./sum;
	mPbPb_ResponseNorm[i]->SetBinContent(x,y,mPbPb_ResponseNorm[i]->GetBinContent(x,y)*ratio);
	mPbPb_ResponseNorm[i]->SetBinError(x,y,mPbPb_ResponseNorm[i]->GetBinError(x,y)*ratio);
      }
      
    }
    
    
  }

  
  if(printDebug) cout<<"Filling PP response Matrix"<<endl;

  // response matrix for pp.  
  // Kurt doesnt have this whole hGenSpectraCorr thing in his macro. need to check why the difference exists between out codes
  
  TF1 *fpp = new TF1("fpp","[0]*pow(x+[2],[1])");
  fpp->SetParameters(1e10,-8.8,40);
  // if(printDebug) cout<<"before getting the gen spectra corr matrix"<<endl;
  // TH1F *hGenSpectraCorrPP = (TH1F*)mPP_Matrix->ProjectionX()->Clone("hGenSpectraCorrPP");
  // if(printDebug) cout<<"after gettign the gen spectra corr matrix"<<endl;
  // hGenSpectraCorrPP->Fit("f"," ");
  // hGenSpectraCorrPP->Fit("f","","");
  // hGenSpectraCorrPP->Fit("f","LL");
  // TH1F *fHistPP = functionHist(fpp,hGenSpectraCorrPP,"fHistPP");// that the function that you get from the fitting 
  // hGenSpectraCorrPP->Divide(fHistPP);
  
  for (int y=1;y<=mPP_Matrix->GetNbinsY();y++) {
    double sum=0;
    for (int x=1;x<=mPP_Matrix->GetNbinsX();x++) {
      if (mPP_Matrix->GetBinContent(x,y)<=1*mPP_Matrix->GetBinError(x,y)) {
	mPP_Matrix->SetBinContent(x,y,0);
	mPP_Matrix->SetBinError(x,y,0);
      }
      sum+=mPP_Matrix->GetBinContent(x,y);
    }
    
    for (int x=1;x<=mPP_Matrix->GetNbinsX();x++) {	   
      double ratio = 1;
      // if (hGenSpectraCorrPP->GetBinContent(x)!=0) ratio = 1e5/hGenSpectraCorrPP->GetBinContent(x);
      mPP_Matrix->SetBinContent(x,y,mPP_Matrix->GetBinContent(x,y)*ratio);
      mPP_Matrix->SetBinError(x,y,mPP_Matrix->GetBinError(x,y)*ratio);
    }
  }
  // mPbPb_Matrix[i]->Smooth(0);
  
  // Ok major differences here between my code and Kurt in b-jet Tools under Unfold - lines 469 and above.  

  if(printDebug) cout<<"getting the response matrix"<<endl;

  mPP_Response = (TH2F*)mPP_Matrix->Clone("mPP_Response");
  TH1F *hProjPP = (TH1F*)mPP_Response->ProjectionY()->Clone("hProjPP");
  
  
  for (int y=1;y<=mPP_Response->GetNbinsY();y++) {
    double sum=0;
    for (int x=1;x<=mPP_Response->GetNbinsX();x++) {
      if (mPP_Response->GetBinContent(x,y)<=1*mPP_Response->GetBinError(x,y)) {
	// in the above if statement, kurt has 1*error and my old has 0*error
	mPP_Response->SetBinContent(x,y,0);
	mPP_Response->SetBinError(x,y,0);
      }
      sum+=mPP_Response->GetBinContent(x,y);
    }
    
    for (int x=1;x<=mPP_Response->GetNbinsX();x++) {  	
      if (sum==0) continue;
      double ratio = 1;
      //if(dPbPb_TrgComb[i]->GetBinContent(y)==0) ratio = 1e-100/sum;
      // else ratio = dPbPb_TrgComb[i]->GetBinContent(y)/sum
      ratio = 1./sum;
      if (hProjPP->GetBinContent(y)==0) ratio = 1e-100/sum;
      else ratio = hProjPP->GetBinContent(y)/sum;
      mPP_Response->SetBinContent(x,y,mPP_Response->GetBinContent(x,y)*ratio);
      mPP_Response->SetBinError(x,y,mPP_Response->GetBinError(x,y)*ratio);
    }
  }
  if(printDebug) cout<<"getting the normalized response matrix"<<endl;
  mPP_ResponseNorm = (TH2F*)mPP_Matrix->Clone("mPP_ResponseNorm");
  for (int x=1;x<=mPP_ResponseNorm->GetNbinsX();x++) {
    double sum=0;
    for (int y=1;y<=mPP_ResponseNorm->GetNbinsY();y++) {
      if (mPP_ResponseNorm->GetBinContent(x,y)<=1*mPP_ResponseNorm->GetBinError(x,y)) {
	mPP_ResponseNorm->SetBinContent(x,y,0);
	mPP_ResponseNorm->SetBinError(x,y,0);
      }
      sum+=mPP_ResponseNorm->GetBinContent(x,y);
    }
    
    for (int y=1;y<=mPP_ResponseNorm->GetNbinsY();y++) {  	
      if (sum==0) continue;
      double ratio = 1./sum;
      mPP_ResponseNorm->SetBinContent(x,y,mPP_ResponseNorm->GetBinContent(x,y)*ratio);
      mPP_ResponseNorm->SetBinError(x,y,mPP_ResponseNorm->GetBinError(x,y)*ratio);
    }
    
    
  }
  
  // scale the spectra to the respective units

  // for(int i = 0;i<nbins_cent;++i){
  //   dPbPb_TrgComb[i] = (TH1F*)dPbPb_TrgComb[i]->Rebin(nbins_pt,Form("PbPb_measured_spectra_combined_cent%d",i),boundaries_pt);
  //   divideBinWidth(dPbPb_TrgComb[i]);
  // }

  // dPP_Comb = (TH1F*)dPP_Comb->Rebin(nbins_pt,"pp_measured_spectra_combined",boundaries_pt);
  // divideBinWidth(dPP_Comb);
  // dPP_Comb->Scale(1./ dPP_Comb->GetBinContent(nbins_pt));
  
  // Now that we have all the response matrix for the 6 centralities in PbPb and one pp spectra lets start doing the steps:
  // we have 39 pt bins, so we need 1000 gaussian functions for each pt bin.
  
  Int_t unfoldingTrials = 200;
  Double_t meanMeasPbPb[nbins_pt][nbins_cent], sigmaMeasPbPb[nbins_pt][nbins_cent];
  Double_t meanMeasPP[nbins_pt], sigmaMeasPP[nbins_pt];
  Double_t meanUnfoldPbPb[nbins_pt][nbins_cent][unfoldingTrials], sigmaUnfoldPbPb[nbins_pt][nbins_cent][unfoldingTrials];
  Double_t meanUnfoldPP[nbins_pt][unfoldingTrials], sigmaUnfoldPP[nbins_pt][unfoldingTrials]; 
  
  TRandom3 *random = new TRandom3(0);

  for(int u = 0;u<unfoldingTrials;++u){
    cout<<"unfolding trial no = "<<u+1<<endl;
  
    for(int j = 0;j<nbins_pt;++j){
      for(int i = 0;i<nbins_cent;++i){
      
	meanMeasPbPb[j][i] = dPbPb_TrgComb[i]->GetBinContent(j+1);
	sigmaMeasPbPb[j][i] = dPbPb_TrgComb[i]->GetBinError(j+1);

      }// centrality loop

      meanMeasPP[j] = dPP_Comb->GetBinContent(j+1);
      sigmaMeasPP[j] = dPP_Comb->GetBinContent(j+1);
      
    }// nbins_pt loop

    // now proceed to unfolding for each trial.

    for(int i = 0;i<nbins_cent;++i){
      //cout<<"centrality = "<<i<<endl;

      TH1F * hPreUnfoldingSpectra = new TH1F("hPreUnfoldingSpectra","",nbins_pt,0,nbins_pt);
      TH1F * hAfterUnfoldingSpectra;

      for(int j = 0;j<nbins_pt;++j){
	
	hPreUnfoldingSpectra->SetBinContent(j+1, random->Gaus(meanMeasPbPb[j][i], sigmaMeasPbPb[j][i]));
	hPreUnfoldingSpectra->SetBinError(j+1, sigmaMeasPbPb[j][i]/sqrt(unfoldingTrials));
        //if(j==100)cout << " before unfolding bin " << j << " value = " << hPreUnfoldingSpectra->GetBinContent(j+1)<<endl;
        //if(j==100)cout << " before unfolding bin " << j << " error = " << hPreUnfoldingSpectra->GetBinError(j+1)<<endl;
	
      }// nbins_pt loop

      TH1F* hMCGen          = (TH1F*)mPbPb_Response[i]->ProjectionX();
      removeZero(hMCGen);
      //cout << " MC bin " << 100 << " value = " << hMCGen->GetBinContent(100)<<endl;
      bayesianUnfold myUnfoldingMulti(mPbPb_Matrix[i], hMCGen, 0);
      myUnfoldingMulti.unfold(hPreUnfoldingSpectra, BayesIter);

      hAfterUnfoldingSpectra = (TH1F*) myUnfoldingMulti.hPrior->Clone("hAfterUnfoldingSpectra");

      for(int j = 0;j<nbins_pt;++j){
	
	//if(j==100)cout << " before unfolding bin " << j << " value = " << hPreUnfoldingSpectra->GetBinContent(j+1)<<endl;
	//if(j==100)cout << " after  unfolding bin " << j << " value = " << hAfterUnfoldingSpectra->GetBinContent(j+1)<<endl;
	
	meanUnfoldPbPb[j][i][u] = hAfterUnfoldingSpectra->GetBinContent(j+1);
	sigmaUnfoldPbPb[j][i][u] = hAfterUnfoldingSpectra->GetBinError(j+1);

	// cout << "after unfolding meanUnfoldPbPb[" << j << "][" << i << "][" << u<< "] = " <<meanUnfoldPbPb[j][i][u]<<"    ";
	// cout << "after unfolding meanUnfoldPbPb[" << j << "][" << i << "][" << u<< "] = " <<sigmaUnfoldPbPb[j][i][u]<<endl;
	
      }// nbins_pt loop
      
      //hPreUnfoldingSpectra->Print("base");
      //hAfterUnfoldingSpectra->Print("base");
      
      delete hPreUnfoldingSpectra;
      delete hAfterUnfoldingSpectra;
      delete hMCGen; 
      
    }// centrality loop

    cout<<"pp "<<endl;

    // now do it for the pp:
    TH1F * hPreUnfoldingSpectraPP = new TH1F("hPreUnfoldingSpectraPP","",nbins_pt,0,nbins_pt);
    TH1F * hAfterUnfoldingSpectraPP;
    
    for(int j = 0;j<nbins_pt;++j){
	
      hPreUnfoldingSpectraPP->SetBinContent(j+1, random->Gaus(meanMeasPP[j], sigmaMeasPP[j]));
      hPreUnfoldingSpectraPP->SetBinError(j+1, sigmaMeasPP[j]/sqrt(unfoldingTrials));
        
    }// nbins_pt loop
    TH1F* hMCGenPP          = (TH1F*)mPP_Response->ProjectionX();
    removeZero(hMCGenPP);
    bayesianUnfold myUnfoldingMultiPP(mPP_Matrix, hMCGenPP, 0);
    myUnfoldingMultiPP.unfold(hPreUnfoldingSpectraPP, BayesIter);

    hAfterUnfoldingSpectraPP = (TH1F*) myUnfoldingMultiPP.hPrior->Clone("hAfterUnfoldingSpectraPP");

    for(int j = 0;j<nbins_pt;++j){

      meanUnfoldPP[j][u] = hAfterUnfoldingSpectraPP->GetBinContent(j+1);
      sigmaUnfoldPP[j][u] = hAfterUnfoldingSpectraPP->GetBinError(j+1);

    }// nbins_pt loop

    delete hPreUnfoldingSpectraPP;
    delete hAfterUnfoldingSpectraPP;
    delete hMCGenPP; 
    
  }// unfolding trials loop


  // Now that we have all the necesary values we need, lets proceed to fill a histogram with the mean values for each ptbin and get the corrected values.
  TH1F * hAfterUnfoldingptBinDistribution[nbins_pt];
  TH1F * hCorrUnfoldingPbPb[nbins_cent];
  
  for(int i = 0;i<nbins_cent;++i){

    hCorrUnfoldingPbPb[i] = new TH1F(Form("PbPb_BayesianUnfolded_cent%d",i),"Spectra after correction", nbins_pt, 0, nbins_pt);

    for(int j = 0;j<nbins_pt;++j){
      
      //hAfterUnfoldingptBinDistribution[j] = new TH1F(Form("hAfterUnfoldingptBinDistribution_ptBin%d",j),"",100,	(meanMeasPbPb[j][i]-10) * sigmaMeasPbPb[j][i], (meanMeasPbPb[j][i]+10) * sigmaMeasPbPb[j][i]);
      hAfterUnfoldingptBinDistribution[j] = new TH1F(Form("hAfterUnfoldingptBinDistribution_ptBin%d",j),"",100,	0, 1);
      for(int u = 0;u<unfoldingTrials;++u){

	hAfterUnfoldingptBinDistribution[j]->Fill(meanUnfoldPbPb[j][i][u]);

	//if(j==100) cout<< "unfolding_trial = " << u+1 << " mean unfold value = "<< meanUnfoldPbPb[j][i][u] <<endl;

      }// unfolding trials loop

      //if(j==100) cout<<"Mean of that value for pt=100 = "<< (Float_t)hAfterUnfoldingptBinDistribution[j]->GetMean() <<endl;      
      hCorrUnfoldingPbPb[i]->SetBinContent(j+1, hAfterUnfoldingptBinDistribution[j]->GetMean());
      //cout<<"centrality bin "<<i<<", pT bin "<<j<<" bin Content = "<<hCorrUnfoldingPbPb[i]->GetBinContent(j+1)<<endl;
      hCorrUnfoldingPbPb[i]->SetBinError(j+1, hAfterUnfoldingptBinDistribution[j]->GetRMS());
      //cout<<"centrality bin "<<i<<", pT bin "<<j<<" bin Error   = "<<hCorrUnfoldingPbPb[i]->GetBinError(j+1)<<endl;

      delete hAfterUnfoldingptBinDistribution[j];
      
    }// nbins_pt loop

  }// centrality loop

  // similar for the pp:
  TH1F * hAfterUnfoldingptBinDistributionPP[nbins_pt];
  TH1F * hCorrUnfoldingPP;
  
  hCorrUnfoldingPP = new TH1F("PP_BayesianUnfolded","Spectra after unfolding error correction",nbins_pt, 0, nbins_pt);
  
  for(int j = 0;j<nbins_pt;++j){
    
    //hAfterUnfoldingptBinDistributionPP[j] = new TH1F(Form("hAfterUnfoldingptBinDistributionPP_ptBin%d",j),"",1000,(meanMeasPP[j]-10) * sigmaMeasPP[j], (meanMeasPP[j]+10) * sigmaMeasPP[j]);
    hAfterUnfoldingptBinDistributionPP[j] = new TH1F(Form("hAfterUnfoldingptBinDistributionPP_ptBin%d",j),"",100, 0, 1);
    for(int u = 0;u<unfoldingTrials;++u){
      
      hAfterUnfoldingptBinDistributionPP[j]->Fill(meanUnfoldPP[j][u]);
      
    }// unfolding trials loop
    
    hCorrUnfoldingPP->SetBinContent(j+1, hAfterUnfoldingptBinDistributionPP[j]->GetMean());
    //cout<<"PP pT bin "<<j<<" bin Content = "<<hCorrUnfoldingPP->GetBinContent(j+1)<<endl;
    hCorrUnfoldingPP->SetBinError(j+1, hAfterUnfoldingptBinDistributionPP[j]->GetRMS());
    //cout<<"PP pT bin "<<j<<" bin Error   = "<<hCorrUnfoldingPP->GetBinError(j+1)<<endl;
    
    delete hAfterUnfoldingptBinDistributionPP[j];
    
  }// nbins_pt loop
    
  TFile f(Form("../../Output/Pawan_ntuple_PbPb_R%d_pp_R%d_%s_unfoldingCut_%d_data_driven_correction_ak%s%s_%d.root",radius, radiusPP, etaWidth ,unfoldingCut,algo,jet_type,date.GetDate()),"RECREATE");
  f.cd();

  for(int i = 0;i<nbins_cent;i++) {

    hCorrUnfoldingPbPb[i]->Scale(145.156 * 1e9);
    //hCorrUnfoldingPbPb[i] = (TH1F*)hCorrUnfoldingPbPb[i]->Rebin(nbins_pt_coarse, Form("PbPb_BayesianUnfolded_cent%d",i), boundaries_pt_coarse);
    hCorrUnfoldingPbPb[i]->Write();
    hCorrUnfoldingPbPb[i]->Print("base");

    dPbPb_TrgComb[i]->Scale(145.156 * 1e9);
    //dPbPb_TrgComb[i] = (TH1F*)dPbPb_TrgComb[i]->Rebin(nbins_pt_coarse, Form("PbPb_measured_cent%d",i), boundaries_pt_coarse);
    dPbPb_TrgComb[i]->Write();
    dPbPb_TrgComb[i]->Print("base");
    
  }

  hCorrUnfoldingPP->Scale(5.3 * 1e9);
  //hCorrUnfoldingPP = (TH1F*)hCorrUnfoldingPP->Rebin(nbins_pt_coarse, "PP_BayesianUnfolded", boundaries_pt_coarse);
  hCorrUnfoldingPP->Write();
  hCorrUnfoldingPP->Print("base");
  dPP_Comb->Scale(5.3 * 1e9);
  //dPP_Comb = (TH1F*)dPP_Comb->Rebin(nbins_pt_coarse, "PP_measured", boundaries_pt_coarse);  
  dPP_Comb->Write();
  dPP_Comb->Print("base");
  
  f.Write();
  f.Close();

  timer.Stop();
  if(printDebug) cout<<"CPU time (mins) = "<<(Float_t)timer.CpuTime()/60<<endl;
  if(printDebug) cout<<"Real tile (mins) = "<<(Float_t)timer.RealTime()/60<<endl;
  

}
Exemplo n.º 30
0
void ana_Main_MC(TString ds="relval", TString physics="ttbar") {

	gSystem->Load("libSusyEvent.so");

	// Look ../jec/JetMETObjects/README
	gSystem->Load("../jec/lib/libJetMETObjects.so");

	// Printing utility for ntuple variables
	gROOT->LoadMacro("SusyEventPrinter.cc+");

	// Main analysis code
	gROOT->LoadMacro("SusyMainAna_MC.cc+");

	// chain of inputs
	TChain* chain = new TChain("susyTree");

	//////////////// MC files /////////////////
	cout<<"I survive this long1 "<< which_MC_to_use<< endl;
	MCpoint* thisMCpoint = setupMCpoint(which_MC_to_use);
	cout<<"I survive this long2"<<endl;
	chain->Add(thisMCpoint->filepath.c_str());
	cout<<"I survive this long"<<endl;


	//chain->Add("../susyEvents_AB_1M_ho200_v2.root");
	//chain->Add("../susyEvents_newNatural.root"); //last used!!
	//chain->Add("/eos/uscms/store/user/abarker/MC/newNat350_225/MC_AB_2500k_NEWnaturalHiggsinoNLSPout_mst_350_M3_5025_mu_225.root");//same thing as ../susyEvents_newNatural.root
	//chain->Add("/eos/uscms/store/user/abarker/MC/st_250_ho_150/MC_AB_2500k_st_250_ho_150.root");
	//chain->Add("/eos/uscms/store/user/abarker/MC/st_250_ho_200/MC_AB_2500k_st_250_ho_200.root");
	//chain->Add("/eos/uscms/store/user/abarker/MC/st_350_ho_200/MC_AB_2500k_mst_350_mu_200.root");
	//chain->Add("/eos/uscms/store/user/abarker/MC/ho_140/MC_AB_2500k_ho_140.root");
	//chain->Add("/eos/uscms/store/user/abarker/MC/ho_200/MC_AB_2500k_ho_200.root");


	//chain->Add("../susyEvents_newNatural.root");
	//chain->Add("dcache:/pnfs/cms/WAX/resilient/abarker/MC/MC_AB_2500k_NEWnaturalHiggsinoNLSPout_mst_350_M3_5025_mu_225.root");

	//chain->Add("dcache:/pnfs/cms/WAX/resilient/abarker/MC/MC_AB_2500k_st_250_ho_150.root");
	//chain->Add("dcache:/pnfs/cms/WAX/resilient/abarker/MC/MC_AB_2500k_st_250_ho_200.root");
	//chain->Add("dcache:/pnfs/cms/WAX/resilient/abarker/MC/MC_AB_2500k_mst_350_mu_200.root");
	//chain->Add("dcache:/pnfs/cms/WAX/resilient/abarker/MC/MC_AB_2500k_ho_140.root");
	//chain->Add("dcache:/pnfs/cms/WAX/resilient/abarker/MC/MC_AB_2500k_ho_200.root");


	SusyMainAna_MC* sea = new SusyMainAna_MC(chain);

	// configuration parameters
	// any values given here will replace the default values
	sea->SetDataset(physics+"_"+ds);        // dataset name
	sea->SetPrintInterval(1e4);             // print frequency
	sea->SetPrintLevel(0);                  // print level for event contents
	sea->SetUseTrigger(false);
	/*
	   sea->AddHltName("HLT_Photon36_CaloIdL_Photon22_CaloIdL");  // add HLT trigger path name 
	   sea->AddHltName("HLT_Photon32_CaloIdL_Photon26_CaloIdL");  // add HLT trigger path name
	   sea->AddHltName("HLT_Photon26_R9Id85_Photon18_R9Id85_Mass60");
	   sea->AddHltName("HLT_Photon26_R9Id85_Photon18_CaloId10_Iso50_Mass60");
	   sea->AddHltName("HLT_Photon26_CaloId10_Iso50_Photon18_R9Id85_Mass60");
	   sea->AddHltName("HLT_Photon26_CaloId10_Iso50_Photon18_CaloId10_Iso50_Mass60");
	   sea->AddHltName("HLT_Photon26_R9Id85_OR_CaloId10_Iso50_Photon18_R9Id85_OR_CaloId10_Iso50_Mass60");
	   sea->AddHltName("HLT_Photon26_R9Id85_OR_CaloId10_Iso50_Photon18_R9Id85_OR_CaloId10_Iso50_Mass70");
	   sea->AddHltName("HLT_Photon36_R9Id85_Photon22_R9Id85");
	   sea->AddHltName("HLT_Photon36_R9Id85_Photon22_CaloId10_Iso50");
	   sea->AddHltName("HLT_Photon36_CaloId10_Iso50_Photon22_R9Id85");
	   sea->AddHltName("HLT_Photon36_CaloId10_Iso50_Photon22_CaloId10_Iso50");
	   sea->AddHltName("HLT_Photon36_R9Id85_OR_CaloId10_Iso50_Photon22_R9Id85_OR_CaloId10_Iso50");
	 */
	sea->SetFilter(false);                  // filter events passing final cuts
	sea->SetProcessNEvents(-1);             // number of events to be processed

	// as an example -- add your favorite Json here.  More than one can be "Include"ed
	//  sea->IncludeAJson("Cert_161079-161352_7TeV_PromptReco_Collisions11_JSON_noESpbl_v2.txt");
	//sea->IncludeAJson("anotherJSON.txt");

	TStopwatch ts;

	ts.Start();

	sea->Loop();

	ts.Stop();

	std::cout << "RealTime : " << ts.RealTime()/60.0 << " minutes" << std::endl;
	std::cout << "CPUTime  : " << ts.CpuTime()/60.0 << " minutes" << std::endl;

}