Exemplo n.º 1
0
void Hinge2Vehicle::resetForklift()
{
	gVehicleSteering = 0.f;
	gBreakingForce = defaultBreakingForce;
	gEngineForce = 0.f;

	m_carChassis->setCenterOfMassTransform(btTransform::getIdentity());
	m_carChassis->setLinearVelocity(btVector3(0,0,0));
	m_carChassis->setAngularVelocity(btVector3(0,0,0));
	m_dynamicsWorld->getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(m_carChassis->getBroadphaseHandle(),getDynamicsWorld()->getDispatcher());
#if 0
	if (m_vehicle)
	{
		m_vehicle->resetSuspension();
		for (int i=0;i<m_vehicle->getNumWheels();i++)
		{
			//synchronize the wheels with the (interpolated) chassis worldtransform
			m_vehicle->updateWheelTransform(i,true);
		}
	}
#endif
	btTransform liftTrans;
	liftTrans.setIdentity();
	liftTrans.setOrigin(m_liftStartPos);
	m_liftBody->activate();
	m_liftBody->setCenterOfMassTransform(liftTrans);
	m_liftBody->setLinearVelocity(btVector3(0,0,0));
	m_liftBody->setAngularVelocity(btVector3(0,0,0));

	btTransform forkTrans;
	forkTrans.setIdentity();
	forkTrans.setOrigin(m_forkStartPos);
	m_forkBody->activate();
	m_forkBody->setCenterOfMassTransform(forkTrans);
	m_forkBody->setLinearVelocity(btVector3(0,0,0));
	m_forkBody->setAngularVelocity(btVector3(0,0,0));

//	m_liftHinge->setLimit(-LIFT_EPS, LIFT_EPS);
	m_liftHinge->setLimit(0.0f, 0.0f);
	m_liftHinge->enableAngularMotor(false, 0, 0);

	
	m_forkSlider->setLowerLinLimit(0.1f);
	m_forkSlider->setUpperLinLimit(0.1f);
	m_forkSlider->setPoweredLinMotor(false);

	btTransform loadTrans;
	loadTrans.setIdentity();
	loadTrans.setOrigin(m_loadStartPos);
	m_loadBody->activate();
	m_loadBody->setCenterOfMassTransform(loadTrans);
	m_loadBody->setLinearVelocity(btVector3(0,0,0));
	m_loadBody->setAngularVelocity(btVector3(0,0,0));

}
Exemplo n.º 2
0
void Hinge2Vehicle::lockForkSlider(void)
{
	btScalar linDepth = m_forkSlider->getLinearPos();
	btScalar lowLim = m_forkSlider->getLowerLinLimit();
	btScalar hiLim = m_forkSlider->getUpperLinLimit();
	m_forkSlider->setPoweredLinMotor(false);
	if(linDepth <= lowLim)
	{
		m_forkSlider->setLowerLinLimit(lowLim);
		m_forkSlider->setUpperLinLimit(lowLim);
	}
	else if(linDepth > hiLim)
	{
		m_forkSlider->setLowerLinLimit(hiLim);
		m_forkSlider->setUpperLinLimit(hiLim);
	}
	else
	{
		m_forkSlider->setLowerLinLimit(linDepth);
		m_forkSlider->setUpperLinLimit(linDepth);
	}
	return;
} // Hinge2Vehicle::lockForkSlider()
Exemplo n.º 3
0
void Hinge2Vehicle::specialKeyboard(int key, int x, int y)
{
#if 0
	if (key==GLUT_KEY_END)
		return;

	//	printf("key = %i x=%i y=%i\n",key,x,y);

	int state;
	state=glutGetModifiers();
	if (state & GLUT_ACTIVE_SHIFT) 
	{
		switch (key) 
			{
			case GLUT_KEY_LEFT : 
				{
				
					m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f);
					m_liftHinge->enableAngularMotor(true, -0.1, maxMotorImpulse);
					break;
				}
			case GLUT_KEY_RIGHT : 
				{
					
					m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f);
					m_liftHinge->enableAngularMotor(true, 0.1, maxMotorImpulse);
					break;
				}
			case GLUT_KEY_UP :
				{
					m_forkSlider->setLowerLinLimit(0.1f);
					m_forkSlider->setUpperLinLimit(3.9f);
					m_forkSlider->setPoweredLinMotor(true);
					m_forkSlider->setMaxLinMotorForce(maxMotorImpulse);
					m_forkSlider->setTargetLinMotorVelocity(1.0);
					break;
				}
			case GLUT_KEY_DOWN :
				{
					m_forkSlider->setLowerLinLimit(0.1f);
					m_forkSlider->setUpperLinLimit(3.9f);
					m_forkSlider->setPoweredLinMotor(true);
					m_forkSlider->setMaxLinMotorForce(maxMotorImpulse);
					m_forkSlider->setTargetLinMotorVelocity(-1.0);
					break;
				}

			default:
				DemoApplication::specialKeyboard(key,x,y);
				break;
			}

	} else
	{
			switch (key) 
			{
			case GLUT_KEY_LEFT : 
				{
					gVehicleSteering += steeringIncrement;
					if (	gVehicleSteering > steeringClamp)
						gVehicleSteering = steeringClamp;

					break;
				}
			case GLUT_KEY_RIGHT : 
				{
					gVehicleSteering -= steeringIncrement;
					if (	gVehicleSteering < -steeringClamp)
						gVehicleSteering = -steeringClamp;

					break;
				}
			case GLUT_KEY_UP :
				{
					gEngineForce = maxEngineForce;
					gBreakingForce = 0.f;
					break;
				}
			case GLUT_KEY_DOWN :
				{
					gEngineForce = -maxEngineForce;
					gBreakingForce = 0.f;
					break;
				}

			case GLUT_KEY_F7:
				{
					btDiscreteDynamicsWorld* world = (btDiscreteDynamicsWorld*)m_dynamicsWorld;
					world->setLatencyMotionStateInterpolation(!world->getLatencyMotionStateInterpolation());
					printf("world latencyMotionStateInterpolation = %d\n", world->getLatencyMotionStateInterpolation());
					break;
				}
			case GLUT_KEY_F6:
				{
					//switch solver (needs demo restart)
					useMCLPSolver = !useMCLPSolver;
					printf("switching to useMLCPSolver = %d\n", useMCLPSolver);

					delete m_solver;
					if (useMCLPSolver)
					{
						btDantzigSolver* mlcp = new btDantzigSolver();
						//btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel;
						btMLCPSolver* sol = new btMLCPSolver(mlcp);
						m_solver = sol;
					} else
					{
						m_solver = new btSequentialImpulseConstraintSolver();
					}

					m_dynamicsWorld->setConstraintSolver(m_solver);


					//exitPhysics();
					//initPhysics();
					break;
				}

			case GLUT_KEY_F5:
				m_useDefaultCamera = !m_useDefaultCamera;
				break;
			default:
				DemoApplication::specialKeyboard(key,x,y);
				break;
			}

	}
	//	glutPostRedisplay();

#endif
}
Exemplo n.º 4
0
bool	Hinge2Vehicle::keyboardCallback(int key, int state)
{
	bool handled = false;
	bool isShiftPressed = m_guiHelper->getAppInterface()->m_window->isModifierKeyPressed(B3G_SHIFT);

	if (state)
	{
	if (isShiftPressed) 
	{
		switch (key) 
			{
			case B3G_LEFT_ARROW : 
				{
				
					m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f);
					m_liftHinge->enableAngularMotor(true, -0.1, maxMotorImpulse);
					handled = true;
					break;
				}
			case B3G_RIGHT_ARROW : 
				{
					
					m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f);
					m_liftHinge->enableAngularMotor(true, 0.1, maxMotorImpulse);
					handled = true;
					break;
				}
			case B3G_UP_ARROW :
				{
					m_forkSlider->setLowerLinLimit(0.1f);
					m_forkSlider->setUpperLinLimit(3.9f);
					m_forkSlider->setPoweredLinMotor(true);
					m_forkSlider->setMaxLinMotorForce(maxMotorImpulse);
					m_forkSlider->setTargetLinMotorVelocity(1.0);
					handled = true;
					break;
				}
			case B3G_DOWN_ARROW :
				{
					m_forkSlider->setLowerLinLimit(0.1f);
					m_forkSlider->setUpperLinLimit(3.9f);
					m_forkSlider->setPoweredLinMotor(true);
					m_forkSlider->setMaxLinMotorForce(maxMotorImpulse);
					m_forkSlider->setTargetLinMotorVelocity(-1.0);
					handled = true;
					break;
				}
			}

	} else
	{
			switch (key) 
			{
			case B3G_LEFT_ARROW : 
				{
					handled = true;
					gVehicleSteering += steeringIncrement;
					if (	gVehicleSteering > steeringClamp)
						gVehicleSteering = steeringClamp;

					break;
				}
			case B3G_RIGHT_ARROW : 
				{
					handled = true;
					gVehicleSteering -= steeringIncrement;
					if (	gVehicleSteering < -steeringClamp)
						gVehicleSteering = -steeringClamp;

					break;
				}
			case B3G_UP_ARROW :
				{
					handled = true;
					gEngineForce = maxEngineForce;
					gBreakingForce = 0.f;
					break;
				}
			case B3G_DOWN_ARROW :
				{
					handled = true;
					gEngineForce = -maxEngineForce;
					gBreakingForce = 0.f;
					break;
				}

			case B3G_F7:
				{
					handled = true;
					btDiscreteDynamicsWorld* world = (btDiscreteDynamicsWorld*)m_dynamicsWorld;
					world->setLatencyMotionStateInterpolation(!world->getLatencyMotionStateInterpolation());
					printf("world latencyMotionStateInterpolation = %d\n", world->getLatencyMotionStateInterpolation());
					break;
				}
			case B3G_F6:
				{
					handled = true;
					//switch solver (needs demo restart)
					useMCLPSolver = !useMCLPSolver;
					printf("switching to useMLCPSolver = %d\n", useMCLPSolver);

					delete m_solver;
					if (useMCLPSolver)
					{
						btDantzigSolver* mlcp = new btDantzigSolver();
						//btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel;
						btMLCPSolver* sol = new btMLCPSolver(mlcp);
						m_solver = sol;
					} else
					{
						m_solver = new btSequentialImpulseConstraintSolver();
					}

					m_dynamicsWorld->setConstraintSolver(m_solver);


					//exitPhysics();
					//initPhysics();
					break;
				}

			case B3G_F5:
			handled = true;
				m_useDefaultCamera = !m_useDefaultCamera;
				break;
			default:
				break;
			}
	}

	} else
	{
		switch (key) 
		{
		case B3G_UP_ARROW:
			{
				lockForkSlider();
				gEngineForce = 0.f;
				gBreakingForce = defaultBreakingForce; 
				handled=true;
			break;
			}
		case B3G_DOWN_ARROW:
			{
				lockForkSlider();
				gEngineForce = 0.f;
				gBreakingForce = defaultBreakingForce;
				handled=true;
			break;
			}
		case B3G_LEFT_ARROW:
		case B3G_RIGHT_ARROW:
			{
				lockLiftHinge();
				handled=true;
				break;
			}
		default:
			
			break;
		}
	}
	return handled;
}
Exemplo n.º 5
0
void Hinge2Vehicle::initPhysics()
{
	m_guiHelper->setUpAxis(1);


	btCollisionShape* groundShape = new btBoxShape(btVector3(50,3,50));
	m_collisionShapes.push_back(groundShape);
	m_collisionConfiguration = new btDefaultCollisionConfiguration();
	m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
	btVector3 worldMin(-1000,-1000,-1000);
	btVector3 worldMax(1000,1000,1000);
	m_broadphase = new btAxisSweep3(worldMin,worldMax);
	if (useMCLPSolver)
	{
		btDantzigSolver* mlcp = new btDantzigSolver();
		//btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel;
		btMLCPSolver* sol = new btMLCPSolver(mlcp);
		m_solver = sol;
	} else
	{
		m_solver = new btSequentialImpulseConstraintSolver();
	}
	m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
	if (useMCLPSolver)
	{
		m_dynamicsWorld ->getSolverInfo().m_minimumSolverBatchSize = 1;//for direct solver it is better to have a small A matrix
	} else
	{
		m_dynamicsWorld ->getSolverInfo().m_minimumSolverBatchSize = 128;//for direct solver, it is better to solve multiple objects together, small batches have high overhead
	}
	m_dynamicsWorld->getSolverInfo().m_numIterations = 100;
	m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
	

	//m_dynamicsWorld->setGravity(btVector3(0,0,0));
btTransform tr;
tr.setIdentity();
tr.setOrigin(btVector3(0,-3,0));

//either use heightfield or triangle mesh


	//create ground object
	localCreateRigidBody(0,tr,groundShape);

	btCollisionShape* chassisShape = new btBoxShape(btVector3(1.f,0.5f,2.f));
	m_collisionShapes.push_back(chassisShape);

	btCompoundShape* compound = new btCompoundShape();
	m_collisionShapes.push_back(compound);
	btTransform localTrans;
	localTrans.setIdentity();
	//localTrans effectively shifts the center of mass with respect to the chassis
	localTrans.setOrigin(btVector3(0,1,0));

	compound->addChildShape(localTrans,chassisShape);

	{
		btCollisionShape* suppShape = new btBoxShape(btVector3(0.5f,0.1f,0.5f));
		btTransform suppLocalTrans;
		suppLocalTrans.setIdentity();
		//localTrans effectively shifts the center of mass with respect to the chassis
		suppLocalTrans.setOrigin(btVector3(0,1.0,2.5));
		compound->addChildShape(suppLocalTrans, suppShape);
	}

	tr.setOrigin(btVector3(0,0.f,0));

	btScalar chassisMass = 800;
	m_carChassis = localCreateRigidBody(chassisMass,tr,compound);//chassisShape);
	//m_carChassis->setDamping(0.2,0.2);
	
	//m_wheelShape = new btCylinderShapeX(btVector3(wheelWidth,wheelRadius,wheelRadius));
	m_wheelShape = new btCylinderShapeX(btVector3(wheelWidth,wheelRadius,wheelRadius));
	

	//const float position[4]={0,10,10,0};
	//const float quaternion[4]={0,0,0,1};
	//const float color[4]={0,1,0,1};
	//const float scaling[4] = {1,1,1,1};

	btVector3 wheelPos[4] = {
		btVector3(btScalar(-1.), btScalar(-0.25), btScalar(1.25)),
		btVector3(btScalar(1.), btScalar(-0.25), btScalar(1.25)),
		btVector3(btScalar(1.), btScalar(-0.25), btScalar(-1.25)),
		btVector3(btScalar(-1.), btScalar(-0.25), btScalar(-1.25))
	};

	
	for (int i=0;i<4;i++)
	{ 
		// create a Hinge2 joint
		// create two rigid bodies
		// static bodyA (parent) on top:
		
		
		btRigidBody* pBodyA = this->m_carChassis;//m_chassis;//createRigidBody( 0.0, tr, m_wheelShape);
		pBodyA->setActivationState(DISABLE_DEACTIVATION);
		// dynamic bodyB (child) below it :
		btTransform tr;
		tr.setIdentity();
		tr.setOrigin(wheelPos[i]);
		
		btRigidBody* pBodyB = createRigidBody(10.0, tr, m_wheelShape);
		pBodyB->setFriction(1110);
		pBodyB->setActivationState(DISABLE_DEACTIVATION);
		// add some data to build constraint frames
		btVector3 parentAxis(0.f, 1.f, 0.f); 
		btVector3 childAxis(1.f, 0.f, 0.f); 
		btVector3 anchor = tr.getOrigin();//(0.f, 0.f, 0.f);
		btHinge2Constraint* pHinge2 = new btHinge2Constraint(*pBodyA, *pBodyB, anchor, parentAxis, childAxis);
		
		//m_guiHelper->get2dCanvasInterface();
		

		pHinge2->setLowerLimit(-SIMD_HALF_PI * 0.5f);
		pHinge2->setUpperLimit( SIMD_HALF_PI * 0.5f);
		// add constraint to world
		m_dynamicsWorld->addConstraint(pHinge2, true);
		// draw constraint frames and limits for debugging
		{
			int motorAxis = 3;
			pHinge2->enableMotor(motorAxis,true);
			pHinge2->setMaxMotorForce(motorAxis,1000);
			pHinge2->setTargetVelocity(motorAxis,-1);
		}

		{
			int motorAxis = 5;
			pHinge2->enableMotor(motorAxis,true);
			pHinge2->setMaxMotorForce(motorAxis,1000);
			pHinge2->setTargetVelocity(motorAxis,0);
		}

		pHinge2->setDbgDrawSize(btScalar(5.f));
	}


	{
		btCollisionShape* liftShape = new btBoxShape(btVector3(0.5f,2.0f,0.05f));
		m_collisionShapes.push_back(liftShape);
		btTransform liftTrans;
		m_liftStartPos = btVector3(0.0f, 2.5f, 3.05f);
		liftTrans.setIdentity();
		liftTrans.setOrigin(m_liftStartPos);
		m_liftBody = localCreateRigidBody(10,liftTrans, liftShape);

		btTransform localA, localB;
		localA.setIdentity();
		localB.setIdentity();
		localA.getBasis().setEulerZYX(0, M_PI_2, 0);
		localA.setOrigin(btVector3(0.0, 1.0, 3.05));
		localB.getBasis().setEulerZYX(0, M_PI_2, 0);
		localB.setOrigin(btVector3(0.0, -1.5, -0.05));
		m_liftHinge = new btHingeConstraint(*m_carChassis,*m_liftBody, localA, localB);
//		m_liftHinge->setLimit(-LIFT_EPS, LIFT_EPS);
		m_liftHinge->setLimit(0.0f, 0.0f);
		m_dynamicsWorld->addConstraint(m_liftHinge, true);

		btCollisionShape* forkShapeA = new btBoxShape(btVector3(1.0f,0.1f,0.1f));
		m_collisionShapes.push_back(forkShapeA);
		btCompoundShape* forkCompound = new btCompoundShape();
		m_collisionShapes.push_back(forkCompound);
		btTransform forkLocalTrans;
		forkLocalTrans.setIdentity();
		forkCompound->addChildShape(forkLocalTrans, forkShapeA);

		btCollisionShape* forkShapeB = new btBoxShape(btVector3(0.1f,0.02f,0.6f));
		m_collisionShapes.push_back(forkShapeB);
		forkLocalTrans.setIdentity();
		forkLocalTrans.setOrigin(btVector3(-0.9f, -0.08f, 0.7f));
		forkCompound->addChildShape(forkLocalTrans, forkShapeB);

		btCollisionShape* forkShapeC = new btBoxShape(btVector3(0.1f,0.02f,0.6f));
		m_collisionShapes.push_back(forkShapeC);
		forkLocalTrans.setIdentity();
		forkLocalTrans.setOrigin(btVector3(0.9f, -0.08f, 0.7f));
		forkCompound->addChildShape(forkLocalTrans, forkShapeC);

		btTransform forkTrans;
		m_forkStartPos = btVector3(0.0f, 0.6f, 3.2f);
		forkTrans.setIdentity();
		forkTrans.setOrigin(m_forkStartPos);
		m_forkBody = localCreateRigidBody(5, forkTrans, forkCompound);

		localA.setIdentity();
		localB.setIdentity();
		localA.getBasis().setEulerZYX(0, 0, M_PI_2);
		localA.setOrigin(btVector3(0.0f, -1.9f, 0.05f));
		localB.getBasis().setEulerZYX(0, 0, M_PI_2);
		localB.setOrigin(btVector3(0.0, 0.0, -0.1));
		m_forkSlider = new btSliderConstraint(*m_liftBody, *m_forkBody, localA, localB, true);
		m_forkSlider->setLowerLinLimit(0.1f);
		m_forkSlider->setUpperLinLimit(0.1f);
//		m_forkSlider->setLowerAngLimit(-LIFT_EPS);
//		m_forkSlider->setUpperAngLimit(LIFT_EPS);
		m_forkSlider->setLowerAngLimit(0.0f);
		m_forkSlider->setUpperAngLimit(0.0f);
		m_dynamicsWorld->addConstraint(m_forkSlider, true);


		btCompoundShape* loadCompound = new btCompoundShape();
		m_collisionShapes.push_back(loadCompound);
		btCollisionShape* loadShapeA = new btBoxShape(btVector3(2.0f,0.5f,0.5f));
		m_collisionShapes.push_back(loadShapeA);
		btTransform loadTrans;
		loadTrans.setIdentity();
		loadCompound->addChildShape(loadTrans, loadShapeA);
		btCollisionShape* loadShapeB = new btBoxShape(btVector3(0.1f,1.0f,1.0f));
		m_collisionShapes.push_back(loadShapeB);
		loadTrans.setIdentity();
		loadTrans.setOrigin(btVector3(2.1f, 0.0f, 0.0f));
		loadCompound->addChildShape(loadTrans, loadShapeB);
		btCollisionShape* loadShapeC = new btBoxShape(btVector3(0.1f,1.0f,1.0f));
		m_collisionShapes.push_back(loadShapeC);
		loadTrans.setIdentity();
		loadTrans.setOrigin(btVector3(-2.1f, 0.0f, 0.0f));
		loadCompound->addChildShape(loadTrans, loadShapeC);
		loadTrans.setIdentity();
		m_loadStartPos = btVector3(0.0f, 3.5f, 7.0f);
		loadTrans.setOrigin(m_loadStartPos);
		m_loadBody  = localCreateRigidBody(loadMass, loadTrans, loadCompound);
	}



	
	resetForklift();
	
//	setCameraDistance(26.f);

	m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}
Exemplo n.º 6
0
void ForkLiftDemo::initPhysics()
{

	
	
	int upAxis = 1;	

	m_guiHelper->setUpAxis(upAxis);

	btVector3 groundExtents(50,50,50);
	groundExtents[upAxis]=3;
	btCollisionShape* groundShape = new btBoxShape(groundExtents);
	m_collisionShapes.push_back(groundShape);
	m_collisionConfiguration = new btDefaultCollisionConfiguration();
	m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
	btVector3 worldMin(-1000,-1000,-1000);
	btVector3 worldMax(1000,1000,1000);
	m_overlappingPairCache = new btAxisSweep3(worldMin,worldMax);
	if (useMCLPSolver)
	{
		btDantzigSolver* mlcp = new btDantzigSolver();
		//btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel;
		btMLCPSolver* sol = new btMLCPSolver(mlcp);
		m_constraintSolver = sol;
	} else
	{
		m_constraintSolver = new btSequentialImpulseConstraintSolver();
	}
	m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_overlappingPairCache,m_constraintSolver,m_collisionConfiguration);
	if (useMCLPSolver)
	{
		m_dynamicsWorld ->getSolverInfo().m_minimumSolverBatchSize = 1;//for direct solver it is better to have a small A matrix
	} else
	{
		m_dynamicsWorld ->getSolverInfo().m_minimumSolverBatchSize = 128;//for direct solver, it is better to solve multiple objects together, small batches have high overhead
	}
	m_dynamicsWorld->getSolverInfo().m_globalCfm = 0.00001;

	m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
	

	//m_dynamicsWorld->setGravity(btVector3(0,0,0));
btTransform tr;
tr.setIdentity();
tr.setOrigin(btVector3(0,-3,0));

//either use heightfield or triangle mesh


	//create ground object
	localCreateRigidBody(0,tr,groundShape);

	btCollisionShape* chassisShape = new btBoxShape(btVector3(1.f,0.5f,2.f));
	m_collisionShapes.push_back(chassisShape);

	btCompoundShape* compound = new btCompoundShape();
	m_collisionShapes.push_back(compound);
	btTransform localTrans;
	localTrans.setIdentity();
	//localTrans effectively shifts the center of mass with respect to the chassis
	localTrans.setOrigin(btVector3(0,1,0));

	compound->addChildShape(localTrans,chassisShape);

	{
		btCollisionShape* suppShape = new btBoxShape(btVector3(0.5f,0.1f,0.5f));
		btTransform suppLocalTrans;
		suppLocalTrans.setIdentity();
		//localTrans effectively shifts the center of mass with respect to the chassis
		suppLocalTrans.setOrigin(btVector3(0,1.0,2.5));
		compound->addChildShape(suppLocalTrans, suppShape);
	}

	tr.setOrigin(btVector3(0,0.f,0));

	m_carChassis = localCreateRigidBody(800,tr,compound);//chassisShape);
	//m_carChassis->setDamping(0.2,0.2);
	
	m_wheelShape = new btCylinderShapeX(btVector3(wheelWidth,wheelRadius,wheelRadius));

	m_guiHelper->createCollisionShapeGraphicsObject(m_wheelShape);
	int wheelGraphicsIndex = m_wheelShape->getUserIndex();

	const float position[4]={0,10,10,0};
	const float quaternion[4]={0,0,0,1};
	const float color[4]={0,1,0,1};
	const float scaling[4] = {1,1,1,1};

	for (int i=0;i<4;i++)
	{
		m_wheelInstances[i] = m_guiHelper->registerGraphicsInstance(wheelGraphicsIndex, position, quaternion, color, scaling);
	}



	{
		btCollisionShape* liftShape = new btBoxShape(btVector3(0.5f,2.0f,0.05f));
		m_collisionShapes.push_back(liftShape);
		btTransform liftTrans;
		m_liftStartPos = btVector3(0.0f, 2.5f, 3.05f);
		liftTrans.setIdentity();
		liftTrans.setOrigin(m_liftStartPos);
		m_liftBody = localCreateRigidBody(10,liftTrans, liftShape);

		btTransform localA, localB;
		localA.setIdentity();
		localB.setIdentity();
		localA.getBasis().setEulerZYX(0, M_PI_2, 0);
		localA.setOrigin(btVector3(0.0, 1.0, 3.05));
		localB.getBasis().setEulerZYX(0, M_PI_2, 0);
		localB.setOrigin(btVector3(0.0, -1.5, -0.05));
		m_liftHinge = new btHingeConstraint(*m_carChassis,*m_liftBody, localA, localB);
//		m_liftHinge->setLimit(-LIFT_EPS, LIFT_EPS);
		m_liftHinge->setLimit(0.0f, 0.0f);
		m_dynamicsWorld->addConstraint(m_liftHinge, true);

		btCollisionShape* forkShapeA = new btBoxShape(btVector3(1.0f,0.1f,0.1f));
		m_collisionShapes.push_back(forkShapeA);
		btCompoundShape* forkCompound = new btCompoundShape();
		m_collisionShapes.push_back(forkCompound);
		btTransform forkLocalTrans;
		forkLocalTrans.setIdentity();
		forkCompound->addChildShape(forkLocalTrans, forkShapeA);

		btCollisionShape* forkShapeB = new btBoxShape(btVector3(0.1f,0.02f,0.6f));
		m_collisionShapes.push_back(forkShapeB);
		forkLocalTrans.setIdentity();
		forkLocalTrans.setOrigin(btVector3(-0.9f, -0.08f, 0.7f));
		forkCompound->addChildShape(forkLocalTrans, forkShapeB);

		btCollisionShape* forkShapeC = new btBoxShape(btVector3(0.1f,0.02f,0.6f));
		m_collisionShapes.push_back(forkShapeC);
		forkLocalTrans.setIdentity();
		forkLocalTrans.setOrigin(btVector3(0.9f, -0.08f, 0.7f));
		forkCompound->addChildShape(forkLocalTrans, forkShapeC);

		btTransform forkTrans;
		m_forkStartPos = btVector3(0.0f, 0.6f, 3.2f);
		forkTrans.setIdentity();
		forkTrans.setOrigin(m_forkStartPos);
		m_forkBody = localCreateRigidBody(5, forkTrans, forkCompound);

		localA.setIdentity();
		localB.setIdentity();
		localA.getBasis().setEulerZYX(0, 0, M_PI_2);
		localA.setOrigin(btVector3(0.0f, -1.9f, 0.05f));
		localB.getBasis().setEulerZYX(0, 0, M_PI_2);
		localB.setOrigin(btVector3(0.0, 0.0, -0.1));
		m_forkSlider = new btSliderConstraint(*m_liftBody, *m_forkBody, localA, localB, true);
		m_forkSlider->setLowerLinLimit(0.1f);
		m_forkSlider->setUpperLinLimit(0.1f);
//		m_forkSlider->setLowerAngLimit(-LIFT_EPS);
//		m_forkSlider->setUpperAngLimit(LIFT_EPS);
		m_forkSlider->setLowerAngLimit(0.0f);
		m_forkSlider->setUpperAngLimit(0.0f);
		m_dynamicsWorld->addConstraint(m_forkSlider, true);


		btCompoundShape* loadCompound = new btCompoundShape();
		m_collisionShapes.push_back(loadCompound);
		btCollisionShape* loadShapeA = new btBoxShape(btVector3(2.0f,0.5f,0.5f));
		m_collisionShapes.push_back(loadShapeA);
		btTransform loadTrans;
		loadTrans.setIdentity();
		loadCompound->addChildShape(loadTrans, loadShapeA);
		btCollisionShape* loadShapeB = new btBoxShape(btVector3(0.1f,1.0f,1.0f));
		m_collisionShapes.push_back(loadShapeB);
		loadTrans.setIdentity();
		loadTrans.setOrigin(btVector3(2.1f, 0.0f, 0.0f));
		loadCompound->addChildShape(loadTrans, loadShapeB);
		btCollisionShape* loadShapeC = new btBoxShape(btVector3(0.1f,1.0f,1.0f));
		m_collisionShapes.push_back(loadShapeC);
		loadTrans.setIdentity();
		loadTrans.setOrigin(btVector3(-2.1f, 0.0f, 0.0f));
		loadCompound->addChildShape(loadTrans, loadShapeC);
		loadTrans.setIdentity();
		m_loadStartPos = btVector3(0.0f, 3.5f, 7.0f);
		loadTrans.setOrigin(m_loadStartPos);
		m_loadBody  = localCreateRigidBody(loadMass, loadTrans, loadCompound);
	}



	
	
	/// create vehicle
	{
		
		m_vehicleRayCaster = new btDefaultVehicleRaycaster(m_dynamicsWorld);
		m_vehicle = new btRaycastVehicle(m_tuning,m_carChassis,m_vehicleRayCaster);
		
		///never deactivate the vehicle
		m_carChassis->setActivationState(DISABLE_DEACTIVATION);

		m_dynamicsWorld->addVehicle(m_vehicle);

		float connectionHeight = 1.2f;

	
		bool isFrontWheel=true;

		//choose coordinate system
		m_vehicle->setCoordinateSystem(rightIndex,upIndex,forwardIndex);

		btVector3 connectionPointCS0(CUBE_HALF_EXTENTS-(0.3*wheelWidth),connectionHeight,2*CUBE_HALF_EXTENTS-wheelRadius);

		m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
		connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),connectionHeight,2*CUBE_HALF_EXTENTS-wheelRadius);

		m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
		connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),connectionHeight,-2*CUBE_HALF_EXTENTS+wheelRadius);
		isFrontWheel = false;
		m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
		connectionPointCS0 = btVector3(CUBE_HALF_EXTENTS-(0.3*wheelWidth),connectionHeight,-2*CUBE_HALF_EXTENTS+wheelRadius);
		m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
		
		for (int i=0;i<m_vehicle->getNumWheels();i++)
		{
			btWheelInfo& wheel = m_vehicle->getWheelInfo(i);
			wheel.m_suspensionStiffness = suspensionStiffness;
			wheel.m_wheelsDampingRelaxation = suspensionDamping;
			wheel.m_wheelsDampingCompression = suspensionCompression;
			wheel.m_frictionSlip = wheelFriction;
			wheel.m_rollInfluence = rollInfluence;
		}
	}

	resetForklift();
	
//	setCameraDistance(26.f);

	m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}