Exemplo n.º 1
0
/**
 * \ingroup eigen
 * Eigenvectors
 * \param m \f$m\f$
 * \return a variable matrix with the
 *         eigenvectors of \f$m\f$ stored in its columns.
 */
dmatrix eigenvectors(const dmatrix &m)
{
   if (m.rowsize() != m.colsize())
   {
      cerr <<
	 "error -- non square matrix passed to dmatrix eigenvectors(const dmatrix& m)\n";
      ad_exit(1);
   }

   int rmin = m.rowmin();
   int rmax = m.rowmax();

   dmatrix evecs(rmin, rmax, rmin, rmax);
   dvector evals(rmin, rmax);

   eigens(m, evecs, evals);

   return evecs;
}
Exemplo n.º 2
0
/** Eigenvalues.
  \param m Input matrix (unchanged on return).
  \return Vector of eigenvalues.
*/
dvector eigenvalues(const dmatrix& m)
{
  if (m.rowsize()!=m.colsize())
  {
    cerr << "error -- non square matrix passed to "
    "dvector eigen(const dmatrix& m)\n";
    ad_exit(1);
  }
  dmatrix m1=symmetrize(m);
  m1.colshift(1);     // set minimum column and row indices to 1
  m1.rowshift(1);
  int n=m1.rowsize();
  dvector diag(1,n);
  dvector off_diag(1,n);

  tri_dag(m1,diag,off_diag);

  get_eigen(diag,off_diag,m1); // eigenvalues are returned in diag
           // eigenvalues are returned in columns of z
  return diag;
}
Exemplo n.º 3
0
dvariable mult_likelihood(const dmatrix &o, const dvar_matrix &p, dvar_matrix &nu, 
                          const dvariable &log_vn)
{

	// kludge to ensure observed and predicted matrixes are the same size
	if(o.colsize()!=p.colsize() || o.rowsize()!=p.rowsize())
	{
		cerr<<"Error in multivariate_t_likelihood, observed and predicted matrixes"
		" are not the same size\n";
		ad_exit(1);
	}
	dvariable vn = mfexp(log_vn);
	dvariable ff = 0.0;
	int r1 = o.rowmin();
	int r2 = o.rowmax();
	int c1 = o.colmin();
	int c2 = o.colmax();

	for(int i = r1; i <= r2; i++ )
	{
		dvar_vector sobs = vn * o(i)/sum(o(i));  //scale observed numbers by effective sample size.
		ff -= gammln(vn);
		for(int j = c1; j <= c2; j++ )
		{
			if( value(sobs(j)) > 0.0 )
				ff += gammln(sobs(j));
		}
		ff -= sobs * log(TINY + p(i));
		dvar_vector o1=o(i)/sum(o(i));
		dvar_vector p1=p(i)/sum(p(i));
		nu(i) = elem_div(o1-p1,sqrt(elem_prod(p1,1.-p1)/vn));


	}
	// exit(1);
	return ff;
}
Exemplo n.º 4
0
/**
 * Description not yet available.
 * \param
 */
dvar_matrix operator*(const dvar_matrix& m1, const dmatrix& cm2)
 {
   if (m1.colmin() != cm2.rowmin() || m1.colmax() != cm2.rowmax())
   {
     cerr << " Incompatible array bounds in "
     "dmatrix operator*(const dvar_matrix& x, const dmatrix& m)\n";
     ad_exit(21);
   }
   dmatrix cm1=value(m1);
   //dmatrix cm2=value(m2);
   dmatrix tmp(m1.rowmin(),m1.rowmax(), cm2.colmin(), cm2.colmax());
#ifdef OPT_LIB
   const size_t rowsize = (size_t)cm2.rowsize();
#else
   const int _rowsize = cm2.rowsize();
   assert(_rowsize > 0);
   const size_t rowsize = (size_t)_rowsize;
#endif
   try
   {
     double* temp_col = new double[rowsize];
     temp_col-=cm2.rowmin();
     for (int j=cm2.colmin(); j<=cm2.colmax(); j++)
     {
       for (int k=cm2.rowmin(); k<=cm2.rowmax(); k++)
       {
         temp_col[k] = cm2.elem(k,j);
       }
       for (int i=cm1.rowmin(); i<=cm1.rowmax(); i++)
       {
         double sum=0.0;
         dvector& temp_row = cm1(i);
         for (int k=cm1.colmin(); k<=cm1.colmax(); k++)
         {
           sum+=temp_row(k) * (temp_col[k]);
           // sum+=temp_row(k) * cm2(k,j);
         }
         tmp(i,j)=sum;
       }
     }
     temp_col+=cm2.rowmin();
     delete [] temp_col;
     temp_col = 0;
   }
   catch (std::bad_alloc& e)
   {
     cerr << "Error[" << __FILE__ << ':' << __LINE__
          << "]: Unable to allocate array.\n";
     //ad_exit(21);
     throw e;
   }
   dvar_matrix vtmp=nograd_assign(tmp);
   save_identifier_string("TEST1");
   //m1.save_dvar_matrix_value();
   m1.save_dvar_matrix_position();
   cm2.save_dmatrix_value();
   cm2.save_dmatrix_position();
   vtmp.save_dvar_matrix_position();
   save_identifier_string("TEST6");
   gradient_structure::GRAD_STACK1->
            set_gradient_stack(dmcm_prod);
   return vtmp;
 }