void CBKInfEngine:: Get1_5Clusters(int nnodesPerSlice, intVector& interfNds, intVecVector& clusters, intVecVector* clusters1_5Sl) const { int nInterfNds = interfNds.size(); clusters1_5Sl->assign( clusters.begin(), clusters.end() ); clusters1_5Sl->insert( clusters1_5Sl->end(), clusters.begin(), clusters.end() ); int nClusters = clusters.size(); int i,j; for( i = 0; i < nClusters; i++ ) { int nnodesPerClust = clusters[i].size(); for( j = 0; j < nnodesPerClust; j++ ) { intVector::iterator loc = std::find( interfNds.begin(), interfNds.end(), clusters[i][j] ); (*clusters1_5Sl)[i][j] = loc - interfNds.begin(); (*clusters1_5Sl)[i + nClusters][j] += nInterfNds; } } }
void CSamplingInfEngine:: GetObsDimsWithVls(intVector &domain, int nonObsNode, const CEvidence* pEv, intVector *dims, intVector *vls) const { int nnodes = domain.size(); dims->resize(nnodes - 1); vls->resize(nnodes - 1); int* it = &domain.front(); int* itDims = &dims->front(); int* itVls = &vls->front(); int i; for( i = 0; i < nnodes; i++, it++ ) { if( *it != nonObsNode ) { *itDims = i; *itVls = pEv->GetValueBySerialNumber(*it)->GetInt();//only if all nds are tabular!! itDims++; itVls++; } } }
bool CBKInfEngine:: CheckClustersValidity( intVecVector& clusters, intVector& interfNds ) { if( clusters.empty() ) { return false; } intVector::iterator interfNdsLit = interfNds.begin(); intVector::iterator interfNdsRit = interfNds.end(); int i; for( i = 0; i < clusters.size(); i++ ) { if( clusters[i].empty() ) { return false; } else { int j; for( j = 0; j < clusters[i].size(); j++ ) { if( std::find(interfNdsLit, interfNdsRit, clusters[i][j]) == interfNdsRit ) { return false; } } } } return true; }
CMlStaticStructLearn::CMlStaticStructLearn(CStaticGraphicalModel *pGrModel, ELearningTypes LearnType, EOptimizeTypes AlgorithmType, EScoreFunTypes ScoreType, int nMaxFanIn, intVector& vAncestor, intVector& vDescent) :CStaticLearningEngine(pGrModel, LearnType), m_pResultBNet(NULL), m_pResultDAG(NULL) { int nnodes = pGrModel->GetNumberOfNodes(); m_nNodes = nnodes; int i; for (i = 0; i<nnodes; i++) m_vResultRenaming.push_back(i); m_ScoreType = ScoreType; m_Algorithm = AlgorithmType; m_nMaxFanIn = nMaxFanIn; m_ScoreMethod = MaxLh; m_priorType = Dirichlet; m_K2alfa = 0; m_vAncestor.assign(vAncestor.begin(), vAncestor.end()); m_vDescent.assign(vDescent.begin(),vDescent.end()); PNL_CHECK_RANGES(nMaxFanIn, 1, nnodes); intVector ranges(nMaxFanIn); for(i=0; i<nMaxFanIn; i++) ranges[i] = nnodes+1; float max = 0.0f; m_pNodeScoreCache = (CSparseMatrix<float>**)malloc(nnodes * sizeof(CSparseMatrix<float>*)); for(i=0; i<nnodes; i++) { m_pNodeScoreCache[i] = CSparseMatrix<float>::Create(nMaxFanIn, &ranges.front(), max, 0); } }
// enforce epicardium properties on boundary nodes (boundary between // epicardium and endocardium mesh) void AnisotropyGenerator::eliminateSpecificSurface(InputFileData* InputData, AnisotropyCondition& condition, intVector& surfElems, int surfID, std::ofstream& logFile) { using namespace std; vector<ConditionParticle>& ptcls = condition.getParticles(); vector<ConditionElement>& elems = condition.getElements(); bool notSame = false; for(int j = 1;j < surfElems.size();j++) { if(elems[surfElems[j - 1]].getSurfaceID() != elems[surfElems[j]].getSurfaceID()) { notSame = true; } } if(notSame == true) { intVector dummyVec; for(int k = 0;k < surfElems.size();k++) { if(elems[surfElems[k]].getSurfaceID() == surfID) { dummyVec.push_back(surfElems[k]); } } surfElems = dummyVec; } }
/********************************************************************************** * AUTHOR : Naveen Sundar G. * DATE : 10-AUGUST-2007 * NAME : toIntVector * DESCRIPTION : This method converts the feature instance to an intVector. * ARGUMENTS : The integer vector passed by reference * RETURNS : 0 on success. * NOTES : * CHANGE HISTROY * Author Date Description of change *************************************************************************************/ int L7ShapeFeature::toIntVector(intVector& intVec) { intVec.push_back(m_x); intVec.push_back(m_y); intVec.push_back(m_xFirstDerv); intVec.push_back(m_yFirstDerv); intVec.push_back(m_xSecondDerv); intVec.push_back(m_ySecondDerv); intVec.push_back(m_curvature); intVec.push_back(m_penUp); return SUCCESS; }
void CMNet::CreateTabularPotential( const intVector& domain, const floatVector& data ) { AllocFactor( domain.size(), &domain.front() ); pFactorVector factors; int numFactors = GetFactors( domain.size(), &domain.front(), &factors ); if( numFactors != 1 ) { PNL_THROW( CInconsistentSize, "domain must be the same as corresponding domain size got from graph" ); } factors[0]->AllocMatrix( &data.front(), matTable ); }
//------------------------------------------------------------------------------- void CSoftMaxCPD::BuildCurrentEvidenceMatrix(float ***full_evid, float ***evid,intVector family,int numEv) { int i, j; *evid = new float* [family.size()]; for (i = 0; i < family.size(); i++) { (*evid)[i] = new float [numEv]; } for (i = 0; i < numEv; i++) { for (j = 0; j < family.size(); j++) { (*evid)[j][i] = (*full_evid)[family[j]][i]; } } }
bool DatabaseCorrelation::GetCorrelatedTimeStates(int state, intVector &states) const { bool retval = false; if(state >= 0 && state < numStates) { states.clear(); int index = state; for(size_t i = 0; i < databaseNames.size(); ++i) { states.push_back(indices[index]); index += numStates; } retval = true; } return retval; }
void Dyna3DFile::GetMaterials(intVector &matnos, stringVector &matnames, doubleVector &matdens) { for(int i = 0; i < materialCards.size(); ++i) { matnos.push_back(materialCards[i].materialNumber); matnames.push_back(materialCards[i].materialName); matdens.push_back(materialCards[i].density); } }
void CGaussianCPD::AllocDistribution( const floatVector& mean, const floatVector& cov, float normCoeff, const floatVecVector& weights, const intVector& parentCombination ) { if( weights.size() ) { pnlVector<const float*> pWeights; int numWeights = weights.size(); pWeights.resize( numWeights ); for( int i = 0; i < numWeights; i++ ) { pWeights[i] = &weights[i].front(); } AllocDistribution( &mean.front(), &cov.front(), normCoeff, &pWeights.front(), &parentCombination.front() ); } else { AllocDistribution( &mean.front(), &cov.front(), normCoeff, NULL, &parentCombination.front() ); } }
// compute the distribution of correspondence statuses in this order: // connected, paused, observed, expected, blacklisted, alternate, silent void SM_ComputeDistribution( intVector &dist ) { // reset the distribution dist.clear(); for (int i=0; i<3; i++) dist.push_back( 0 ); // populate the distribution for ( corresVector::iterator iter = cq.begin(); iter != cq.end(); iter++ ) { switch ( iter->status() ) { case _CONNECTED: dist[0]++; break; case _EXPECTED: dist[1]++; break; case _BLACKLISTED: dist[2]++; break; default: assert( false ); } } }
avtSpeciesMetaData::avtSpeciesMetaData(const std::string &n, const std::string &meshn, const std::string &matn, int nummat, const intVector &ns, const std::vector<stringVector> &sn) : AttributeSubject(avtSpeciesMetaData::TypeMapFormatString) { // Initialize all. *this = avtSpeciesMetaData(); // Override members name = n; originalName = name; meshName = meshn; materialName = matn; numMaterials = nummat; ClearSpecies(); for (size_t i=0; i<ns.size(); i++) AddSpecies(avtMatSpeciesMetaData(ns[i], sn[i])); validVariable = true; }
float CMlStaticStructLearn::ScoreFamily(intVector vFamily) { int nParents = vFamily.size() - 1; PNL_CHECK_RANGES(nParents, 0, m_nMaxFanIn); intVector indexes(m_nMaxFanIn,0); int i; for(i=0; i<nParents; i++) { indexes[i] = vFamily[i]+1; } int node = vFamily[nParents]; float score; float defval = m_pNodeScoreCache[node]->GetDefaultValue(); score = m_pNodeScoreCache[node]->GetElementByIndexes(&indexes.front()); if(score == defval) { score = ComputeFamilyScore(vFamily); m_pNodeScoreCache[node]->SetElementByIndexes(score, &indexes.front()); } return score; }
void CGibbsSamplingInfEngine:: MarginalNodes( const intVector& queryNdsIn, int notExpandJPD ) { MarginalNodes( &queryNdsIn.front(), queryNdsIn.size(), notExpandJPD ); }
void CExInfEngine< INF_ENGINE, MODEL, FLAV, FALLBACK_ENGINE1, FALLBACK_ENGINE2 >::MarginalNodes( intVector const &queryNds, int notExpandJPD ) { MarginalNodes(&queryNds.front(), queryNds.size(), notExpandJPD ); }
CFactor::CFactor( EDistributionType dt, EFactorType pt, const int *domain, int nNodes, CModelDomain* pMD, const intVector& obsIndices ) : m_Domain( domain, domain + nNodes ) { /*fill enum fields:*/ m_DistributionType = dt; m_FactorType = pt; m_pMD = pMD; m_factNumInHeap = m_pMD->AttachFactor(this); int i; pConstNodeTypeVector nt; intVector dom = intVector( domain, domain+nNodes ); pMD->GetVariableTypes( dom, &nt ); m_obsPositions.assign( obsIndices.begin(), obsIndices.end() ); int numObsNodesHere = obsIndices.size(); switch (dt) { case dtScalar: { if( pt == ftCPD ) { PNL_THROW( CInvalidOperation, "scalar is only potential - to multiply" ); } //if there are observed nodes - get corresponding node types if( numObsNodesHere ) { if ( numObsNodesHere != nNodes ) { PNL_THROW( CInconsistentType, "all nodes in scalar distribution must be observed" ) } //need to find observed nodes in domain and check including their changed types for( i = 0; i < numObsNodesHere; i++ ) { nt[obsIndices[i]] = nt[obsIndices[i]]->IsDiscrete() ? pMD->GetObsTabVarType(): pMD->GetObsGauVarType(); } } m_CorrespDistribFun = CScalarDistribFun::Create(nNodes, &nt.front()); break; } case dtTree: { if( pt != ftCPD ) { PNL_THROW( CInvalidOperation, "Tree is only CPD" ); } m_CorrespDistribFun = CTreeDistribFun::Create(nNodes, &nt.front()); break; } case dtTabular: { if(( pt == ftPotential )&&( numObsNodesHere )) { //need to find observed nodes in domain and check including their changed types for( i = 0; i < numObsNodesHere; i++ ) { //change node type for this node nt[obsIndices[i]] = nt[obsIndices[i]]->IsDiscrete() ? pMD->GetObsTabVarType(): pMD->GetObsGauVarType(); } } //check all node types corresponds Tabular distribution for( i = 0; i < nNodes; i++ ) { if((!(( nt[i]->IsDiscrete() )|| ( !nt[i]->IsDiscrete()&&(nt[i]->GetNodeSize() == 0))))) { PNL_THROW( CInconsistentType, "node types must corresponds Tabular type" ); } } m_CorrespDistribFun = CTabularDistribFun::Create( nNodes, &nt.front(), NULL ); break; } case dtGaussian: { switch (pt) { case ftPotential: { //need to find observed nodes in domain and check including their changed types for( i = 0; i < numObsNodesHere; i++ ) { //change node type for this node nt[obsIndices[i]] = nt[obsIndices[i]]->IsDiscrete() ? pMD->GetObsTabVarType():pMD->GetObsGauVarType(); } for( i = 0; i < nNodes; i++ ) { if( nt[i]->IsDiscrete() && (nt[i]->GetNodeSize() != 1)) { PNL_THROW( CInvalidOperation, "Gaussian potential must be of Gaussian nodes only" ) } } m_CorrespDistribFun = CGaussianDistribFun::CreateInMomentForm( 1, nNodes, &nt.front(), NULL, NULL, NULL ); break; } case ftCPD: { //can check if there are both Continuous & Discrete nodes int noDiscrete = 1; for( int i = 0; i < nNodes; i++ ) { if( nt[i]->IsDiscrete() ) { noDiscrete = 0; break; } } if( noDiscrete ) { m_CorrespDistribFun = CGaussianDistribFun::CreateInMomentForm( 0, nNodes, &nt.front(), NULL, NULL, NULL ); break; } else { m_CorrespDistribFun = CCondGaussianDistribFun::Create( 0, nNodes, &nt.front() ); break; } } default: { PNL_THROW( CBadConst, "no competent type as EFactorType" ); break; } } break; } case dtMixGaussian: { switch(pt) { case ftCPD: { //check if where is discrete node - mixture node int noDiscrete = 1; for( int i = 0; i < nNodes; i++ ) { if( nt[i]->IsDiscrete() ) { noDiscrete = 0; break; } } if( !noDiscrete ) { m_CorrespDistribFun = CCondGaussianDistribFun::Create( 0, nNodes, &nt.front() ); } else { PNL_THROW( CInconsistentType, "mixture Gaussian CPD must have mixture node - discrete" ); } break; } default: { PNL_THROW( CNotImplemented, "mixture gaussian potential" ); } } break; } case dtSoftMax: { switch (pt) { case ftPotential: { PNL_THROW( CNotImplemented, "only CPD yet" ); break; } case ftCPD: { //can check if there are both Continuous & Discrete nodes int noDiscrete = 1; for( int i = 0; i < nNodes-1; i++ ) { if( nt[i]->IsDiscrete() ) { noDiscrete = 0; break; } } if( noDiscrete ) { m_CorrespDistribFun = CSoftMaxDistribFun::Create( nNodes, &nt.front(), NULL, NULL ); break; } else { m_CorrespDistribFun = CCondSoftMaxDistribFun::Create( nNodes, &nt.front() ); break; } /* //can check if there are both Continuous & Discrete nodes m_CorrespDistribFun = CSoftMaxDistribFun::CreateUnitFunctionDistribution( nNodes, &nt.front() ); break; */ } default: { PNL_THROW( CBadConst, "no competent type as EFactorType" ); break; } } break; } default: { PNL_THROW ( CBadConst, "we have no such factor type at EDistributionType"); } } }
void CGaussianCPD::SetCoefficientVec( float coeff, const intVector& parentCombination ) { SetCoefficient( coeff, &parentCombination.front() ); }
void CGraphicalModel::AllocFactor( const intVector& domainIn) { AllocFactor( domainIn.size(), &domainIn.front() ); };
float CMlStaticStructLearn::ComputeFamilyScore(intVector vFamily) { int nFamily = vFamily.size(); CCPD* iCPD = this->CreateRandomCPD(nFamily, &vFamily.front(), m_pGrModel); CTabularDistribFun *pDistribFun; int ncases = m_Vector_pEvidences.size(); const CEvidence * pEv; float score; float pred = 0; EDistributionType NodeType; switch (m_ScoreMethod) { case MaxLh : if ( !((iCPD->GetDistribFun()->GetDistributionType() == dtSoftMax) || (iCPD->GetDistribFun()->GetDistributionType() == dtCondSoftMax))) { iCPD->UpdateStatisticsML( &m_Vector_pEvidences.front(), ncases ); score = iCPD->ProcessingStatisticalData(ncases); } else { float **evid = NULL; float **full_evid = NULL; BuildFullEvidenceMatrix(&full_evid); CSoftMaxCPD* SoftMaxFactor = static_cast<CSoftMaxCPD*>(iCPD); SoftMaxFactor->BuildCurrentEvidenceMatrix(&full_evid, &evid, vFamily,m_Vector_pEvidences.size()); SoftMaxFactor->InitLearnData(); SoftMaxFactor->SetMaximizingMethod(mmGradient); SoftMaxFactor->MaximumLikelihood(evid, m_Vector_pEvidences.size(), 0.00001f, 0.01f); SoftMaxFactor->CopyLearnDataToDistrib(); if (SoftMaxFactor->GetDistribFun()->GetDistributionType() == dtSoftMax) { score = ((CSoftMaxDistribFun*)SoftMaxFactor->GetDistribFun())->CalculateLikelihood(evid,ncases); } else { score = ((CCondSoftMaxDistribFun*)SoftMaxFactor->GetDistribFun())->CalculateLikelihood(evid,ncases); }; for (int k = 0; k < SoftMaxFactor->GetDomainSize(); k++) { delete [] evid[k]; } delete [] evid; int i; intVector obsNodes; (m_Vector_pEvidences[0])->GetAllObsNodes(&obsNodes); for (i=0; i<obsNodes.size(); i++) { delete [] full_evid[i]; } delete [] full_evid; }; break; case PreAs : int i; NodeType = iCPD->GetDistributionType(); switch (NodeType) { case dtTabular : for(i = 0; i < ncases; i++) { pConstEvidenceVector tempEv(0); tempEv.push_back(m_Vector_pEvidences[i]); iCPD->UpdateStatisticsML(&tempEv.front(), tempEv.size()); iCPD->ProcessingStatisticalData(tempEv.size()); pred += log(((CTabularCPD*)iCPD)->GetMatrixValue(m_Vector_pEvidences[i])); } break; case dtGaussian : for(i = 0; i < ncases; i += 1 ) { pConstEvidenceVector tempEv(0); tempEv.push_back(m_Vector_pEvidences[i]); iCPD->UpdateStatisticsML(&tempEv.front(), tempEv.size()); float tmp = 0; if (i != 0) { tmp =iCPD->ProcessingStatisticalData(1); pred +=tmp; } } break; case dtSoftMax: PNL_THROW(CNotImplemented, "This type score method has not been implemented yet"); break; default: PNL_THROW(CNotImplemented, "This type score method has not been implemented yet"); break; }; score = pred; break; case MarLh : { //проверка того, что потенциал дискретный if (iCPD->GetDistributionType() != dtTabular) { PNL_THROW(CNotImplemented, "This type of score method has been implemented only for discrete nets"); } int DomainSize; const int * domain; switch(m_priorType) { case Dirichlet: iCPD->GetDomain(&DomainSize, &domain); pDistribFun = static_cast<CTabularDistribFun *>(iCPD->GetDistribFun()); pDistribFun->InitPseudoCounts(); for (i=0; i<ncases; i++) { pEv = m_Vector_pEvidences[i]; const CEvidence *pEvidences[] = { pEv }; pDistribFun->BayesUpdateFactor(pEvidences, 1, domain); } score = pDistribFun->CalculateBayesianScore(); break; case K2: iCPD->GetDomain(&DomainSize, &domain); pDistribFun = static_cast<CTabularDistribFun *>(iCPD->GetDistribFun()); pDistribFun->InitPseudoCounts(m_K2alfa); for (i=0; i<ncases; i++) { pEv = m_Vector_pEvidences[i]; const CEvidence *pEvidences[] = { pEv }; pDistribFun->BayesUpdateFactor(pEvidences, 1, domain); } score = pDistribFun->CalculateBayesianScore(); break; case BDeu: iCPD->GetDomain(&DomainSize, &domain); pDistribFun = static_cast<CTabularDistribFun *>(iCPD->GetDistribFun()); pDistribFun->InitPseudoCounts(); for (i=0; i<ncases; i++) { pEv = m_Vector_pEvidences[i]; const CEvidence *pEvidences[] = { pEv }; pDistribFun->BayesUpdateFactor(pEvidences, 1, domain); } score = pDistribFun->CalculateBayesianScore() / iCPD->GetNumberOfFreeParameters(); break; default: PNL_THROW(CNotImplemented, "This type of prior has not been implemented yet"); break; } break; } default : PNL_THROW(CNotImplemented, "This type score method has not been implemented yet"); break; } int dim = iCPD->GetNumberOfFreeParameters(); switch (m_ScoreType) { case BIC : score -= 0.5f * float(dim) * float(log(float(ncases))); break; case AIC : score -= 0.5f * float(dim); break; case WithoutFine: break; case VAR : PNL_THROW(CNotImplemented, "This type score function has not been implemented yet"); break; default: PNL_THROW(CNotImplemented, "This type score function has not been implemented yet"); break; } delete iCPD; return score; }
void DatabaseCorrelation::AddDatabase(const std::string &database, int nStates, const doubleVector ×, const intVector &cycles) { // If the database is already in the correlation, maybe we should // remove it and then add it again in case the length changed like // when we add time states to a file. if(UsesDatabase(database)) return; // // Add the times and cycles for the new database to the correlation so // we can access them later and perhaps use them to correlate. // for(int i = 0; i < nStates; ++i) { double t = ((i < times.size()) ? times[i] : 0.); databaseTimes.push_back(t); int c = ((i < cycles.size()) ? cycles[i] : 0); databaseCycles.push_back(c); } if(method == IndexForIndexCorrelation) { if(numStates >= nStates) { // // The number of states in the correlation is larger than // the number of states in the database so we can append // the database's states to the end of the indices and // repeat the last frames. // for(int i = 0; i < numStates; ++i) { int state = (i < nStates) ? i : (nStates - 1); indices.push_back(state); } } else { // // The number of states for the current database is larger // than the number of states in the correlation. The correlation // must be lengthened. // indices.clear(); for(size_t i = 0; i < databaseNames.size(); ++i) { for(int j = 0; j < nStates; ++j) { int state = (j < databaseNStates[i]) ? j : (databaseNStates[i]-1); indices.push_back(state); } } // Add the new database to the correlation. for(int i = 0; i < nStates; ++i) indices.push_back(i); numStates = nStates; } databaseNames.push_back(database); databaseNStates.push_back(nStates); } else if(method == StretchedIndexCorrelation) { databaseNames.push_back(database); databaseNStates.push_back(nStates); indices.clear(); int maxStates = (numStates > nStates) ? numStates : nStates; for(size_t i = 0; i < databaseNames.size(); ++i) { for(int j = 0; j < maxStates; ++j) { float t = float(j) / float(maxStates - 1); int state = int(t * (databaseNStates[i] - 1) + 0.5); indices.push_back(state); } } numStates = maxStates; } else if(method == UserDefinedCorrelation) { if(numStates > nStates) { // // The database being added has fewer states so we need to // repeat the last states. // // We'll have to pass in the user-defined indices and append them to the indices vector } else { } } else if(method == TimeCorrelation) { databaseNames.push_back(database); databaseNStates.push_back(nStates); // Align time for all databases on the same time axis so we can count the // number of times and make that be the new number of states. std::map<double, intVector> timeAlignmentMap; int index = 0; for(size_t i = 0; i < databaseNames.size(); ++i) for(int j = 0; j < databaseNStates[i]; ++j, ++index) timeAlignmentMap[databaseTimes[index]].push_back(i); // // Set the condensed times vector // condensedTimes.clear(); for(std::map<double,intVector>::const_iterator p = timeAlignmentMap.begin(); p != timeAlignmentMap.end(); ++p) { condensedTimes.push_back(p->first); } // Now there is a map that has for each time in all of the databases // a list of the databases that contain that time. indices.clear(); for(size_t i = 0; i < databaseNames.size(); ++i) { int state = 0; std::map<double, intVector>::const_iterator pos = timeAlignmentMap.begin(); for(; pos != timeAlignmentMap.end(); ++pos) { // Look to see if the current database is in the list of databases // for the current time. If so, we need to increment the state after // we use it. intVector::const_iterator dbIndex = std::find(pos->second.begin(), pos->second.end(), i); indices.push_back(state); if(dbIndex != pos->second.end() && state < databaseNStates[i] - 1) ++state; } } numStates = timeAlignmentMap.size(); } else if(method == CycleCorrelation) { databaseNames.push_back(database); databaseNStates.push_back(nStates); // Align cycle for all databases on the same time axis so we can count the // number of cycles and make that be the new number of states. std::map<int, intVector> cycleAlignmentMap; int index = 0; for(size_t i = 0; i < databaseNames.size(); ++i) for(int j = 0; j < databaseNStates[i]; ++j, ++index) cycleAlignmentMap[databaseCycles[index]].push_back(i); // // Set the condensed cycles vector // condensedCycles.clear(); for(std::map<int,intVector>::const_iterator p = cycleAlignmentMap.begin(); p != cycleAlignmentMap.end(); ++p) { condensedCycles.push_back(p->first); } // Now there is a map that has for each time in all of the databases // a list of the databases that contain that time. indices.clear(); for(size_t i = 0; i < databaseNames.size(); ++i) { int state = 0; std::map<int, intVector>::const_iterator pos = cycleAlignmentMap.begin(); for(; pos != cycleAlignmentMap.end(); ++pos) { // Look to see if the current database is in the list of databases // for the current time. If so, we need to increment the state after // we use it. intVector::const_iterator dbIndex = std::find(pos->second.begin(), pos->second.end(), i); indices.push_back(state); if(dbIndex != pos->second.end() && state < databaseNStates[i] - 1) ++state; } } numStates = cycleAlignmentMap.size(); } }
void CNodeValues::ToggleNodeStateBySerialNumber( const intVector& numsOfNds ) { int numNds = numsOfNds.size(); const int* pNumsOfNds = &numsOfNds.front(); ToggleNodeStateBySerialNumber( numNds, pNumsOfNds ); }
void CSoftMaxCPD::AllocDistribution(const floatVector& weights, const floatVector& offsets, const intVector& parentCombination) { AllocDistribution(&weights.front(), &offsets.front(), &parentCombination.front()); }
int CGraphicalModel::GetFactors( const intVector& subdomainIn, pFactorVector *paramsOut ) const { return GetFactors( subdomainIn.size(), &subdomainIn.front(), paramsOut ); };
//! Calculate the Weight function dbVector Interpolation::weightCalc(dbVector& iPoint, intVector& neighbours, dbMatrix& coords, dbVector& radiusVec, InputFileData* InputData, ofstream& logFile) { dbVector weightVec(neighbours.size(), 1); int choice = InputData->getValue("MLSWeightFunc"); switch (choice) { // ************************************************************************* // Cubic spline case 0: for (int i = 0; i < neighbours.size(); i++) { weightVec[i] = cubicSplineWgtCalc(iPoint, coords[neighbours[i]], radiusVec, logFile); } break; // ************************************************************************* // Gaussian case 1: for (int i = 0; i < neighbours.size(); i++) { weightVec[i] = gaussianWgtCalc(iPoint, coords[neighbours[i]], radiusVec, logFile); } break; // ************************************************************************* // Regularised case 2: { double weightSum = 0; for (int i = 0; i < neighbours.size(); i++) { weightVec[i] = regularizedWgtCalc(iPoint, coords[neighbours[i]], radiusVec, logFile); weightSum += weightVec[i]; } for (int i = 0; i < neighbours.size(); i++) { weightVec[i] = weightVec[i] / weightSum; } break; } // ************************************************************************* // Regularised modified case 3: { int ndim = iPoint.size(); double weight = 0; for (int d = 0; d < ndim; d++) { dbVector weightDimVec(weightVec.size(), 0); double weightSum = 0; for (int i = 0; i < neighbours.size(); i++) { weightDimVec[i] = regularizedWgtCalc_mod(iPoint, coords[neighbours[i]], radiusVec, d, logFile); weightSum += weightDimVec[i]; } for (int i = 0; i < neighbours.size(); i++) { weightVec[i] *= weightDimVec[i] / weightSum; } } break; } default: logFile << "ERROR: In Interpolation::weightCalc, MLSWeightFunc = " << choice << "doesn't exist" << endl; cout << "ERROR: In Interpolation::weightCalc, MLSWeightFunc = " << choice << "doesn't exist" << endl; MPI_Abort(MPI_COMM_WORLD, 1); } return weightVec; }
avtDataObject_p IceTNetworkManager::Render( bool checkThreshold, intVector networkIds, bool getZBuffer, int annotMode, int windowID, bool leftEye) { int t0 = visitTimer->StartTimer(); DataNetwork *origWorkingNet = workingNet; avtDataObject_p retval; EngineVisWinInfo &viswinInfo = viswinMap[windowID]; viswinInfo.markedForDeletion = false; VisWindow *viswin = viswinInfo.viswin; std::vector<avtPlot_p>& imageBasedPlots = viswinInfo.imageBasedPlots; renderings = 0; TRY { this->StartTimer(); RenderSetup(windowID, networkIds, getZBuffer, annotMode, leftEye, checkThreshold); bool plotDoingTransparencyOutsideTransparencyActor = false; for(size_t i = 0 ; i < networkIds.size() ; i++) { workingNet = NULL; UseNetwork(networkIds[i]); if(this->workingNet->GetPlot()->ManagesOwnTransparency()) { plotDoingTransparencyOutsideTransparencyActor = true; } } workingNet = NULL; // We can't easily figure out a compositing order, which IceT requires // in order to properly composite transparent geometry. Thus if there // is some transparency, fallback to our parent implementation. avtTransparencyActor* trans = viswin->GetTransparencyActor(); bool transparenciesExist = trans->TransparenciesExist() || plotDoingTransparencyOutsideTransparencyActor; if (transparenciesExist) { debug2 << "Encountered transparency: falling back to old " "SR / compositing routines." << std::endl; retval = NetworkManager::RenderInternal(); } else { bool needZB = !imageBasedPlots.empty() || renderState.shadowMap || renderState.depthCues; // Confusingly, we need to set the input to be *opposite* of what VisIt // wants. This is due to (IMHO) poor naming in the IceT case; on the // input side: // ICET_DEPTH_BUFFER_BIT set: do Z-testing // ICET_DEPTH_BUFFER_BIT not set: do Z-based compositing. // On the output side: // ICET_DEPTH_BUFFER_BIT set: readback of Z buffer is allowed // ICET_DEPTH_BUFFER_BIT not set: readback of Z does not work. // In VisIt's case, we calculated a `need Z buffer' predicate based // around the idea that we need the Z buffer to do Z-compositing. // However, IceT \emph{always} needs the Z buffer internally -- the // flag only differentiates between `compositing' methodologies // (painter-style or `over' operator) on input. GLenum inputs = ICET_COLOR_BUFFER_BIT; GLenum outputs = ICET_COLOR_BUFFER_BIT; // Scratch all that, I guess. That might be the correct way to go // about things in the long run, but IceT only gives us back half an // image if we don't set the depth buffer bit. The compositing is a // bit wrong, but there's not much else we can do.. // Consider removing the `hack' if a workaround is found. if (/*hack*/true/*hack*/) // || !this->MemoMultipass(viswin)) { inputs |= ICET_DEPTH_BUFFER_BIT; } if(needZB) { outputs |= ICET_DEPTH_BUFFER_BIT; } ICET(icetInputOutputBuffers(inputs, outputs)); // If there is a backdrop image, we need to tell IceT so that it can // composite correctly. if(viswin->GetBackgroundMode() != AnnotationAttributes::Solid) { ICET(icetEnable(ICET_CORRECT_COLORED_BACKGROUND)); } else { ICET(icetDisable(ICET_CORRECT_COLORED_BACKGROUND)); } if (renderState.renderOnViewer) { RenderCleanup(); avtDataObject_p dobj = NULL; CATCH_RETURN2(1, dobj); } debug5 << "Rendering " << viswin->GetNumPrimitives() << " primitives." << endl; int width, height, width_start, height_start; // This basically gets the width and the height. // The distinction is for 2D rendering, where we only want the // width and the height of the viewport. viswin->GetCaptureRegion(width_start, height_start, width, height, renderState.viewportedMode); this->TileLayout(width, height); CallInitializeProgressCallback(this->RenderingStages()); // IceT mode is different from the standard network manager; we don't // need to create any compositor or anything: it's all done under the // hood. // Whether or not to do multipass rendering (opaque first, translucent // second) is all handled in the callback; from our perspective, we // just say draw, read back the image, and post-process it. // IceT sometimes omits large parts of Curve plots when using the // REDUCE strategy. Use a different compositing strategy for Curve // plots to avoid the problem. if(viswin->GetWindowMode() == WINMODE_CURVE) ICET(icetStrategy(ICET_STRATEGY_VTREE)); else ICET(icetStrategy(ICET_STRATEGY_REDUCE)); ICET(icetDrawFunc(render)); ICET(icetDrawFrame()); // Now that we're done rendering, we need to post process the image. debug3 << "IceTNM: Starting readback." << std::endl; avtImage_p img = this->Readback(viswin, needZB); // Now its essentially back to the same behavior as our parent: // shadows // depth cueing // post processing if (renderState.shadowMap) this->RenderShadows(img); if (renderState.depthCues) this->RenderDepthCues(img); // If the engine is doing more than just 3D annotations, // post-process the composited image. RenderPostProcess(img); CopyTo(retval, img); } RenderCleanup(); } CATCHALL { RenderCleanup(); RETHROW; } ENDTRY workingNet = origWorkingNet; visitTimer->StopTimer(t0, "Ice-T Render"); return retval; }
float CGaussianCPD::GetCoefficientVec( const intVector& parentCombination ) { return GetCoefficient( &parentCombination.front() ); }
void avtFVCOMParticleFileFormat::GetCycles(intVector &cyc) { const char *mName = "avtFVCOMParticleFileObject::GetCycles: "; debug4 << mName << endl; int ncid; ncid=fileObject->GetFileHandle(); size_t ntimesteps; int time_id; int status = nc_inq_dimid(ncid, "time", &time_id); if (status != NC_NOERR) fileObject-> HandleError(status); status = nc_inq_dimlen(ncid, time_id, &ntimesteps); if (status != NC_NOERR) fileObject-> HandleError(status); char varname[NC_MAX_NAME+1]; nc_type vartype; int varndims; int vardims[NC_MAX_VAR_DIMS]; int varnatts; int cycle_id; status = nc_inq_varid (ncid, "cycle", &cycle_id); if (status != NC_NOERR) { fileObject-> HandleError(status); debug4 << "Could not find variable: cycle" << endl; return; } // Now get variable type! status = nc_inq_var(ncid, cycle_id, varname, &vartype, &varndims, vardims, &varnatts); if (status != NC_NOERR) fileObject-> HandleError(status); if (varndims != 1 ) { debug4 << mName << "Cycles has the wrong dimensions" << endl; } else if (varndims == 1) { if(vartype == NC_INT) { debug4 << "IINT returned to cyc as NC_INT" << endl; int *ci = new int[ntimesteps+1]; fileObject->ReadVariableInto("iint", INTEGERARRAY_TYPE, ci); for(int n=0; n<ntimesteps; ++n) { cyc.push_back(ci[n]); } delete [] ci; } else if(vartype == NC_FLOAT ) { debug4 << "iint is float: Returned to cyc as INT" << endl; float *cf = new float[ntimesteps+1]; fileObject->ReadVariableInto("cycle", FLOATARRAY_TYPE, cf); for(int n=0; n<ntimesteps; ++n) { cyc.push_back(int(cf[n])); } delete [] cf; } } else { debug4 << "Could not return cycles: Wrong variable type" << endl; } }
//! Coordinate generator //! Points are defined along the columns of coords and their dimensional //! coordinates along the rows void Interpolation::MLSUnitTest_meshMultiDim(double& length, double& nodal_dist, int& ndim, dbMatrix& coords, int& numCoords, intVector SBM_dim, dbVector SBM_coeff, ofstream& logFile) { // Define the coordinate list in a specific dimension dbVector coordList; for (int i = 0; (i) * nodal_dist <= length; i++) coordList.push_back(i * nodal_dist); printVector(coordList, "coordList", logFile); dbMatrix x; x.push_back(coordList); if (ndim > 1) { for (int i = 1; i < ndim; i++) { int dimLookup = i + 1; int position = findIntVecPos(dimLookup, 0, SBM_dim.size(), SBM_dim); logFile << "Position: " << position << endl; dbMatrix xBlock = x; int xBlockSize = xBlock[0].size(); x.clear(); x.resize(i + 1); for (int j = 0; j < coordList.size(); j++) { // Select a particular coordinate double coordSelect = coordList[j]; // Find if dimension needs to be factored dbMatrix x_add = xBlock; if (position != -1) { logFile << "Dim factored" << endl; x_add.push_back( dbVector(xBlockSize, SBM_coeff[position] * coordSelect)); //dbMatrix x_add = [SBM_coeff*coordSelect*ones(1,xBlockSize);xBlock]; } else { // Repeat the previous block for each selected coordinate //x_add = [coordSelect*ones(1,xBlockSize);xBlock]; x_add.push_back(dbVector(xBlockSize, coordSelect)); } printMatrix(x_add, "x_add", logFile); //x = [x x_add]; for (int k = 0; k < x_add.size(); k++) { for (int l = 0; l < x_add[k].size(); l++) { x[k].push_back(x_add[k][l]); } } printMatrix(x, "x", logFile); } } } // Transposing the coordinate matrix coords.resize(x[0].size()); for (int i = 0; i < coords.size(); i++) { coords[i].resize(ndim); for (int j = 0; j < ndim; j++) coords[i][j] = x[j][i]; } numCoords = coords.size(); }