Exemplo n.º 1
0
//Calculate the slope information of flowDir to slope
void calcSlope(linearpart<short>& flowDir, linearpart<float>& elevDEM, linearpart<float>& slope)
{
    int nx = elevDEM.getnx();
    int ny = elevDEM.getny();

    for (int j=0; j < ny; j++) {
        for (int i=0; i < nx; i++) {
            // If i,j is on the border or flowDir has no data, set slope(i,j) to slopeNoData
            if (flowDir.isNodata(i,j) || !flowDir.hasAccess(i-1,j) || !flowDir.hasAccess(i+1,j) ||
                    !flowDir.hasAccess(i,j-1) || !flowDir.hasAccess(i,j+1)) {
                slope.setToNodata(i, j);
            } else {
                short flowDirection = flowDir.getData(i,j);
  
                int in = i + d1[flowDirection];
                int jn = j + d2[flowDirection];

                float elevDiff = elevDEM.getData(i,j) - elevDEM.getData(in,jn);
                slope.setData(i,j, elevDiff*fact[j][flowDirection]);
            }
        }
    }
}
long resolveFlats(T& elevDEM, SparsePartition<short>& inc, linearpart<float>& flowDir, std::vector<std::vector<node>>&islands, linearpart<float>& orelevDir) 
{
    long nx = flowDir.getnx();
    long ny = flowDir.getny();

    int rank;
    MPI_Comm_rank(MCW, &rank);
    
    if (rank==0) {
        fprintf(stderr,"Resolving flats\n");
        fflush(stderr);
    }

    flowTowardsLower(elevDEM, flowDir, islands, inc);

    // Drain flats away from higher adjacent terrain
    SparsePartition<short> s(nx, ny, 0);
    
    flowFromHigher(elevDEM, flowDir, islands, s);

    // High flow must be inverted before it is combined
    //
    // higherFlowMax has to be greater than all of the increments
    // higherFlowMax can be maximum value of the data type but it will cause overflow problems if more than one iteration is needed
    short higherFlowMax = 0;

    for (auto& island : islands) {
        for (node flat : island) {    
            short val = s.getData(flat.x, flat.y);

            if (val > higherFlowMax)
                higherFlowMax = val;
        }
    }

    for (auto& island : islands) {
        for (auto flat : island) {
            inc.addToData(flat.x, flat.y, higherFlowMax - s.getData(flat.x, flat.y));
        }
    }

    if (rank==0) {
        fprintf(stderr,"Setting directions\n");
        fflush(stderr);
    }

    long flatsRemaining = 0;
    double tempdxc, tempdyc;
    for (auto& island : islands) {
        for (node flat : island) {
            //setFlow2(flat.x, flat.y, flowDir, elevDEM, inc);
            orelevDir.getdxdyc(flat.y, tempdxc, tempdyc);
            float DXX[3] = {0, tempdxc, tempdyc}; //tardemlib.cpp ln 1291
            float DD = sqrt(tempdxc * tempdxc + tempdyc * tempdyc); //tardemlib.cpp ln 1293

            SET2(flat.y, flat.x, DXX, DD, elevDEM, inc, flowDir);

            if (flowDir.getData(flat.x, flat.y) == -1) {
                flatsRemaining++;
            }
        }
    }

    auto hasFlowDirection = [&](const node& n) { return flowDir.getData(n.x, n.y) != -1; };
    auto isEmpty = [&](const std::vector<node>& i) { return i.empty(); };
    
    // Remove flats which have flow direction set
    for (auto& island : islands) {
        island.erase(std::remove_if(island.begin(), island.end(), hasFlowDirection), island.end());
    }

    // Remove empty islands
    islands.erase(std::remove_if(islands.begin(), islands.end(), isEmpty), islands.end());

    return flatsRemaining;
}
long resolveFlats_parallel(T& elev, SparsePartition<short>& inc, linearpart<float>& flowDir, std::vector<std::vector<node>>&islands, linearpart<float>& orelevDir) 
{
    long nx = flowDir.getnx();
    long ny = flowDir.getny();

    int rank;
    MPI_Comm_rank(MCW, &rank);

    int numFlatsChanged = 0, totalNumFlatsChanged = 0;

    flowTowardsLower(elev, flowDir, islands, inc);

    do {
        inc.share();
        numFlatsChanged = propagateBorderIncrements(flowDir, inc);

        MPI_Allreduce(&numFlatsChanged, &totalNumFlatsChanged, 1, MPI_INT, MPI_SUM, MCW);

        if (rank == 0) {
            printf("PRL: Lower gradient processed %d flats this iteration\n", totalNumFlatsChanged);
        }
    } while(totalNumFlatsChanged > 0);

    // Not all grid cells were resolved - pits remain
    // Remaining grid cells are unresolvable pits
    markPits(elev, flowDir, islands, inc);

    // Drain flats away from higher adjacent terrain
    SparsePartition<short> higherGradient(nx, ny, 0);
   
    flowFromHigher(elev, flowDir, islands, higherGradient);

    do {
        higherGradient.share();
        numFlatsChanged = propagateBorderIncrements(flowDir, higherGradient);

        MPI_Allreduce(&numFlatsChanged, &totalNumFlatsChanged, 1, MPI_INT, MPI_SUM, MCW);

        if (rank == 0) {
            printf("PRL: Higher gradient processed %d flats this iteration\n", totalNumFlatsChanged);
        }
    } while(totalNumFlatsChanged > 0);

    // High flow must be inverted before it is combined
    //
    // higherFlowMax has to be greater than all of the increments
    // higherFlowMax can be maximum value of the data type (e.g. 65535) but it will cause overflow problems if more than one iteration is needed
    short higherFlowMax = 0;

    for (auto& island : islands) {
        for (auto& flat : island) {
            short val = higherGradient.getData(flat.x, flat.y);
        
            if (val > higherFlowMax)
                higherFlowMax = val;
        }
    }

    // FIXME: Is this needed? would it affect directions at the border?
    short globalHigherFlowmax = 0;
    MPI_Allreduce(&higherFlowMax, &globalHigherFlowmax, 1, MPI_SHORT, MPI_MAX, MCW);

    for (auto& island : islands) {
        for (auto flat : island) {
            inc.addToData(flat.x, flat.y, globalHigherFlowmax - higherGradient.getData(flat.x, flat.y));
        }
    }

    inc.share();

    if (rank==0) {
        fprintf(stderr,"\nPRL: Setting directions\n");
        fflush(stderr);
    }

    uint64_t localFlatsRemaining = 0, globalFlatsRemaining = 0;
    double tempdxc, tempdyc;
    
    for (auto& island : islands) {
        for (node flat : island) {
            //setFlow2(flat.x, flat.y, flowDir, elev, inc);
            orelevDir.getdxdyc(flat.y, tempdxc, tempdyc);
            float DXX[3] = {0, tempdxc, tempdyc}; //tardemlib.cpp ln 1291
            float DD = sqrt(tempdxc * tempdxc + tempdyc * tempdyc); //tardemlib.cpp ln 1293

            SET2(flat.y, flat.x, DXX, DD, elev, inc, flowDir);
            
            if (flowDir.getData(flat.x, flat.y) == -1) {
                localFlatsRemaining++;
            }
        }
    }

    flowDir.share();
    MPI_Allreduce(&localFlatsRemaining, &globalFlatsRemaining, 1, MPI_UINT64_T, MPI_SUM, MCW);

    auto hasFlowDirection = [&](const node& n) { return flowDir.getData(n.x, n.y) != -1; };
    auto isEmpty = [&](const std::vector<node>& i) { return i.empty(); };
    
    // Remove flats which have flow direction set
    for (auto& island : islands) {
        island.erase(std::remove_if(island.begin(), island.end(), hasFlowDirection), island.end());
    }

    // Remove empty islands
    islands.erase(std::remove_if(islands.begin(), islands.end(), isEmpty), islands.end());

    return globalFlatsRemaining;
}
size_t propagateBorderIncrements(linearpart<float>& flowDir, SparsePartition<short>& inc) 
{
    int nx = flowDir.getnx();
    int ny = flowDir.getny();

    struct pnode {
        int x;
        int y;
        int inc;

        bool operator<(const struct pnode& b) const {
            return inc < b.inc;
        }
    };
    
    std::vector<pnode> queue;

    // Find the starting nodes at the edge of the raster
    //
    // FIXME: oob access
    for (auto y : {-1, ny}) {
        for(int x = 0; x < nx; x++) {
            int st = inc.getData(x, y);

            if (st == 0)
                continue;

            auto jn = y == -1 ? 0 : ny - 1;

            for (auto in : {x-1, x, x+1}) {
                if (!flowDir.isInPartition(in, jn))
                    continue;

                float flow = flowDir.getData(in, jn);
                auto neighSt = inc.getData(in, jn);

                if (flow == -1 && (neighSt == 0 || neighSt > st + 1 || -neighSt > st + 1)) {
                    queue.push_back({in, jn, st + 1});

                    // Here we set a negative increment if it's still pending
                    //
                    // Another flat might be neighboring the same cell with a lower increment,
                    // which has to override the higher increment (that hasn't been set yet but is in the queue).
                    inc.setData(in, jn, -(st + 1));
                }
            }
        }
    }

    size_t numChanged = 0;

    // Sort queue by lowest increment
    std::sort(queue.begin(), queue.end());
    std::vector<pnode> newFlats;

    while (!queue.empty()) {
        for(pnode flat : queue) {
            // Skip if the increment was already set and it is lower 
            auto st = inc.getData(flat.x, flat.y);
            if (st > 0 && st <= flat.inc) {
                continue;
            }

            for (int k = 1; k <= 8; k++) {
                if (dontCross(k, flat.x, flat.y, flowDir) == 0) {
                    int in = flat.x + d1[k];
                    int jn = flat.y + d2[k];

                    if (!flowDir.isInPartition(in, jn)) 
                        continue;

                    float flow = flowDir.getData(in, jn);
                    auto neighInc = inc.getData(in, jn);

                    if (flow == -1 && (neighInc == 0 || neighInc > flat.inc + 1 || -neighInc > flat.inc + 1)) {
                        newFlats.push_back({in, jn, flat.inc + 1});
                        inc.setData(in, jn, -(flat.inc + 1));
                    }
                }
            }

            inc.setData(flat.x, flat.y, flat.inc);
            numChanged++;
        }

        std::sort(newFlats.begin(), newFlats.end());
        queue.clear();
        queue.swap(newFlats);
    }

    return numChanged;
}