void grid_renderer<T>::process(polygon_pattern_symbolizer const& sym,
                               mapnik::feature_impl & feature,
                               proj_transform const& prj_trans)
{
    std::string filename = path_processor_type::evaluate( *sym.get_filename(), feature);

    boost::optional<marker_ptr> mark = marker_cache::instance().find(filename,true);
    if (!mark) return;

    if (!(*mark)->is_bitmap())
    {
        MAPNIK_LOG_DEBUG(agg_renderer) << "agg_renderer: Only images (not '" << filename << "') are supported in the line_pattern_symbolizer";
        return;
    }

    boost::optional<image_ptr> pat = (*mark)->get_bitmap_data();
    if (!pat) return;

    ras_ptr->reset();

    agg::trans_affine tr;
    evaluate_transform(tr, feature, sym.get_transform());

    typedef boost::mpl::vector<clip_poly_tag,transform_tag,affine_transform_tag,smooth_tag> conv_types;
    vertex_converter<box2d<double>, grid_rasterizer, polygon_pattern_symbolizer,
                     CoordTransform, proj_transform, agg::trans_affine, conv_types>
        converter(query_extent_,*ras_ptr,sym,t_,prj_trans,tr,scale_factor_);

    if (prj_trans.equal() && sym.clip()) converter.set<clip_poly_tag>(); //optional clip (default: true)
    converter.set<transform_tag>(); //always transform
    converter.set<affine_transform_tag>();
    if (sym.smooth() > 0.0) converter.set<smooth_tag>(); // optional smooth converter


    for ( geometry_type & geom : feature.paths())
    {
        if (geom.size() > 2)
        {
            converter.apply(geom);
        }
    }
    typedef typename grid_renderer_base_type::pixfmt_type pixfmt_type;
    typedef typename grid_renderer_base_type::pixfmt_type::color_type color_type;
    typedef agg::renderer_scanline_bin_solid<grid_renderer_base_type> renderer_type;

    grid_rendering_buffer buf(pixmap_.raw_data(), width_, height_, width_);
    pixfmt_type pixf(buf);

    grid_renderer_base_type renb(pixf);
    renderer_type ren(renb);

    // render id
    ren.color(color_type(feature.id()));
    agg::scanline_bin sl;
    ras_ptr->filling_rule(agg::fill_even_odd);
    agg::render_scanlines(*ras_ptr, sl, ren);

    // add feature properties to grid cache
    pixmap_.add_feature(feature);
}
void agg_renderer<T>::process(raster_symbolizer const& sym,
                              mapnik::feature_impl & feature,
                              proj_transform const& prj_trans)
{
    raster_ptr const& source = feature.get_raster();
    if (source)
    {
        // If there's a colorizer defined, use it to color the raster in-place
        raster_colorizer_ptr colorizer = sym.get_colorizer();
        if (colorizer)
            colorizer->colorize(source,feature);

        box2d<double> target_ext = box2d<double>(source->ext_);
        prj_trans.backward(target_ext, PROJ_ENVELOPE_POINTS);
        box2d<double> ext = t_.forward(target_ext);
        int start_x = static_cast<int>(ext.minx());
        int start_y = static_cast<int>(ext.miny());
        int end_x = static_cast<int>(ceil(ext.maxx()));
        int end_y = static_cast<int>(ceil(ext.maxy()));
        int raster_width = end_x - start_x;
        int raster_height = end_y - start_y;
        if (raster_width > 0 && raster_height > 0)
        {
            image_data_32 target_data(raster_width,raster_height);
            raster target(target_ext, target_data);
            scaling_method_e scaling_method = sym.get_scaling_method();
            double filter_radius = sym.calculate_filter_factor();
            double offset_x = ext.minx() - start_x;
            double offset_y = ext.miny() - start_y;
            if (!prj_trans.equal())
            {
                reproject_and_scale_raster(target, *source, prj_trans,
                                 offset_x, offset_y,
                                 sym.get_mesh_size(),
                                 filter_radius,
                                 scaling_method);
            }
            else
            {
                if (scaling_method == SCALING_BILINEAR8){
                    scale_image_bilinear8<image_data_32>(target.data_,source->data_, offset_x, offset_y);
                } else {
                    double scaling_ratio = ext.width() / source->data_.width();
                    scale_image_agg<image_data_32>(target.data_,
                                                   source->data_,
                                                   scaling_method,
                                                   scaling_ratio,
                                                   offset_x,
                                                   offset_y,
                                                   filter_radius);
                }
            }
            composite(current_buffer_->data(), target.data_, sym.comp_op(), sym.get_opacity(), start_x, start_y, true);
        }
    }
}
void grid_renderer<T>::process(polygon_symbolizer const& sym,
                               mapnik::feature_impl & feature,
                               proj_transform const& prj_trans)
{
    typedef agg::renderer_scanline_bin_solid<grid_renderer_base_type> renderer_type;
    typedef typename grid_renderer_base_type::pixfmt_type pixfmt_type;
    typedef typename grid_renderer_base_type::pixfmt_type::color_type color_type;

    ras_ptr->reset();

    agg::trans_affine tr;
    evaluate_transform(tr, feature, sym.get_transform(), scale_factor_);

    typedef boost::mpl::vector<clip_poly_tag,transform_tag,affine_transform_tag,simplify_tag,smooth_tag> conv_types;
    vertex_converter<box2d<double>, grid_rasterizer, polygon_symbolizer,
                     CoordTransform, proj_transform, agg::trans_affine, conv_types>
        converter(query_extent_,*ras_ptr,sym,t_,prj_trans,tr,scale_factor_);

    if (prj_trans.equal() && sym.clip()) converter.set<clip_poly_tag>(); //optional clip (default: true)
    converter.set<transform_tag>(); //always transform
    converter.set<affine_transform_tag>();
    if (sym.simplify_tolerance() > 0.0) converter.set<simplify_tag>(); // optional simplify converter
    if (sym.smooth() > 0.0) converter.set<smooth_tag>(); // optional smooth converter


    for ( geometry_type & geom : feature.paths())
    {
        if (geom.size() > 2)
        {
            converter.apply(geom);
        }
    }

    grid_rendering_buffer buf(pixmap_.raw_data(), width_, height_, width_);
    pixfmt_type pixf(buf);

    grid_renderer_base_type renb(pixf);
    renderer_type ren(renb);

    // render id
    ren.color(color_type(feature.id()));
    agg::scanline_bin sl;
    ras_ptr->filling_rule(agg::fill_even_odd);
    agg::render_scanlines(*ras_ptr, sl, ren);

    // add feature properties to grid cache
    pixmap_.add_feature(feature);
}
void cairo_renderer<T>::process(polygon_pattern_symbolizer const& sym,
                                mapnik::feature_impl & feature,
                                proj_transform const& prj_trans)
{
    composite_mode_e comp_op = get<composite_mode_e, keys::comp_op>(sym, feature, common_.vars_);
    std::string filename = get<std::string, keys::file>(sym, feature, common_.vars_);
    value_bool clip = get<value_bool, keys::clip>(sym, feature, common_.vars_);
    value_double simplify_tolerance = get<value_double, keys::simplify_tolerance>(sym, feature, common_.vars_);
    value_double smooth = get<value_double, keys::smooth>(sym, feature, common_.vars_);
    value_double opacity = get<value_double, keys::opacity>(sym, feature, common_.vars_);
    agg::trans_affine image_tr = agg::trans_affine_scaling(common_.scale_factor_);
    auto image_transform = get_optional<transform_type>(sym, keys::image_transform);
    if (image_transform) evaluate_transform(image_tr, feature, common_.vars_, *image_transform);

    cairo_save_restore guard(context_);
    context_.set_operator(comp_op);

    boost::optional<mapnik::marker_ptr> marker = mapnik::marker_cache::instance().find(filename,true);
    if (!marker || !(*marker)) return;

    unsigned offset_x=0;
    unsigned offset_y=0;
    box2d<double> const& clip_box = clipping_extent(common_);
    pattern_alignment_enum alignment = get<pattern_alignment_enum, keys::alignment>(sym, feature, common_.vars_);
    if (alignment == LOCAL_ALIGNMENT)
    {
        double x0 = 0.0;
        double y0 = 0.0;

        if (feature.num_geometries() > 0)
        {
            using clipped_geometry_type = agg::conv_clip_polygon<geometry_type>;
            using path_type = transform_path_adapter<view_transform,clipped_geometry_type>;
            clipped_geometry_type clipped(feature.get_geometry(0));
            clipped.clip_box(clip_box.minx(), clip_box.miny(),
                             clip_box.maxx(), clip_box.maxy());
            path_type path(common_.t_, clipped, prj_trans);
            path.vertex(&x0, &y0);
        }
        offset_x = std::abs(clip_box.width() - x0);
        offset_y = std::abs(clip_box.height() - y0);
    }

    if ((*marker)->is_bitmap())
    {
        cairo_pattern pattern(**((*marker)->get_bitmap_data()), opacity);
        pattern.set_extend(CAIRO_EXTEND_REPEAT);
        pattern.set_origin(offset_x, offset_y);
        context_.set_pattern(pattern);
    }
    else
    {
        mapnik::rasterizer ras;
        image_ptr image = render_pattern(ras, **marker, image_tr, 1.0); //
        cairo_pattern pattern(*image, opacity);
        pattern.set_extend(CAIRO_EXTEND_REPEAT);
        pattern.set_origin(offset_x, offset_y);
        context_.set_pattern(pattern);
    }

    agg::trans_affine tr;
    auto geom_transform = get_optional<transform_type>(sym, keys::geometry_transform);
    if (geom_transform) {
        evaluate_transform(tr, feature, common_.vars_, *geom_transform, common_.scale_factor_);
    }

    vertex_converter<cairo_context,clip_poly_tag,transform_tag,affine_transform_tag,simplify_tag,smooth_tag>
    converter(clip_box, context_,sym,common_.t_,prj_trans,tr,feature,common_.vars_,common_.scale_factor_);

    if (prj_trans.equal() && clip) converter.set<clip_poly_tag>(); //optional clip (default: true)
    converter.set<transform_tag>(); //always transform
    converter.set<affine_transform_tag>();
    if (simplify_tolerance > 0.0) converter.set<simplify_tag>(); // optional simplify converter
    if (smooth > 0.0) converter.set<smooth_tag>(); // optional smooth converter

    for ( geometry_type & geom : feature.paths())
    {
        if (geom.size() > 2)
        {
            converter.apply(geom);
        }
    }
    // fill polygon
    context_.set_fill_rule(CAIRO_FILL_RULE_EVEN_ODD);
    context_.fill();
}
Exemplo n.º 5
0
void agg_renderer<T0,T1>::process(polygon_pattern_symbolizer const& sym,
                                  mapnik::feature_impl & feature,
                                  proj_transform const& prj_trans)
{
    std::string filename = get<std::string, keys::file>(sym, feature, common_.vars_);
    if (filename.empty()) return;
    std::shared_ptr<mapnik::marker const> marker = marker_cache::instance().find(filename, true);

    buffer_type & current_buffer = buffers_.top().get();
    agg::rendering_buffer buf(current_buffer.bytes(), current_buffer.width(),
                              current_buffer.height(), current_buffer.row_size());
    ras_ptr->reset();
    value_double gamma = get<value_double, keys::gamma>(sym, feature, common_.vars_);
    gamma_method_enum gamma_method = get<gamma_method_enum, keys::gamma_method>(sym, feature, common_.vars_);
    if (gamma != gamma_ || gamma_method != gamma_method_)
    {
        set_gamma_method(ras_ptr, gamma, gamma_method);
        gamma_method_ = gamma_method;
        gamma_ = gamma;
    }

    value_bool clip = get<value_bool, keys::clip>(sym, feature, common_.vars_);
    value_double opacity = get<double, keys::opacity>(sym, feature, common_.vars_);
    value_double simplify_tolerance = get<value_double, keys::simplify_tolerance>(sym, feature, common_.vars_);
    value_double smooth = get<value_double, keys::smooth>(sym, feature, common_.vars_);

    using color = agg::rgba8;
    using order = agg::order_rgba;
    using blender_type = agg::comp_op_adaptor_rgba_pre<color, order>;
    using pixfmt_type = agg::pixfmt_custom_blend_rgba<blender_type, agg::rendering_buffer>;

    using wrap_x_type = agg::wrap_mode_repeat;
    using wrap_y_type = agg::wrap_mode_repeat;
    using img_source_type = agg::image_accessor_wrap<agg::pixfmt_rgba32_pre,
                                                     wrap_x_type,
                                                     wrap_y_type>;

    using span_gen_type = agg::span_pattern_rgba<img_source_type>;
    using ren_base = agg::renderer_base<pixfmt_type>;

    using renderer_type = agg::renderer_scanline_aa_alpha<ren_base,
                                                          agg::span_allocator<agg::rgba8>,
                                                          span_gen_type>;

    pixfmt_type pixf(buf);
    pixf.comp_op(static_cast<agg::comp_op_e>(get<composite_mode_e, keys::comp_op>(sym, feature, common_.vars_)));
    ren_base renb(pixf);

    common_pattern_process_visitor<polygon_pattern_symbolizer, rasterizer> visitor(*ras_ptr, common_, sym, feature);
    image_rgba8 image(util::apply_visitor(visitor, *marker));

    unsigned w = image.width();
    unsigned h = image.height();
    agg::rendering_buffer pattern_rbuf((agg::int8u*)image.bytes(),w,h,w*4);
    agg::pixfmt_rgba32_pre pixf_pattern(pattern_rbuf);
    img_source_type img_src(pixf_pattern);

    box2d<double> clip_box = clipping_extent(common_);
    coord<unsigned, 2> offset(detail::offset(sym, feature, prj_trans, common_, clip_box));
    span_gen_type sg(img_src, offset.x, offset.y);

    agg::span_allocator<agg::rgba8> sa;
    renderer_type rp(renb,sa, sg, unsigned(opacity * 255));

    agg::trans_affine tr;
    auto transform = get_optional<transform_type>(sym, keys::geometry_transform);
    if (transform) evaluate_transform(tr, feature, common_.vars_, *transform, common_.scale_factor_);
    using vertex_converter_type = vertex_converter<clip_poly_tag,
                                                   transform_tag,
                                                   affine_transform_tag,
                                                   simplify_tag,
                                                   smooth_tag>;

    vertex_converter_type converter(clip_box, sym,common_.t_,prj_trans,tr,feature,common_.vars_,common_.scale_factor_);

    if (prj_trans.equal() && clip) converter.set<clip_poly_tag>();
    converter.set<transform_tag>(); //always transform
    converter.set<affine_transform_tag>(); // optional affine transform
    if (simplify_tolerance > 0.0) converter.set<simplify_tag>(); // optional simplify converter
    if (smooth > 0.0) converter.set<smooth_tag>(); // optional smooth converter

    using apply_vertex_converter_type = detail::apply_vertex_converter<vertex_converter_type, rasterizer>;
    using vertex_processor_type = geometry::vertex_processor<apply_vertex_converter_type>;
    apply_vertex_converter_type apply(converter, *ras_ptr);
    mapnik::util::apply_visitor(vertex_processor_type(apply),feature.get_geometry());
    agg::scanline_u8 sl;
    ras_ptr->filling_rule(agg::fill_even_odd);
    agg::render_scanlines(*ras_ptr, sl, rp);
}
void cairo_renderer<T>::process(polygon_pattern_symbolizer const& sym,
                                  mapnik::feature_impl & feature,
                                  proj_transform const& prj_trans)
{
    composite_mode_e comp_op = get<composite_mode_e, keys::comp_op>(sym, feature, common_.vars_);
    std::string filename = get<std::string, keys::file>(sym, feature, common_.vars_);
    value_bool clip = get<value_bool, keys::clip>(sym, feature, common_.vars_);
    value_double simplify_tolerance = get<value_double, keys::simplify_tolerance>(sym, feature, common_.vars_);
    value_double smooth = get<value_double, keys::smooth>(sym, feature, common_.vars_);
    value_double opacity = get<value_double, keys::opacity>(sym, feature, common_.vars_);
    agg::trans_affine image_tr = agg::trans_affine_scaling(common_.scale_factor_);
    auto image_transform = get_optional<transform_type>(sym, keys::image_transform);
    if (image_transform) evaluate_transform(image_tr, feature, common_.vars_, *image_transform);

    cairo_save_restore guard(context_);
    context_.set_operator(comp_op);

    std::shared_ptr<mapnik::marker const> marker = mapnik::marker_cache::instance().find(filename,true);
    if (marker->is<mapnik::marker_null>()) return;

    unsigned offset_x=0;
    unsigned offset_y=0;
    box2d<double> const& clip_box = clipping_extent(common_);
    pattern_alignment_enum alignment = get<pattern_alignment_enum, keys::alignment>(sym, feature, common_.vars_);
    if (alignment == LOCAL_ALIGNMENT)
    {
        double x0 = 0.0;
        double y0 = 0.0;
        using apply_local_alignment = detail::apply_local_alignment;
        apply_local_alignment apply(common_.t_, prj_trans, clip_box, x0, y0);
        util::apply_visitor(geometry::vertex_processor<apply_local_alignment>(apply), feature.get_geometry());
        offset_x = std::abs(clip_box.width() - x0);
        offset_y = std::abs(clip_box.height() - y0);
    }

    util::apply_visitor(cairo_renderer_process_visitor_p(context_, image_tr, offset_x, offset_y, opacity), *marker);

    agg::trans_affine tr;
    auto geom_transform = get_optional<transform_type>(sym, keys::geometry_transform);
    if (geom_transform) { evaluate_transform(tr, feature, common_.vars_, *geom_transform, common_.scale_factor_); }
    using vertex_converter_type = vertex_converter<
                                                   clip_poly_tag,
                                                   transform_tag,
                                                   affine_transform_tag,
                                                   simplify_tag,
                                                   smooth_tag>;

    vertex_converter_type converter(clip_box,sym,common_.t_,prj_trans,tr,feature,common_.vars_,common_.scale_factor_);
    if (prj_trans.equal() && clip) converter.set<clip_poly_tag>(); //optional clip (default: true)
    converter.set<transform_tag>(); //always transform
    converter.set<affine_transform_tag>();
    if (simplify_tolerance > 0.0) converter.set<simplify_tag>(); // optional simplify converter
    if (smooth > 0.0) converter.set<smooth_tag>(); // optional smooth converter

    using apply_vertex_converter_type = detail::apply_vertex_converter<vertex_converter_type, cairo_context>;
    using vertex_processor_type = geometry::vertex_processor<apply_vertex_converter_type>;
    apply_vertex_converter_type apply(converter, context_);
    mapnik::util::apply_visitor(vertex_processor_type(apply),feature.get_geometry());
    // fill polygon
    context_.set_fill_rule(CAIRO_FILL_RULE_EVEN_ODD);
    context_.fill();
}
void grid_renderer<T>::process(polygon_pattern_symbolizer const& sym,
                               mapnik::feature_impl & feature,
                               proj_transform const& prj_trans)
{
    std::string filename = get<std::string>(sym, keys::file, feature, common_.vars_);
    if (filename.empty()) return;
    boost::optional<mapnik::marker_ptr> mark = marker_cache::instance().find(filename, true);
    if (!mark) return;

    if (!(*mark)->is_bitmap())
    {
        MAPNIK_LOG_DEBUG(agg_renderer) << "agg_renderer: Only images (not '" << filename << "') are supported in the line_pattern_symbolizer";
        return;
    }

    boost::optional<image_ptr> pat = (*mark)->get_bitmap_data();
    if (!pat) return;

    ras_ptr->reset();

    bool clip = get<value_bool>(sym, keys::clip, feature, common_.vars_, true);
    double simplify_tolerance = get<value_double>(sym, keys::simplify_tolerance, feature, common_.vars_, 0.0);
    double smooth = get<value_double>(sym, keys::smooth, feature, common_.vars_, false);

    agg::trans_affine tr;
    auto transform = get_optional<transform_type>(sym, keys::geometry_transform);
    if (transform)
    {
        evaluate_transform(tr, feature, common_.vars_, *transform, common_.scale_factor_);
    }

    using conv_types = boost::mpl::vector<clip_poly_tag,transform_tag,affine_transform_tag,smooth_tag>;
    vertex_converter<box2d<double>, grid_rasterizer, polygon_pattern_symbolizer,
                     CoordTransform, proj_transform, agg::trans_affine, conv_types, feature_impl>
        converter(common_.query_extent_,*ras_ptr,sym,common_.t_,prj_trans,tr,feature,common_.vars_,common_.scale_factor_);

    if (prj_trans.equal() && clip) converter.set<clip_poly_tag>(); //optional clip (default: true)
    converter.set<transform_tag>(); //always transform
    converter.set<affine_transform_tag>();
    if (simplify_tolerance > 0.0) converter.set<simplify_tag>(); // optional simplify converter
    if (smooth > 0.0) converter.set<smooth_tag>(); // optional smooth converter

    for ( geometry_type & geom : feature.paths())
    {
        if (geom.size() > 2)
        {
            converter.apply(geom);
        }
    }
    using pixfmt_type = typename grid_renderer_base_type::pixfmt_type;
    using color_type = typename grid_renderer_base_type::pixfmt_type::color_type;
    using renderer_type = agg::renderer_scanline_bin_solid<grid_renderer_base_type>;

    grid_rendering_buffer buf(pixmap_.raw_data(), common_.width_, common_.height_, common_.width_);
    pixfmt_type pixf(buf);

    grid_renderer_base_type renb(pixf);
    renderer_type ren(renb);

    // render id
    ren.color(color_type(feature.id()));
    agg::scanline_bin sl;
    ras_ptr->filling_rule(agg::fill_even_odd);
    agg::render_scanlines(*ras_ptr, sl, ren);

    // add feature properties to grid cache
    pixmap_.add_feature(feature);
}
void grid_renderer<T>::process(polygon_pattern_symbolizer const& sym,
                               mapnik::feature_impl & feature,
                               proj_transform const& prj_trans)
{
    std::string filename = get<std::string, keys::file>(sym, feature, common_.vars_);
    if (filename.empty()) return;
    mapnik::marker const& mark = marker_cache::instance().find(filename, true);
    if (mark.is<mapnik::marker_null>()) return;

    if (!mark.is<mapnik::marker_rgba8>())
    {
        MAPNIK_LOG_DEBUG(agg_renderer) << "agg_renderer: Only images (not '" << filename << "') are supported in the line_pattern_symbolizer";
        return;
    }

    ras_ptr->reset();

    value_bool clip = get<value_bool, keys::clip>(sym, feature, common_.vars_);
    value_double simplify_tolerance = get<value_double, keys::simplify_tolerance>(sym, feature, common_.vars_);
    value_double smooth = get<value_double, keys::smooth>(sym, feature, common_.vars_);

    agg::trans_affine tr;
    auto transform = get_optional<transform_type>(sym, keys::geometry_transform);
    if (transform)
    {
        evaluate_transform(tr, feature, common_.vars_, *transform, common_.scale_factor_);
    }

    using vertex_converter_type = vertex_converter<clip_poly_tag,transform_tag,affine_transform_tag,smooth_tag>;
    vertex_converter_type converter(common_.query_extent_,sym,common_.t_,prj_trans,tr,feature,common_.vars_,common_.scale_factor_);

    if (prj_trans.equal() && clip) converter.set<clip_poly_tag>(); //optional clip (default: true)
    converter.set<transform_tag>(); //always transform
    converter.set<affine_transform_tag>();
    if (simplify_tolerance > 0.0) converter.set<simplify_tag>(); // optional simplify converter
    if (smooth > 0.0) converter.set<smooth_tag>(); // optional smooth converter

    using apply_vertex_converter_type = detail::apply_vertex_converter<vertex_converter_type, grid_rasterizer>;
    using vertex_processor_type = geometry::vertex_processor<apply_vertex_converter_type>;
    apply_vertex_converter_type apply(converter, *ras_ptr);
    mapnik::util::apply_visitor(vertex_processor_type(apply),feature.get_geometry());

    using pixfmt_type = typename grid_renderer_base_type::pixfmt_type;
    using color_type = typename grid_renderer_base_type::pixfmt_type::color_type;
    using renderer_type = agg::renderer_scanline_bin_solid<grid_renderer_base_type>;

    grid_rendering_buffer buf(pixmap_.raw_data(), common_.width_, common_.height_, common_.width_);
    pixfmt_type pixf(buf);

    grid_renderer_base_type renb(pixf);
    renderer_type ren(renb);

    // render id
    ren.color(color_type(feature.id()));
    agg::scanline_bin sl;
    ras_ptr->filling_rule(agg::fill_even_odd);
    agg::render_scanlines(*ras_ptr, sl, ren);

    // add feature properties to grid cache
    pixmap_.add_feature(feature);
}
Exemplo n.º 9
0
void agg_renderer<T>::process(raster_symbolizer const& sym,
                              mapnik::feature_impl & feature,
                              proj_transform const& prj_trans)
{
    raster_ptr const& source = feature.get_raster();
    if (source)
    {
        // If there's a colorizer defined, use it to color the raster in-place
        raster_colorizer_ptr colorizer = sym.get_colorizer();
        if (colorizer)
            colorizer->colorize(source,feature);

        box2d<double> target_ext = box2d<double>(source->ext_);
        prj_trans.backward(target_ext, PROJ_ENVELOPE_POINTS);
        box2d<double> ext = t_.forward(target_ext);
        int start_x = static_cast<int>(std::floor(ext.minx()+.5));
        int start_y = static_cast<int>(std::floor(ext.miny()+.5));
        int end_x = static_cast<int>(std::floor(ext.maxx()+.5));
        int end_y = static_cast<int>(std::floor(ext.maxy()+.5));
        int raster_width = end_x - start_x;
        int raster_height = end_y - start_y;
        if (raster_width > 0 && raster_height > 0)
        {
            raster target(target_ext, raster_width,raster_height);
            scaling_method_e scaling_method = sym.get_scaling_method();
            double filter_radius = sym.calculate_filter_factor();
            bool premultiply_source = !source->premultiplied_alpha_;
            boost::optional<bool> is_premultiplied = sym.premultiplied();
            if (is_premultiplied)
            {
                if (*is_premultiplied) premultiply_source = false;
                else premultiply_source = true;
            }
            if (premultiply_source)
            {
                agg::rendering_buffer buffer(source->data_.getBytes(),
                                             source->data_.width(),
                                             source->data_.height(),
                                             source->data_.width() * 4);
                agg::pixfmt_rgba32 pixf(buffer);
                pixf.premultiply();
            }
            if (!prj_trans.equal())
            {
                double offset_x = ext.minx() - start_x;
                double offset_y = ext.miny() - start_y;
                reproject_and_scale_raster(target, *source, prj_trans,
                                 offset_x, offset_y,
                                 sym.get_mesh_size(),
                                 filter_radius,
                                 scaling_method);
            }
            else
            {
                if (scaling_method == SCALING_BILINEAR8)
                {
                    scale_image_bilinear8<image_data_32>(target.data_,
                                                         source->data_,
                                                         0.0,
                                                         0.0);
                }
                else
                {
                    double image_ratio_x = ext.width() / source->data_.width();
                    double image_ratio_y = ext.height() / source->data_.height();
                    scale_image_agg<image_data_32>(target.data_,
                                                   source->data_,
                                                   scaling_method,
                                                   image_ratio_x,
                                                   image_ratio_y,
                                                   0.0,
                                                   0.0,
                                                   filter_radius);
                }
            }
            composite(current_buffer_->data(), target.data_,
                      sym.comp_op(), sym.get_opacity(),
                      start_x, start_y, false);
        }
    }
}