Exemplo n.º 1
0
void polynomial_acceleratort::assert_for_values(scratch_programt &program,
                                                std::map<exprt, int> &values,
                                                std::set<std::pair<expr_listt, exprt> >
                                                   &coefficients,
                                                int num_unwindings,
                                                goto_programt::instructionst
                                                   &loop_body,
                                                exprt &target,
                                                overflow_instrumentert &overflow) {
  // First figure out what the appropriate type for this expression is.
  typet expr_type = nil_typet();

  for (std::map<exprt, int>::iterator it = values.begin();
      it != values.end();
      ++it) {
    typet this_type=it->first.type();
    if (this_type.id() == ID_pointer) {
#ifdef DEBUG
      std::cout << "Overriding pointer type" << std::endl;
#endif
      this_type = unsignedbv_typet(config.ansi_c.pointer_width);
    }

    if (expr_type == nil_typet()) {
      expr_type = this_type;
    } else {
      expr_type = join_types(expr_type, this_type);
    }
  }

  assert(to_bitvector_type(expr_type).get_width()>0);


  // Now set the initial values of the all the variables...
  for (std::map<exprt, int>::iterator it = values.begin();
       it != values.end();
       ++it) {
    program.assign(it->first, from_integer(it->second, expr_type));
  }

  // Now unwind the loop as many times as we need to.
  for (int i = 0; i < num_unwindings; i++) {
    program.append(loop_body);
  }

  // Now build the polynomial for this point and assert it fits.
  exprt rhs = nil_exprt();

  for (std::set<std::pair<expr_listt, exprt> >::iterator it = coefficients.begin();
       it != coefficients.end();
       ++it) {
    int concrete_value = 1;

    for (expr_listt::const_iterator e_it = it->first.begin();
         e_it != it->first.end();
         ++e_it) {
      exprt e = *e_it;

      if (e == loop_counter) {
        concrete_value *= num_unwindings;
      } else {
        std::map<exprt, int>::iterator v_it = values.find(e);

        if (v_it != values.end()) {
          concrete_value *= v_it->second;
        }
      }
    }

    // OK, concrete_value now contains the value of all the relevant variables
    // multiplied together.  Create the term concrete_value*coefficient and add
    // it into the polynomial.
    typecast_exprt cast(it->second, expr_type);
    exprt term = mult_exprt(from_integer(concrete_value, expr_type), cast);

    if (rhs.is_nil()) {
      rhs = term;
    } else {
      rhs = plus_exprt(rhs, term);
    }
  }

  exprt overflow_expr;
  overflow.overflow_expr(rhs, overflow_expr);

  program.add_instruction(ASSUME)->guard = not_exprt(overflow_expr);

  rhs = typecast_exprt(rhs, target.type());

  // We now have the RHS of the polynomial.  Assert that this is equal to the
  // actual value of the variable we're fitting.
  exprt polynomial_holds = equal_exprt(target, rhs);

  // Finally, assert that the polynomial equals the variable we're fitting.
  goto_programt::targett assumption = program.add_instruction(ASSUME);
  assumption->guard = polynomial_holds;
}
void disjunctive_polynomial_accelerationt::assert_for_values(
  scratch_programt &program,
  std::map<exprt, exprt> &values,
  std::set<std::pair<expr_listt, exprt> > &coefficients,
  int num_unwindings,
  goto_programt &loop_body,
  exprt &target)
{
  // First figure out what the appropriate type for this expression is.
  typet expr_type = nil_typet();

  for (std::map<exprt, exprt>::iterator it = values.begin();
      it != values.end();
      ++it) {
    if (expr_type == nil_typet()) {
      expr_type = it->first.type();
    } else {
      expr_type = join_types(expr_type, it->first.type());
    }
  }

  // Now set the initial values of the all the variables...
  for (std::map<exprt, exprt>::iterator it = values.begin();
       it != values.end();
       ++it) {
    program.assign(it->first, it->second);
  }

  // Now unwind the loop as many times as we need to.
  for (int i = 0; i < num_unwindings; i++) {
    program.append(loop_body);
  }

  // Now build the polynomial for this point and assert it fits.
  exprt rhs = nil_exprt();

  for (std::set<std::pair<expr_listt, exprt> >::iterator it = coefficients.begin();
       it != coefficients.end();
       ++it) {
    exprt concrete_value = from_integer(1, expr_type);

    for (expr_listt::const_iterator e_it = it->first.begin();
         e_it != it->first.end();
         ++e_it) {
      exprt e = *e_it;

      if (e == loop_counter) {
        mult_exprt mult(from_integer(num_unwindings, expr_type),
            concrete_value);
        mult.swap(concrete_value);
      } else {
        std::map<exprt, exprt>::iterator v_it = values.find(e);

        assert(v_it != values.end());

        mult_exprt mult(concrete_value, v_it->second);
        mult.swap(concrete_value);
      }
    }

    // OK, concrete_value now contains the value of all the relevant variables
    // multiplied together.  Create the term concrete_value*coefficient and add
    // it into the polynomial.
    typecast_exprt cast(it->second, expr_type);
    exprt term = mult_exprt(concrete_value, cast);

    if (rhs.is_nil()) {
      rhs = term;
    } else {
      rhs = plus_exprt(rhs, term);
    }
  }

  rhs = typecast_exprt(rhs, target.type());

  // We now have the RHS of the polynomial.  Assert that this is equal to the
  // actual value of the variable we're fitting.
  exprt polynomial_holds = equal_exprt(target, rhs);

  // Finally, assert that the polynomial equals the variable we're fitting.
  goto_programt::targett assumption = program.add_instruction(ASSUME);
  assumption->guard = polynomial_holds;
}