void ForSparseJacBool(
	bool                   transpose        ,
	size_t                 q                , 
	const VectorSet&       r                ,
	VectorSet&             s                ,
	size_t                 total_num_var    ,
	CppAD::vector<size_t>& dep_taddr        ,
	CppAD::vector<size_t>& ind_taddr        ,
	CppAD::player<Base>&   play             ,
	sparse_pack&           for_jac_sparsity )
{
	// temporary indices
	size_t i, j;

	// range and domain dimensions for F
	size_t m = dep_taddr.size();
	size_t n = ind_taddr.size();

	CPPAD_ASSERT_KNOWN(
		q > 0,
		"ForSparseJac: q is not greater than zero"
	);
	CPPAD_ASSERT_KNOWN( 
		size_t(r.size()) == n * q,
		"ForSparseJac: size of r is not equal to\n"
		"q times domain dimension for ADFun object."
	);

	// allocate memory for the requested sparsity calculation result
	for_jac_sparsity.resize(total_num_var, q);

	// set values corresponding to independent variables
	for(i = 0; i < n; i++)
	{	CPPAD_ASSERT_UNKNOWN( ind_taddr[i] < total_num_var );
		// ind_taddr[i] is operator taddr for i-th independent variable
		CPPAD_ASSERT_UNKNOWN( play.GetOp( ind_taddr[i] ) == InvOp );

		// set bits that are true
		if( transpose )
		{	for(j = 0; j < q; j++) if( r[ j * n + i ] )
				for_jac_sparsity.add_element( ind_taddr[i], j);
		}
		else
		{	for(j = 0; j < q; j++) if( r[ i * q + j ] )
				for_jac_sparsity.add_element( ind_taddr[i], j);
		}
	}

	// evaluate the sparsity patterns
	ForJacSweep(
		n,
		total_num_var,
		&play,
		for_jac_sparsity
	);

	// return values corresponding to dependent variables
	CPPAD_ASSERT_UNKNOWN( size_t(s.size()) == m * q );
	for(i = 0; i < m; i++)
	{	CPPAD_ASSERT_UNKNOWN( dep_taddr[i] < total_num_var );

		// extract the result from for_jac_sparsity
		if( transpose )
		{	for(j = 0; j < q; j++)
				s[ j * m + i ] = false;
		}
		else
		{	for(j = 0; j < q; j++)
				s[ i * q + j ] = false;
		}
		CPPAD_ASSERT_UNKNOWN( for_jac_sparsity.end() == q );
		for_jac_sparsity.begin( dep_taddr[i] );
		j = for_jac_sparsity.next_element();
		while( j < q )
		{	if( transpose )
				s[j * m + i] = true;
			else	s[i * q + j] = true;
			j = for_jac_sparsity.next_element();
		}
	}
}
Exemplo n.º 2
0
void sparsity_user2internal(
	sparse_pack&       internal  , 
	const VectorBool&  user      ,
	size_t             n_row     ,
	size_t             n_col     ,
	bool               transpose )
{	CPPAD_ASSERT_UNKNOWN( n_row * n_col == size_t(user.size()) );
	size_t i, j;

	CPPAD_ASSERT_KNOWN(
		size_t( user.size() ) == n_row * n_col,
		"Size of this vector of bools sparsity pattern is not equal product "
		"of the domain and range dimensions for corresponding function."
	);

	// transposed pattern case
	if( transpose )
	{	internal.resize(n_col, n_row);
		for(j = 0; j < n_col; j++)
		{	for(i = 0; i < n_row; i++)
			{	if( user[ i * n_col + j ] )
					internal.add_element(j, i);
			}
		}
		return;
	}

	// same pattern case
	internal.resize(n_row, n_col);
	for(i = 0; i < n_row; i++)
	{	for(j = 0; j < n_col; j++)
		{	if( user[ i * n_col + j ] )
				internal.add_element(i, j);
		}
	}
	return;
}
Exemplo n.º 3
0
void RevSparseHesBool(
	bool                      transpose         ,
	size_t                    q                 ,
	const VectorSet&          s                 ,
	VectorSet&                h                 ,
	size_t                    num_var           ,
	CppAD::vector<size_t>&    dep_taddr         ,
	CppAD::vector<size_t>&    ind_taddr         ,
	CppAD::player<Base>&      play              ,
	sparse_pack&              for_jac_sparsity  )
{
	// temporary indices
	size_t i, j;

	// check Vector is Simple VectorSet class with bool elements
	CheckSimpleVector<bool, VectorSet>();

	// range and domain dimensions for F
	size_t m = dep_taddr.size();
	size_t n = ind_taddr.size();

	CPPAD_ASSERT_KNOWN(
		q == for_jac_sparsity.end(),
		"RevSparseHes: q is not equal to its value\n"
		"in the previous call to ForSparseJac with this ADFun object."
	);
	CPPAD_ASSERT_KNOWN(
		size_t(s.size()) == m,
		"RevSparseHes: size of s is not equal to\n"
		"range dimension for ADFun object."
	);

	// Array that will hold reverse Jacobian dependency flag.
	// Initialize as true for the dependent variables.
	pod_vector<bool> RevJac;
	RevJac.extend(num_var);	
	for(i = 0; i < num_var; i++)
		RevJac[i] = false;
	for(i = 0; i < m; i++)
	{	CPPAD_ASSERT_UNKNOWN( dep_taddr[i] < num_var );
		RevJac[ dep_taddr[i] ] = s[i];
	}

	// vector of sets that will hold reverse Hessain values
	sparse_pack rev_hes_sparsity;
	rev_hes_sparsity.resize(num_var, q);

	// compute the Hessian sparsity patterns
	RevHesSweep(
		n,
		num_var,
		&play,
		for_jac_sparsity, 
		RevJac.data(),
		rev_hes_sparsity
	);

	// return values corresponding to independent variables
	CPPAD_ASSERT_UNKNOWN( size_t(h.size()) == n * q );
	for(j = 0; j < n; j++)
	{	for(i = 0; i < q; i++) 
		{	if( transpose )
				h[ j * q + i ] = false;
			else	h[ i * n + j ] = false;
		}
	}

	// j is index corresponding to reverse mode partial
	for(j = 0; j < n; j++)
	{	CPPAD_ASSERT_UNKNOWN( ind_taddr[j] < num_var );

		// ind_taddr[j] is operator taddr for j-th independent variable
		CPPAD_ASSERT_UNKNOWN( ind_taddr[j] == j + 1 );
		CPPAD_ASSERT_UNKNOWN( play.GetOp( ind_taddr[j] ) == InvOp );

		// extract the result from rev_hes_sparsity
		CPPAD_ASSERT_UNKNOWN( rev_hes_sparsity.end() == q );
		rev_hes_sparsity.begin(j + 1);
		i = rev_hes_sparsity.next_element();
		while( i < q )
		{	if( transpose )
				h[ j * q + i ] = true;
			else	h[ i * n + j ] = true;
			i = rev_hes_sparsity.next_element();
		}
	}

	return;
}